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Abstract

Financial Reynolds number works as a proxy for volatility in stock markets. This piece 
of work helps to identify the predictability and herd behavior embedded in the finan-
cial Reynolds number (time series) series for both CNX Nifty Regular and CNX Nifty 
High Frequency Trading domains. Hurst exponent and fractal dimension have been 
used to carry out this work. Results confirm conclusive evidence of predictability and 
herd behavior for both the indices. However, it has been observed that CNX Nifty 
High Frequency Trading domain (represented by its corresponding financial Reynolds 
number) is more predictable and has traces of significant herd behavior. The pattern of 
the predictability has been found to follow a quadratic equation.
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INTRODUCTION

Econophysics gained momentum in the mid-1990s with trailblazing 
works of Rosario Mantegna and Eugene Stanley, continuing the legacy 
of Benoit Mandelbrot. Despite the plethora of knowledge being avail-
able (presented in literature review), a threaded study for finding a 
volatility proxy for India was found to be missing.

Many interesting works took place in the last decade or so. This cur-
rent piece of study has been carefully cobbled from those works by 
eminent researchers. Jakimowicza and Juzwiszynb (2015) worked on 
Warsaw Stock Exchange using fluid mechanics analogy of Reynolds 
number to identify possible balance or equilibrium situation in a stock 
market. Cornelis Los (2004) used the same analogy, but for cash flow 
viscosity management. Two Chinese researchers (Zhang & Huang, 
2010) have proved that stock market is nothing but a finite Hilbert 
space, where different variables (such as price, volume, circuit filter, 
etc.) could behave like eigenvectors in all possible directions. An emi-
nent Romanian researcher (Racorean, 2015) echoed them as well while 
proving that bourses are nothing but quantum gates. Putting these 
thoughts together and stitching them carefully with specific stochas-
tic oscillators generated financial Reynolds number. However, though 
the financial Reynolds number seemed to be novel, yet one daunting 
question was left to be answered. Could this very number be able to 
predict the explosions in the bourses and could it also spot herd be-
havior in the process. Every new study has to undergo critical test in 
the process of generating the critical mass around it. Hence, this work 
would be able to showcase the prowess and utility of the previously 
defined financial Reynolds number.
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The previous work (Ghosh & Kozarević, 2018) rationally linked with valid logic and backed up by a 
strong measuring tool to identify and formulate an apt econophysics proxy (read as financial Reynolds 
number) for volatility number (explosive number) and further predicting the number for future as well. 
All the behavioral gaps were identified and validated as per behavioral theories. Quantum explosion in 
stochastic time series was predicted at the helm of the previous piece of work. However, some key ques-
tions left unanswered though. Since, the financial Reynolds number series is a stochastic time series; 
hence, Hurst exponent is an apt method of predicting the predictability. Moreover, any stochastic series 
is said to be having a pattern if the Hurst exponent is more than 0.5. Again, this study delves into the 
High Frequency Trading domain of Nifty as well. Hence, a comparison (between CNX Nifty Regular 
and CNX Nifty HFT) cannot be ruled out either. Nevertheless, the more is the Hurst exponent, the 
more is predictability and, thus, self-similar pattern in a recurring manner (confirming long memory 
process). Interesting to note that as the pattern intensifies, direction seems to be clear the indications 
are plausible enough for an evident herd behavior in the transaction levels of the underlying assets. 
Moreover, if the Hurst exponent is high, the fractal dimension is low confirming the relative smooth-
ness of the surface and, thus, reaffirming the predictability quotient. One engaging puzzle remained 
unsolved even after solving all these puzzles. Econophysics often talks about power law connection, 
and quadratic equation connection. Hence, it can only be possible if financial Reynolds number series 
is connected rationally with such a generalized mathematical construct. Log periodicity has been long 
used by eminent researchers across the globe for finding econophysics links. This work is no exception 
either. Cumulative log periodic financial Reynolds numbers were arranged according to their observa-
tion point to check whether it follows any kind of pattern or not (see Figure 1). This work has only been 
carried out for the CNX Nifty HFT domain though.

This work has three clear objectives:

1) predictability of financial Reynolds number (introduced in the previous study) in both regular CNX 
Nifty and CNX Nifty HFT domain;

2) herding traces along with fractal dimensions in both regular CNX Nifty and CNX Nifty HFT 
domain;

3) finding an equation for cumulative log-periodic volatility of financial Reynolds number in CNX 
Nifty HFT domain.

Most studies have been aimed at herding and Hurst exponents of stock market closing prices or indi-
vidual stock closing prices; however, this study aims to discover predictability and traces of herding us-
ing a volatility proxy. It’s a first study of this kind.

1. LITERATURE REVIEW

This innovative piece of work is a natural progres-
sion from the earlier work (Ghosh & Kozarević, 
2018). The work took inspiration from a work 
where quantum field has been utilized as a finan-
cial field; the work used gauge transformation, 
or simply a change in coordinates (Ilinski, 2001). 
Another interesting piece of work proved the 
stocks to be behaving like tiny quanta, moving 
in linear path, where all the impurities of such a 
micro system can be absorbed by the macro sys-

tem such as the bourse (Zhang & Huang, 2010). 
This work also showed a clear trace of wave par-
ticle duality in stocks. For a very short length of 
time, the movement is linear till the next move has 
been found, when it behaves like a wave. Stocks 
are found to be in a macro system (bourse), which 
interestingly stands as a proper analogue of a fi-
nite Hilbert space. However, purchase and sell 
happen on various tangible or intangible param-
eters directly or indirectly influencing the traders. 
Traders trade within the space of the circuit fil-
ters (defining the finite boundaries of the Hilbert 
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space). Their buying and selling behavior are com-
pletely probabilistic and, finally, leads to discovery 
of price (Ghosh & Kozarević, 2018). As this is re-
lated to information availability, hence, the direct 
intervention of information entropy cannot be 
ruled out either (namely Shannon entropy). Inside 
that finite Hilbert space (Schaden, 2002) (macro 
system), the boundaries are specific and defined 
clearly by circuit filters put into use by the respec-
tive regulatory authorities for the bourses. This, 
in turn, becomes a close proxy to a quantum well 
with finite boundaries (Zhang & Huang, 2010). On 
the other hand, the glaring warts of Black-Scholes 
option pricing model has been exposed many de-
cades ago (Bouchaud, 1994). Geometric Brownian 
motion, Levy process and Weiner process over 
the years have showed the presence of residual 
risk and probabilities of both overestimation and 
underestimation on many instances. Nowadays, 
econophysicists are utilizing the idea of universal-
ity in social science (Sen Parongama, 2013). These 
agents-based complex systems (Sinha, 1996, 2010) 
enable the researchers to find the strength and sta-
bility of the economic systems as a whole from a 
completely diverse point of view. 

Bachelier started this phenomena of econophysics 
amidst strong criticism more than a century ago 
(Bachelier, 1900). His seminal work of predicting 
cotton price in La Boursa in Paris caught Einstein 
who, in turn, produced one more work on similar 
lines (Einstein, 1906). In reality, Brownian motion 
used by Bachelier either overestimates or under-
estimates during crash or consolidation phases 
in economy due to the fundamental premise of 
Gaussian distribution. Mandelbrot introduced 
Levy flight, which is probability dependent along 
with geometry-based concept of “fractals”. A tiny 
part of an entire system will carry similar sur-
face roughness and other traits of the entire set-
up. Ausloos, Belgian scientist (Ausloos, 1998), pre-
dicted 1987 US stock market crash with his econo-
physics model (though as hindcast). Quantum gate 
effect in stock markets (Racorean, 2015), Shannon 
entropy as a better proxy over GARCH (Bentes 
& Menezes, 2012) and cash-flow viscosity-based 
turbulence predictor (Los, 2004) were some of the 
breakthrough works in last two decades. 

Jakimowicz and Juzwiszyn (2015) in their search 
of finding balance in volatile economic condi-

tion in Warsaw Stock Exchange (WIG) have used 
Osborne Reynolds equation and followed it with 
effective usage of Navier-Stokes equation. 

A group of eminent researchers (Bellenzier, Vitting 
Andersen, & Rotundo, 2016) extended Nassim 
Nicholas Taleb’s work on effect of heuristics (Haug 
& Taleb, 2011). They found that stock market is a 
complex system, which is quite brittle due to mental 
accounting and anchoring. Inoua (2015) discussed 
about the substantial fluctuations of financial pric-
es from the amplifying feedback of speculative de-
mand and supply. Haven and Sozzo (2015) linked 
quantum mechanics with behavioral finance aided 
by heuristic decision-making process effortlessly.

Some innovative work has been done using Hurst 
exponent to identify nascent bubbles, traces of herd 
behavior, etc. In one such study, it has been found 
that self-similar process with high and very high 
Hurst exponent leads to outperformance against 
the benchmark return, whereas the low and very 
low value indicate significant non-performance 
(Fernández-Martínez, Sánchez-Granero, Muñoz 
Torrecillas, McKelvey, 2016). Another innovative 
piece of work from a South Korean group of re-
searchers on different classification groups from ra-
tionality perspective showed that medium to high 
irrationality group has very high levels of Hurst 
exponent, proving it further that high Hurst expo-
nent does indicate herd behavior (Kim & Kim, 2014). 
Although the famous Benoit Mandelbrot started 
this revolution of long memory process for forecast-
ing with little data but higher accuracy, yet it was de-
scribed fluently by a group of researchers (Watkins 
& Franzke, 2017) who described the link that start-
ed with structural geometry and finished at long 
memory, self-similar process. Most of such econo-
physics studies for log-periodic cumulative repre-
sentation link it to a probable power law condition 
(Didier Sornette, 2003; Feigenbaum, 2001; Gazola, 
Fernandes, Pizzinga, & Riera, 2008; Jhun, Palacios, 
& Weatherall, 2017; Sornette, 2009). Log-periodic 
cumulative volatility has been linked to financial 
crash conditions before in Hang Seng between 1970 
and 2008 implementing bubble detection technique 
(Bree & Joseph, 2013; Johansen, Sornette, 2001). 

Herding in bourses was unearthed by the famous 
LSV (Lakonishok-Shleifer-Vishny) way back in 
1992. They have proved that herding germinates 
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from the “average tendency of a group of money 
managers to buy (sell) particular stocks at the 
same time” (Lakonishok, Shleifer, & Vishny, 1992). 
Though, it wasn’t explicitly termed as herding, but 
meant nothing but the same, where imitating noise 
traders were found to play pivotal role in the death 
of the bubble (Chen, Firth, & Rui, 2001; Johansen 
Anders, Ledoit Olivier, 2000). Momentum strate-
gies of investment managers in developing nations 
were identified as a primary reason for herding 
(Bikhchandani & Sharma, 2000). Many seminal 
works has been found in this regard pinpoint-
ing herd behavior in various market conditions. 
Certain trailblazing work proved that Latam and 
North America has less herd behavior (Chang, 
Cheng, & Khorana, 2000; Chiang, & Zheng, 2010; 
Chiang, Li, & Tan, 2010; Lao, 2011), perhaps due 
to higher financial literacy or true sense of infor-
mation cascading. Those studies also found that 
Asian peers, especially China, have herd behavior 
inbuilt that surfaces out during the crisis period. 

This study is a natural amalgamation of four em-
inent works from 2001 till 2015. In a nutshell, it 
borrowed the concept of Reynolds number from 
both the Polish and the American researchers 
(Jakimowicz & Juzwiszyn, 2015; Los, 2004), de-
fined its conditionality with the help of Romanian 
and Chinese works of eminent scientists (Racorean, 
2015; Zhang & Huang, 2010) and constructed it in 
an independent manner by using two stochastic 
oscillators (namely RVI and EMV).

2. METHODOLOGY

In the previous work (Ghosh & Kozarević, 2018) 
financial Reynolds number has been coined and 
calculated for CNX Nifty from February 15, 2000 
to December 7, 2015. Financial Reynolds number 
was calculated and coined as a proxy for mea-
suring volatility. Financial Reynolds number 
emerged as a ratio where Relative Volatility Index 
(RVI) (Dorsey, 1993) is the numerator and Ease of 
Movement (EMV) (Arms, 1996) is the denomina-
tor. Econometric tool GARCH (Generalized Auto 
Regressive Conditional Heteroscedasticity) and 
feed forward, back propagating classical artificial 
neural network (ANN, machine learning tool) has 
been used to predict the financial Reynolds num-
ber for the future. The results show predictabili-

ty in financial Reynolds number along with their 
explosive tendency and behavioral bias (Ghosh & 
Kozarevic, 2018).

Since both predictability and herd behavior can 
be indicated by the effective use of Hurst expo-
nent, coupled with fractal dimension, thus, the 
same has been applied in this work. Once Hurst 
exponent confirms the pattern embedded in this 
time series, cumulative log-periodic version of 
the same series (consisting of financial Reynolds 
number) has been plotted to extract the equation 
hidden inside the same. 

Two diverse domains of one stock exchange have 
been considered for this piece of empirical study for 
comparing their relative predictability. CNX Nifty 
Regular and CNX Nifty HFT (High Frequency 
Trading zone) have been considered in this current 
piece of work. The first one consists of 47,016 da-
ta points. CNX Nifty HFT data sets capture from 
February 1, 2013 to December 30, 2016. Hence, 
this consists of 9

2.8 10⋅  data points on a tick by 
tick basis. Hurst exponent (Hurst, 1951) has been 
checked periodically (checking window is adjusted 
at 200 observations) for both these data sets to de-
termine the predictability. Hurst exponent uncov-
ered the true sense of herd behavior as well in this 
work. Further delving in quest for a pattern in the 
newly developed volatility proxy log-periodic val-
ues were examined. Cumulative log periodicity has 
been implemented to reach an equation, depicting 
the overall pattern of cumulative volatility. 

2.1. Hurst exponent

This is an asymptotic behavioral pattern of a res-
caled time series.

( )
( )

,
H

R n
E Cn
S n

 
= 

 
 (1)

where ( )R n  is the range of the values, ( )S n  is 
their standard deviation, ( ) ( )/E R n S n    is the 
expected value, n  is the number of data points in 
the specified time series, C  is a constant, H  is 
the Hurst exponent Relation of Hurst exponent 
with fractal dimension

2 .D H= −  (2)
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However, some studies indicate that the relation-
ship between fractal behavior and long memory 
dependence (Hurst exponent) is non-linear in na-
ture (Gneiting & Schlather, 2001). 

This piece of work is cobbled carefully between 
econophysics and behavioral finance.

3. RESULTS AND ANALYSIS

Table 1. Report of Hurst exponent in ReHFT 

domain (average Hurst exponent is 0.69812)

Time period Obs range Hurst 
exponent

Fractal 
dimension

Feb 2013 to July 2013 1-105 0.59961 1.40039

Aug 2013 to Feb 2014 106-305 0.88042 1.11958

Mar 2014 to Oct 2014 306-505 0.64146 1.35854

Nov 2014 to July 2015 506-705 0.63717 1.36283

Aug 2015 to Mar 2016 706-905 0.61342 1.38658

Apr 2016 to Dec 2016 906-1056 0.81664 1.18336

Note: Average on time stamped ReHFT data have been used 
to reduce complexity.

Analysis of Hurst exponent opens up three inter-
esting discoveries related to volatility, herd behav-
ior and fractal dimension. Hurst exponent ideally 
operates as described in Table 3.

Table 3. Zones of Hurst exponent 

Hurst 
exponent Interpretation

H < 0.5 Non-persistent, no pattern, no herding, 
surface is rough (fractal)

H = 0.5 Random walk, completely stochastic

H > 0.5 Persistent, clear pattern, trace of herding, 
surface is smooth (fractal)

Overall observation suggests that Hurst exponent 
is significantly higher for ReHFT, or financial 
Reynolds number in HFT domain.

Table 4. Hurst exponent: interpretation

ReHFT Nifty 0.69812 Predictable, self-similar, less-rough 
and traces of Herding

Re Regular 
Nifty 0.58676 All the above but with a lower 

degree

This proves that financial Reynolds number in 
High Frequency domain (ReHFT) predicting 
volatility is more predictable (see Tables 1 and 4) 
and could be termed as “self-similar “compared 
to its regular counterpart. It’s not stochastic at all; 
on the contrary, it has clear trace of herding. This 
means pattern, which is evident, and persistence, 
which is clearly been observed, were the results of 
a herd behavior. Investors are keen to ride trends 
and that causing Herding, (Linders, Dhaene, & 
Schoutens, 2015; Muñoz Torrecillas, Yalamova, & 
McKelvey, 2016) generating pattern. 

Table 2. Report of Hurst exponent in Re regular domain (average Hurst exponent is 0.586762)

Time period Obs number Hurst exponent Fractal dimension
Feb 2000 to Nov 2000 1-200 0.7212793 1.2787207

Dec 2000 to Sept 2001 201-400 0.6041998 1.3958002

Oct 2001 to July 2002 401-600 0.5963155 1.4036844

Aug 2002 to April 2003 601-800 0.5148976 1.4851024

May 2003 to Feb 2004 801-1000 0.7531655 1.2468345

Mar 2004 to Dec 2004 1001-1200 0.6373432 1.3626568

Jan 2005 to Sept 2005 1201-1400 0.6380365 1.3619635

Oct 2005 to July 2006 1401-1600 0.4496574 1.5503426

Aug 2006 to May 2007 1601-1800 0.6648086 1.3351914

Jun2007 to Feb 2008 1801-2000 0.6876212 1.3123788

Mar 2008 to Dec 2008 2001-2200 0.5331683 1.4668316

Jan 2009 to Oct 2009 2201-2400 0.5622112 1.4377889

Nov 2009 to Aug 2010 2401-2600 0.5073273 1.4926727

Sept 2010 to May 2011 2601-2800 0.7142746 1.2857254

Jun 2011 to Mar 2012 2801-3000 0.5607086 1.4392914

Apr 2012 to Dec 2012 3001-3200 0.5556686 1.4443314

Jan 2013 to Oct 2013 3201-3400 0.5199249 1.4800752

Nov 2013 to Aug 2014 3401-3600 0.5577099 1.4422901

Sept 2014 to May 2015 3601-3800 0.5349345 1.4650655

Jun 2015 to Dec 2015 3801-3919 0.4219888 1.5780113
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For that matter, even the financial Reynolds num-
ber on Regular Nifty too is predictable and “self-
similar” (see Tables 2 and 4). However, the extent 
is more so as the intensity for the HFT. Although 
fractals (Mandelbrot, 1963; Watkins & Franzke, 
2017) are local properties and Hurst exponent is a 
global property (with long memory process), they 
seem to merge at a certain point. Roughness low-
ers for a self-similar process paving the way for 
plausible and possible prediction. Rougher sur-
faces with higher fractal dimensions occur for an-
tipersistent processes with 0 <H < 0.5 (see Table 
3). The results obtained in this study match with 
the outcome of the South Korean study conducted 
back in 2014. The higher the Hurst exponent, the 
lower the fractal dimensions or roughness, and 
surely the self-similar process is highly predict-
able with a definite degree of herding.

Table 5. Certain periods (Re Regular NIFTY) 

with high Hurst exponent (H > 0.65) has clear 

event link as well

Time period Event
February 2000  
to September 2001 Ketan Parekh and UTI Scam

May 2003  
to September 2005 Broad-based stock market rally

August 2006  
to February 2008

Global rally before the credit 
fiasco (US)

September 2010  
to May 2011

Recovery post Flash Crash in 
the US

It has been found that whenever a particular con-
dition occurred (H > 0.65), either local turmoil 
or global turmoil has been observed resulting in 
secular movements either upward or downward 
(see Table 5). Secular movements in stock marn-
kets do happen when herd behavior surfaces out. 
In fact, two periods (see Table 5) are found to be 
significantly higher from Hurst exponent point of 
view (H > 0.8). One seminal study report (Ormos 
& Timotity, 2016) indicates that heuristics and 
herding increase during crisis. Similar trace has 
been found below (April 2016 to December 2016, 
BREXIT effect, having H = 0.81).

Table 6. Certain periods (ReHFT NIFTY) with 

high Hurst exponent (H > 0.65) has clear 

event link as well

Time period Event

Aug 2013 to Feb 2014 Indian currency crisis & NPA 
surge in banks

Apr 2016 to Dec 2016 BREXIT

Situation based on evident herd behavior of the 
market participants intensified (see Table 6) in 
the CNX Nifty HFT domain. Hence, it can be 
confirmed that the HFT domain in the said in-
dex has been following a clear self-similar pattern 
and prominent traces of herd behavior is observed 
there. 

Perhaps, one question remained unanswered 
here! Hence, the cumulative log-periodic financial 
Reynolds number in HFT domain (CLPREHFT) 
has been plotted as per the sequential observation 
(see Figure 1).

The expression for defining cumulative log-peri-
odic volatility over a period of time emerged out 
as a quadratic equation (see Figure 1), where the 
dependent variable is the measure of cumulative 
volatility and the independent variable is observa-
tions (indicating time dependency):

2
0.0009 0.9511 34.3201.y x x= − + +  (3)

Inverse parabola is indicating an equation of com-
mon in most economic studies with profit or rev-
enue function in question:

2
,y ax bx c= − + +  (4)

where a  and c  are constants, hence the square 
law comes out from cumulative log-periodic 
Reynolds number series generated out of Nifty 
data in HFT mode (amounting 9

2.8 10⋅  data 
points). Log periodicity represents relative volatil-
ity between two trading days. That relative vola-
tility piles up in a symmetric mode and further 
comes down in the exactly same way forming a 
perfect inverse parabola. The growth of volatility 
is symmetric and so as the decline. Thus, it can be 
observed that cumulative log-periodic financial 
Reynolds number is a direct variant of an inverse 
parabola, hence, prediction becomes relatively 
easy and accurate by the age old algebraic equa-
tion. The two coefficients in this case are “a” and 

“c” respectively. Hence, if a=1 and c=0, another 
simplified equation emerges:

2
.y x bx= − +  (5)

In all other cases, the researcher has to calculate 
both a  and c  to find out the perfect inverse parab-
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ola. Inverse parabola signifies the constant rate of 
acceleration and deceleration, which means cu-
mulative volatility, is a function of inbuilt herd 
behavior. It accelerates when herd increases in 
the positive sense and decelerates when herd in-
creases downwards. This reaffirms the periodic 
secular movement of volatility resulting from 
underlying herd behavior. Hence, the cumulative 
periodic volatility for a defined period (5 years 
in this case) can be obtained as a perfectly sym-
metric inverse parabola. This cumulative volatil-
ity is a function of the frequency as a quadratic 
equation. Cumulative volatility overshoots to 
a level of 280 and, then, experiences downward 
pool in the exact opposite direction (Sornette, 
2003) with time and observation. Inertia of vola-
tility brings it down to an expected lower level. 
Inertia in stock markets is often caused by strong 
presence of herd behavior. Some eminent works 
from eminent scientists across the globe have 

found similar trend of volatility over time. One 
such work calculated EU option prices using a 
stochastic differential equation with a quadratic 
volatility term (Andersen, 2011). 

In simple terms, the cumulative log-periodic Re 
HFT (CLPREHFT) will increase with each obser-
vation, pick out around 500th observation before 
falling to zero around 1050th to 1090th observa-
tions. Such a method has been implied before for 
accurate prediction of currency futures (Bharadia, 
Christofides, & Salkin, 1996). Hence, this method 
could be beneficial in high frequency algorith-
mic domain with a higher degree of predictability 
(confirmed by the persistent value of Hurst expo-
nent in Table 1) to predict the cumulative volatil-
ity and its movement as well. Moreover, financial 
Reynolds number can be calculated for any sto-
chastic series having an underlying, such as stocks, 
commodities and currencies. 

Figure 1. Depicting cumulative Log-periodic Re HFT as a function of its observations

Scatterplot of CLPREHFT against OBS
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CONCLUSIVE NARRATION, CURRENT 

IMPLICATION AND LIMITATIONS 

Characteristics and traits of financial Reynolds number were unearthed in this study in two different 
domains from the same stock exchange. Financial Reynolds number was introduced in a unique man-
ner earlier (Ghosh & Kozarevic, 2018) to find an apt econophysics proxy for volatility. However, this 
study confirms the predictability aspect along with the strong footprints of herd behavior. The financial 
Reynolds number (depicting explosive elements in stock indices) in High Frequency Trading (HFT) 
segment of CNX NIFTY has been found to be more predictable (see Table 1), less rough in structure and 
more prone to herd behavior. “Crisis do trigger herd behavior in Asian markets” (Chiang & Zheng, 2010; 
Chiang, Li, J. & Tan, 2010) matched this study (see Tables 5, 6). 

Whereas Reynolds Number generated from the regular segment of CNX NIFTY has been found to be 
less predictable (see Table 2), more rough in structure and less prone to herd behavior when compared 
with its HFT counterpart. The cumulative log-periodic Reynolds number in the high frequency segment 
(CLPREHFT) appears to be a perfectly symmetric inverse parabola, represented by a quadratic equation, 
making the cumulative volatility more predictable in CNX NIFTY HFT. These theoretically enhance 
the existing body of knowledge on financial Reynolds number. Perhaps, this helps to attain the critical 
mass, considering the infancy of this kind of work involving financial Reynolds number. However, the 
financial Reynolds number is yet to be tested on a global barometer encompassing most stock markets 
in the globe. Also, regular fractal dimension may be limited while searching for the holy grail of pre-
dictability. Hence, future work could well be considered in those lines. These findings could be useful 
for traders, foreign institutional investors and qualified institutional buyers operating in CNX NIFTY. 
Predictability, herding and cumulative volatility pattern could well be decoded for select indices used in 
this work. HFT domain being more predictable with fixed equation and more traces of herding seems 
to be the future interest for the foreign portfolio investors. 

ECONOMIC INTERPRETATION

High frequency domain of a stock market is more predictable and contains an embedded pattern over 
its regular counterpart. However, this predictability comes with the problem of herd behavior, which 
could, in turn, form some kind of a positive rational bubble. Since, the regular domain is less predictable, 
thus, it carries less chances of forming a bubble (because of profound herd behavior) in future. 
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