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 AN EMPIRICAL COMPARISON AMONG VAR MODELS

AND TIME RULES WITH ELLIPTICAL AND STABLE 

DISTRIBUTED RETURNS1

Fabio Lamantia, Sergio Ortobelli2, Svetlozar Rachev3

Abstract

This paper compares and investigates the impact of different VaR models with condi-

tional elliptical and stable distributed returns. In particular, we analyze some non-Gaussian VaR 

models and discuss the applicability of some temporal aggregation rules. Thus, we propose and 

examine the performance of several VaR models: (i) an EWMA model with Student's t conditional 

distributions, (ii) a stable sub-Gaussian model, (iii) a stable asymmetric model. All models are 

subjected to backtest on out-of-sample data in order to assess their forecasting power and to show 

how the associated aggregation rules are performed in practice.  

Key words: Elliptical distributions, stable distributions, time aggregation rules, backtest 

analysis.

JEL Classification: G21, C32, C53. 

Introduction 

This paper proposes an empirical comparison among several models used to value the risk 

of a given portfolio. In particular, we test the capacity of different VaR non-Gaussian models and 

their associate time rules to predict future losses of some financial positions.  

The Value at Risk represents the minimum loss among the worst (1 )% cases that 

could occur in a given temporal horizon. Even if this risk measure is not an example of coherent 

risk (according to Artzner et al., 1999), it is actually used by financial institutions to evaluate the 

market risk exposure of their trading portfolios. The approaches proposed in the literature to value 

the risk of a given portfolio are mainly parametric or non-parametric ones. This paper presents 

parametric models for heavy tailed return series. These models are based on a distributional as-

sumption of the financial returns and they generally permit on-line VaR calculation. This feature 

allows the non-expert investor to understand  the risk associated with his/her position.  

In the RiskMetrics model (see Longerstaey and Zangari, 1996), the conditional profit/loss 

distribution is normal, though several empirical studies show that it is not Gaussian. As a matter of 

fact, the kurtosis and the skewness found in many empirical analyses led researchers to reject the 

normal assumption of historical conditional return series. Furthermore, the asymptotic behavior of 

conditional financial returns (see, among others, Mandelbrot, 1963a-b; Fama, 1965; Rachev and 

Mittnik, 2000 and references therein) validates and justifies the assumption of conditional stable 

distributed returns.  

Following these studies, our paper presents and compares some alternative models for the 

computation of VaR considering their time scale transformations and the distributional characteris-

tics of return series (see Lamantia et al., 2006). Firstly, we focus our attention on returns either 

with conditional multivariate elliptical distributions or in the domain of attraction of stable laws. 

For each stable model, we describe a method to estimate all parameters. Then, we compare the 

performance of all symmetric and asymmetric VaR models proposed and their time aggregation 
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rules. In particular, we evaluate Value at Risk estimates of all models considering conditional and 

unconditional coverage backtesting methods (see, among others, Christoffersen, 1998; Christof-

fersen and Diebold, 2000; Berkowitz, 2001). Thus, the main contribution of this paper consists in 

an assessment of several distributional assumptions and the relative time rules to compute the 

Value at Risk of a given portfolio. 

The paper is organized as follows: in Section 2, we recall the main VaR models and the 

respective time rules we test. In Section 3, we backtest the proposed VaR models assessing their 

ability to capture extreme returns. Section 4 discusses the applicability of different time rules com-

paring different results with historical and simulated data. Finally, we briefly summarize the paper. 

2. Value at Risk with elliptical EWMA models and stable Paretian distributions  

One of the most widely used models to compute Value at Risk of a given portfolio is the 

RiskMetrics one (see Longerstaey and Zangari, 1996). This model assumes that the conditional 

distribution of the continuously compounded return is a Gaussian law. In particular, if we denote 

with 1[ ,..., ] 'nw w w  the vector of the positions taken in n assets forming the portfolio, then the 

return portfolio at time t+1 is given by 

( ), 1 , 1
1

n

p t i i t
i

z w z ,

where , 1 , 1 ,log /i t i t i tz P P  is the return of i-th asset during the period [t,t+1], and 

,i tP  is the price of i-th asset at time t. RiskMetrics assumes that the return vector 

'

1 1, 1 , 1,...,t t n tz z z  follows a conditional joint Gaussian distribution with null mean and 

variance and covariance matrix 
2

1/ , 1/t t ij t tQ , where 
2
, 1/ij t t  are estimated using the 

exponential weighting moving average (EWMA) model:   

2 2 2 2
, 1/ , 1 , / 1 ,( ) (1 )ii t t t i t ii t t i tE z z  ,     (1) 

2 2
, 1/ , 1 , 1 , / 1 , ,( ) (1 )ij t t t i t j t ij t t i t j tE z z z z , (2) 

where  is the optimal smoothing factor (see Longerstaey and Zangari, 1996).  

2.1. Elliptical EWMA model 

The simplest generalization of Gaussian EWMA model (see Lamantia et al., 2006) as-

sumes conditional joint elliptically distributed vectors of returns 

1 1/ 1 1/(0, , )t t t t n t tz Ell Q f฀  with finite variance covariance matrix 

2
1/ , 1/ 1/ 1/'t t ij t t t t t tQ  that evolves as in formulas (1) and (2) and conditional 

characteristic function 1

1

'
1/( ) ( ) ( ' )t

t

im z
z t t tm E e f m Q m . Under the elliptical as-

sumption for the conditional returns, the Value at Risk of portfolio ( ), 1p tz  at (1- )% (denoted by 

, 1/t tVaR ) is simply given by  

, 1/ ( ), 1 1,1 ( ), 1/( )t t p t p t tVaR z k . (3) 
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where 1,1k  is the tabulated value of the corresponding elliptical percentile 1(0,1, )Ell f

and
2
( ), 1/ 1/'p t t t tw Q w is the conditional variance of portfolio ( ), 1p tz . In addition, we can 

also study temporal aggregation rules of EWMA models considering the aggregated returns 

1

T

t T t s
s

Z z . The vector t TZ  follows an ISR-SARV(1) process and we generally do not 

know its distribution (see Meddahi and Renault, 2004; Lamantia et al., 2006). However, if we re-

quire that the vectors of returns t sz  are i.i.d. (independent identically distributed) elliptically 

1/(0, , )n t tEll Q f  distributed, then even the sum 
1

T

t T t s
s

Z z  is elliptically distributed, but 

with a different distributional law /(0, , )t T n t T tZ Ell Q f��฀  uniquely determined by a differ-

ent characteristic generator f� . In this case, the variance-covariance matrix of t TZ  at time t for 

the elliptical model is given by / 1/t T t t tQ TQ�  where 1/t tQ  is the covariance matrix of 

i.i.d. elliptically 1/(0, , )n t tEll Q f  distributed n-dimensional vector of returns t sz . Thus we can 

apply the variance temporal rule to estimate at time t the (1- )% VaR in the periods [t,t+1] and 

[t,t+T]. Then, , 1/ ( ), 1 1,1 ( ), 1/( )t t p t p t tVaR z k  and the temporal aggregation rule  

, / 2,1 ( ), 1/ , 1/t T t p t t t tVaR k T M TVaR  (4) 

hold where 
2,1

1,1

k
M

k
, and 1,1 2,1,k k  are respectively the corresponding 1-

elliptical 1 1(0,1, ); (0,1, )Ell f Ell f� percentiles. In particular, for T big enough 2,1k  tends to the 

percentile of the standard Gaussian, while if 1(0,1, ) (0,1)Ell f N฀  is a standard normal then 

also 1(0,1, ) (0,1)Ell f N� ฀  is Gaussian and we obtain the RiskMetrics time rule 

, / , 1/t T t t tVaR TVaR .

However, this time rule is not valid for the EWMA model and we underline that the use 

of time rules of any strong GARCH-type process can be applied only as approximation and for 

limited temporal horizons T because the distributional structure of the aggregated process gener-

ally changes (see Lamantia et al., 2006).  

2.2. Stable EWMA model 

Alternative to the elliptical EWMA model with finite variance, we can consider the stable 

non-Gaussian EWMA model (stable EWMA). Suppose that the conditional distribution of the re-

turns vector 
'

1 1, 1 , 1,...,t t n tz z z  is -stable sub-Gaussian ( (1,2)). Thus, for any time t,

the centered vector of returns is given by  

1 1 1 1/ 1 1t t t t t t tz z B G�
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where Bt+1

2

2 2 cos ,1, 0
4

S  is a stable subordinator independent of 

Gaussian vector 1 1, 1 , 1[ , , ]' ( , )t t n tG G G N 0 I� ฀  with identity covariance matrix. In addi-

tion, 1tB 1tG t=0,…,T are i.i.d. -stable sub-Gaussian vectors, where the components 

, 1i t = 1 , 1t i tB G  are (1,0,0)S  distributed, while the entries of dispersion matrix 

2
1/ , 1/ 1/ 1/'t t ij t t t t t tQ  are generated as follows: 

, 1 ,, 1/ , / 1( ) (1 ) ( )
p pp p

t i t i tii t t ii t tE z A p A p z� � , (5) 

2
, 1 , 1 , , / 1 , ,, , 1/ ( ) (1 ) ( )

p pp
t i t j t i j i j t t i t j ti j i j t t E z z A p A p z z� � � � ,(6) 

2 2 2
, , 1/ , 1/ , 1/2

, 1/
2

i j i j t t jj t t ii t t
ij t t ,  (7) 

where 

1
2

1
2 1

2

q

q

A q
q q

, p (0, ),  is the decay factor that regulates 

the weighting on past covariation parameters. These assumptions are consistent with the structure 

of dispersion matrix of an -stable sub-Gaussian vector. In particular, the scale parameter of i-th 

return, , 1/ii t t  and the stable covariation parameter, 
2
, 1/ij t t , are estimated by 

1/

, 1/ ,
0

1 ( )

p
K pK k

ii t t i t K k
k

A p z�  and 

2/
2 2

, , , 1/ , 1/
02

, 1/

1 ( )

2

p
K pK k

i t K k j t K k jj t t ii t t
k

ij t t

A p z z� �

,

where for any given tolerance level 
1

1 k

k K

tl , we can determine the num-

ber of useful observations 
log( )

log( )

tl
K  as per the RiskMetrics model. Thus, considering a toler-

ance level tl=0.001 and a decay factor =0.97, we obtain that 228K ฀ . Under these assump-

tions, the (1- )% VaR in the period [t,t+1] is obtained by  

, 1/ ( ), 1 1 , ( ), 1/( )t t p t p t tVaR z k ,

where 1 ,k  is the corresponding percentile of the standardized -stable (1,0,0)S

and ( ), 1/ 1/'p t t t tw Q w  is the forecasted volatility of portfolio ( ), 1p tz . In addition, if 

we assume an unconditional model where the vectors t sz�  are i.i.d. -stable sub-Gaussian dis-
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tributed, then the aggregated process 
1

T

t T t s
s

Z z�  is -stable sub-Gaussian distributed with 

dispersion that follows the time rule 
2 /

/ 1/t T t t tQ T Q� . Thus, even in this case, we can pre-

dict the (1- )% VaR over the period [t,t+T] with the following approximating time rule: 

1/
, / , 1/t T t t tVaR T VaR ,   (8) 

whose predictability power will be empirically tested in the next empirical analysis. 

2.3. Stable asymmetric model 

In order to take into account the asymmetry of stable distributions, we can consider the 

following three-fund separation model of conditional centered returns: 

1 1 1 1 1 1/ 1 1t t t t t t t t tz z b Y B G� ,

where 1 1( )t tE z , the factor 
1 11 ( , ,0)

t tt Y YY S฀  is an -stable asymmet-

ric (i.e.
1

0
tY ) centered index return with dispersion and the skewness respectively equal to 

1tY  and 
1tY . Besides the residual random vector 1 1 1 1/ 1 1t t t t t t tz b Y B G�  is 

independent of factor 1tY  and it is conditional -stable sub-Gaussian distributed (as the above 

Stable EWMA model) with zero mean and dispersion matrix 

2
1/ , 1/ 1/ 1/'t t ij t t t t t tQ .

Thus, the primary returns and the dispersion matrix of residuals evolve as follows: 

1

1/

, 1 , 1 1 , 1/ , 1 , 1/ , 1 , 1ti t i t t ii t t i t ii t t i t Y i tz b Y b X� ,

, 1 , ,, 1/ , / 1( ) (1 ) ( )
p pp p

t i t i t i t tii t t ii t tE z A p A p z b Y� �    (9) 

, 1 , 1 , 1 , 1 1, , 1/

2
, , / 1 , , , ,

( ) ( )

(1 ) ( ) ( )

p
p

t i t j t i t j t ti j i j t t

p

i j i j t t i t j t i t j t t

E z z b b Y A p

A p z z b b Y

� �

� �

2 2 2
, , 1/ , 1/ , 1/2

, 1/
2

i j i j t t jj t t ii t t
ij t t , (10) 

where p (0, ), and , 1 , 1 (1,0,0)i t t i tB G S฀ . The vector 

'

1, ,,...,t t n tb b b  is estimated considering the OLS estimator then 

( )( )

1

2
( )

1

ˆ

N
kk

i
k

i N
k

k

Y z

b

Y

�

,
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i=1,...,n. In our empirical comparison, we have observed better performance when the vector 

'

1 1, 1/ , 1/,...,t t t n t tb b b  changes over the time, following the relation 

(1)
, , 1/0

, 1/ 2 (2)
1/0

ˆ

ˆ

K
t K k i t K k i t tk

i t t
K

t tt K kk

bY z
b

bY

�
;          i=1,...,n,

where 
(1) (1)

, 1 , 1, 1/ , / 1
ˆ ˆ

t i t t K i t Ki t t i t tb b Y z Y z� �  and 

2 2(2) (2)
11/ / 1

ˆ ˆ
t t Kt t t tb b Y Y . On the other hand, recent studies (see Kurz-Kim et al., 

2005) have proved the opportunity of using other estimators for the vector tb . The scale parame-

ter of i-th residual, , 1/ii t t  is defined by: 

1/1/

, 1/ , 1 , 1 1 , ,
0

( ) 1 ( )

pp Kp pK k
ii t t t i t i t t i t K k i t K k t K k

k

E z b Y A p A p z b Y� �

and the time t+1 stable covariation parameter between the i-th and the j-th residual is de-

fined by 

2 2 2
, , 1/ , 1/ , 1/2

, 1/
2

i j i j t t jj t t ii t t
ij t t , where 

1/
2

, , 1/ , , , ,
0

1 ( ) ( )

p
K pK k

i j i j t t i t K k j t K k i t K k j t K k t K k
k

A p z z b b Y� �

.

Under these assumptions, the forecasted (1- )% Value at Risk of portfolio 

( ), 1 , 1 1
1

'
n

p t i i t t
i

z w z w z� �  in the period [t,t+1], is given by the corresponding percentile of 

the -stable distribution ( ), 1/ ( ), 1/( , ,0)p t t p t tS , where 

1

1/
2

( ), 1/ 1/ 1' '
tp t t t t t Yw Q w w b

is the volatility forecast and 

1 1

1

1 1

( ), 1/
2

1/ 1

' sgn( ' )

' '

t t

t

t Y Y t

p t t

t t t Y

w b w b

w Q w w b

is the skewness forecast. Moreover, to take into account the evolution of the index Y and 

its fixed memory, we assume that the dispersion parameter 
tY  follows the recursive formula 

1

1
10

( )( )
( )

, , , , , ,t t

t t t

K pp
p pt K kt t

t t Kp pk
Y Y

Y Y Y Y Y Y

A p YA p E Y Y Y
A p

g p Kg p Kg p
,  (11) 
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where 

2
2 2, , 1 tan cos arctan tan

2 2 2

Y

t t t

p

Y Y
Y Y Y Y

Y

p
g p .

A detailed analysis of stable distribution properties can be found in Samorodnitsky and Taqqu 

(1994). The distribution of aggregated process 
1

T

t T t s
s

Z z�  is not known. However, if we 

suppose that the vectors / 1t s t s t s t s t s t sz b Y�  (s=1,…,T) are i.i.d. -stable distrib-

uted where 1/ 1/ 1/ / 1 / 1' 't t t t t t t s t s t s t sQ  is the dispersion matrix of the -

stable sub-Gaussian vector / 1t s t s t s  that is independent of ( , ,0)
t s t st s Y YY S฀

(s=1,…,T), then 
1

T

t T t s
s

Z z�  is itself -stable distributed. Under these assumptions the dis-

persion ฀ /t T tQ  at time t of the aggregated process of residuals 
1

T

t T t s t s
s

Z b Y  follows the 

time rule ฀ 2/
1// t tt T tQ T Q . In particular, when we further assume that the parameters ,

, ,
t tY Y tb  are constant over the time, then the corresponding (1- ) percentile of aggregated 

portfolio ( ), 'p t T t TZ w Z  can be approximated with the following time rule: 

1/
, / , 1/t T t t tVaR T VaR .

Clearly, this time rule cannot be applied to the above autoregressive stable model (see 

Lamantia et al., 2006). 

3. A first empirical analysis on VaR models based on real data 

This section presents an analysis through backtesting in order to assess the reliability of 

the VaR models previously proposed. We use some of the most representative index returns of the 

international market whose values have been converted in USD with the relative exchange rates. In  

particular we examine the Value at Risk of several portfolios composed of 10 index-daily returns: 

DAX 100 Performance, CAC 40, FTSE all share, Reuters Commodities, Nikkei 500, Brent Crude 

Physical, Corn No2 Yellow cents, Dow Jones Industrials, Goldman Sachs Commodity, S&P 500.  

First of all, we discuss on how to estimate the parameters of each model. Thus, we con-

sider unconditional series of daily returns between January 2, 1991 and August 19, 1994, for a 

total of 948 observations to compute the distributional parameters of each model (see Table 1). 

Part of this historical data (during the period of November 15, 1993-August 19, 1994) is also used 

to estimate the dispersion matrixes of the different models because this period is prior to the period 

used to compute and compare ex-post the different VaR forecasts. Then over a period of 769 

working days (till January 30, 1998), we verify the hypothesis that the VaR, computed at the be-

ginning of each period, correctly forecasts the realization of the actual profit/loss occurred at the 

end of the period. In particular we calculate the interval forecasts considering =95% and =99%. 

We propose three different methods for evaluating Value at Risk estimates of 25 random portfo-

lios: 

a) a basic backtest method consisting in testing if the average coverage of the VaR is 

equal to the nominal coverage; 

b) the unconditional coverage test proposed by Kupiec (1995), Lopez (1998), Christof-

fersen (1998); 
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c) the interval forecast method proposed by Christoffersen (1998) in order to test the con-

ditional coverage. 

Table 1 

This table summarizes the parameter estimates of different models. Thus, we consider: the 

maximum likelihood estimates (MLE) of the stable distribution parameters and of Student’s t degrees of 

freedom, the symmetric and asymmetric optimal stable parameters p that minimize the average of distance 

between the moment dispersion estimator and MLE of dispersion. Observe that for DAX30 we compute only 

the Stable parameter estimates because it was only used as market portfolio in the asymmetric stable model. 

All parameters are computed on series of daily returns between January 2, 1991 and August 19, 1994 for a 

total of 948 observations. 

STABLE   DISTRIBUTIONS 

ASSETS Maximum Likelihood Estimates SEWMA

Stable

Model

with 

asymmetry 

Student’s

Degrees of 
freedom

 Index of 
stability 

Skewness Dispersion Mean

Optimal  

p

Optimal  

p

MLE 

v

BRENT CRUDE 1.6383 -0.0004 9.79E-03 -1.35E-04 0.855 0.824 7.00 

CAC 40 1.8704 -0.3033 7.71E-03 1.62E-04 0.54 0.525 4.55 

CORN, NO.2 1.6757 -0.1966 6.61E-03 -2.07E-04 0.635 0.611 4.61 

DAX 30 1.7557 -0.1622 3.12E-03 1.68E-04 // // // 

DAX 100  1.7489 -0.1803 6.75E-03 3.18E-04 0.697 0.662 3.54 

DOW JONES IND. 1.7559 0.0558 4.18E-03 3.68E-04 0.25 0.29 6.95 

FTSE ALL SHARE 1.8505 -0.0126 6.18E-03 2.48E-04 0.774 0.745 5.64 

GOLDMAN SACHS 1.7051 0.0096 4.53E-03 -1.65E-04 0.773 0.789 20.46 

NIKKEI 500 1.6922 -0.0228 7.97E-03 1.32E-04 0.263 0.245 60.34 

S&P 500 1.7123 0.1482 3.98E-03 4.30E-04 0.429 0.478 11.44 

REUTERS COMM. 1.795 -0.1346 5.53E-03 -6.71E-05 0.287 0.323 3.77 

3.1. Parameter estimation with different models 

Among the elliptical EWMA models with finite variance, we compare the Gaussian and 

the Student's t EWMA models. When we assume that the return vector 
'

1, ,,...,s s n sz z z  fol-

lows a Gaussian EWMA model, the decay factor i of the i-th component of the return vector is 

estimated by using the same procedure of RiskMetrics, i.e. we evaluate for any series 

2
2 2
, , / 1

1

arg min
T

i i t ii t t
t

z .

Then, the optimal parameter  of the vector is defined as 

1

ˆ
n

i i
t

, (12) 

where 

1

i
i n

kk

 and 
2

2 2
, , / 11

1

1
min

i
T

i t ii t tt z
T

.
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An elliptical distribution that has often been used in the literature in order to model the 

leptokurtic behavior of conditional returns (see, among others, Embrechts et al., 2003) is the mul-

tivariate Student's t distribution ,vtMV - 0 Q  with v>2 degrees of freedom. Therefore, we can 

assume that the return vector 
'

1, ,,...,s s n sz z z  follows an EWMA model with conditional 

Student's t distributed returns and v>2 degrees of freedom. Under this assumption every return 

,i sz  admits the following conditional density function: 

1

2 2

, / 1 21/ 2
, / 1

, / 1

1

2
/ , 1

2
2

2

v

ii s s

ii s s
ii s s

v

x
t x v

v v
v

.

Besides, the vector of returns can be represented as follows  

1 , 1/ 1

1

s v s s s

s

v
z G

S
, (13) 

where the vectors 1

1

s

s

v
G

S
 are i.i.d. Student's t distributed, 

2

1 ( )sS v฀  is a chi-

square with v degrees of freedom independent of Gaussian vector 1 ( , )sG N 0 I฀ . Thus, the 

variance covariance matrix of the above conditional Student's t is given by: 

2
1/ , 1/ , 1/ , 1/'

2
t t ij t t v t t v t t

v
Q

v

and it evolves as in formulas (1) and (2).

3.1.1. Parameter estimation of Student’s t EWMA model 

In the EWMA model with conditional Student's t distributed returns, we need to estimate 

two parameters: the decay factor  and the degrees of freedom v. In the following empirical analy-

sis we compare the impact of two different methods to estimate v and . If we estimate the degrees 

of freedom vi of each conditional return with the maximum likelihood method, we obtain different 

values vi>2 for different return series (see Table 1). Then, we can assume that the parameters  and 

v are a particular mean of the parameters i, vi evaluated for every distinct series of data. Hence, 

the optimal parameter  is estimated using the above RiskMetrics procedure (12), and, similarly, 

we can define the optimal parameters v as:
1

ˆ
n

i i
t

v v , where i  i=1,…,n are defined as in for-

mula (12). Under these assumptions the degrees of freedom v and the corresponding percentile, 

1 ,vk , of the standardized Student's t distribution with v>2 degrees of freedom (0,1)vt  change 

over the time. This issue ensures a further flexibility in the prediction of the future percentile  

, 1/ ( ), 1 1 , ( ), 1/( )t t p t v p t tVaR z k .

Alternatively, for computational simplicity, we fix the parameters v and . In particular, 

we observe that =0.9718 is the mean of the computed as above and the corresponding 95% in-

terval of confidence is (0.94, 0.99). Thus, we adopt the 10-2 approximation of , that is =0.97.

Moreover, in order to use a common value v of degrees of freedom we could fix min i
i

v v =4

(where .  points out the integer part plus 1). As a matter of fact, market return series generally 



Investment Management and Financial Innovations, Volume 3, Issue 3, 2006 17

present an asymptotic dependence on extremes (see Breymann, et al, 2003). The Student's t-copula 

with the minimum of the degrees of freedom v represents a tool for modeling this phenomenon 

because stronger dependencies on the tails correspond to lower degrees of freedom (see, among 

others, Embrechts et al., 1997; Nelsen, 1999; Breymann et al., 2003).  

3.1.2. Parameter estimation of stable EWMA model 

In order to choose opportune parameters of the stable Paretian models, we first estimate 

the stable distribution parameters by maximizing the likelihood function (see Rachev and Mittnik, 

2000). Once parameters , , ,  are evaluated, it is possible to determine the VaR on distinct as-

sets using tabled percentiles of stable distributions or some particular software. In Table 1, we dis-

play, among other distributional parameters, the parameter estimates of a stable density fit based 

on the sample of some international indexes. We use the FinAnalytica software1 to estimate the 

parameters , ,  and . All the assets present an index of stability  that is lower than two accord-

ing to other researches on the unconditional distributions of financial returns. Also the skewness 

parameter  results significantly different from zero, showing the typical negative skewness that 

stretches the tails on the negative returns. Observe that we obtain different indexes of stability i

for each time series (see Table 1). Thus, as for the degrees of freedom of t-distributions, we will 

propose two different ways to evaluate a common index of stability . On the other hand, in the 

above stable EWMA model we need to estimate three parameters: the index of stability , the de-

cay factor  and parameter p. When vector z is unconditional -stable sub-Gaussian distributed 

with dispersion matrix 
2
ijV v , the rate of convergence of 

2
ijv  and 

2
jjv  will be faster if p is as 

small as possible (about the rate of convergence of stable laws and of 
pL  norms of stable laws, 

see Rachev, 1991). Considering that the impact in the dispersion valuation of a portfolio is sub-

stantially determined by the dispersion of the singular components (see Ziemba and Mulvey, 

1999), then we compute p considering only the optimal values of the singular components. Theo-

retically, the optimal p must be close to zero for stable distributions because the rate of conver-

gence for stable non- Gaussian law of 
pL  norm (i.e. 

1/ p
p

iE z� ) is faster if p is lower. 

However, if we approximate jz�  with a stable distribution, the optimal p (0, ) depends on the 

historical series of observations ,( )
1

N

j k
k

z� . Thus, we consider the optimal jp  that minimizes 

 the average of absolute deviation between 
1/

, 1/ ,
0

ˆ ( ) 1 ( )

p
K pK k

ii t t i t K k
k

p A p z�  (that we call moment dispersion es-

timator) and the maximum likelihood estimate jjv  of dispersion jjv , i.e.: 

, / 1
1

1
ˆ ˆarg min ( )

T

j jj t t jj
p t

p p v
T

           j=1,...,n. (14) 

In Table 1, we report optimal ˆ jp  of daily return series between January 2, 1991 and Au-

gust 19, 1994. In the paper, we adopt the common parameter 
1

1
ˆ

n

j
j

p p
n

. As far as the other 

parameters are concerned, we observe that it could be convenient to fix the parameters  and  for 

large portfolios, as per the RiskMetrics model (that suggests =0.94 for daily historical series) or 

                                                          
1 This software has been developed by FinAnalytica Inc. http//www.finanalytica.com. 



Investment Management and Financial Innovations, Volume 3, Issue 3, 200618

the EWMA model with conditional t-distributed returns (where we consider =0.97 and 

v= minvi ). Even in this case, we observe that the average of  computed as specified below, is 

=0.9734 and the corresponding 95% interval of confidence is (0.94, 1). Thus we adopt the 10-2

approximation of that is again =0.97 and we assume 
1

1 n

j
jn

. Moreover, when we fix 

the parameters  and , the stable EWMA model presents the same computational complexity as 

the RiskMetrics one (after parameters estimation), as confirmed by empirical analysis. However, 

as for the RiskMetrics model, we could estimate the decay factors i by minimizing the root mean 

squared prediction error (RMSE) on the historical series of data. Substantially, the procedure is the 

same as in RiskMetrics, i.e. we evaluate for any series 

2

,1 , / 1

1
arg min ( )

p pT
i i tt ii t tA p z

T
� . (15) 

There has been an extensive discussion among academics and practitioners on which er-

ror measure to use when assessing post-sample prediction (see Ahlburg, 1992; Armstrong and Col-

lopy, 1992; Fildes, 1992). In the following empirical analysis we use the root mean squared pre-

diction error regardless if similar results are obtained also with other risk measures. Thus, we solve 

optimization problem (15) by discretizing i  with the same steps 0.01i ฀  for every i. The 

optimal parameters ,  are defined as: 

1

ˆ
n

i i
i

  and  

1

ˆ
n

i i
i

, (16) 

where i is estimated with the maximum likelihood method 

1

i
i n

kk

 and 

2

,1 , / 1

1

1
min ( )

i
p pT

i tt ii t tA p z
T

�

. Under these assumptions the index of stability 

 and the corresponding percentile, 1 ,k , of the standardized -stable (1,0,0)S  change over 

the time. This issue ensures a further flexibility in the prediction of the future VaR. 

Table 2 

This table summarizes the backtesting results of EWMA with Gaussian and Student’s t

distributions, SEWMA and stable asymmetric models for =99%. 

Student’s t-distribution Gaussian

Distribution

STABLE DISTRIBUTIONS 

v=4,

=0.97

Varying 

v and Varying =1.7444

p=0.55, =0.97

Varying 

 and  p=0.55 

Asymmetric 

varying 

=1.7557

 p=0.549 

 VaR 1% VaR 1% VaR 1% VaR 1% VaR 1% VaR 1% 

Port.1 0.00390 0.01300 0.02341 0.00910 0.00910 0.01170 

Port.2 0.00390 0.01691 0.02081 0.01040 0.01040 0.01170 

Port.3 0.00260 0.01691 0.01951 0.00780 0.00780 0.00910 

Port.4 0.00780 0.01821 0.02601 0.00910 0.00910 0.00910 
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Table 2 (continuous) 

Port.5 0.00130 0.01170 0.02211 0.00780 0.00780 0.00910 

Port.6 0.00260 0.01300 0.01951 0.00650 0.00650 0.00520 

Port.7 0.00000 0.01951 0.02731 0.00910 0.00910 0.01170 

Port.8 0.00390 0.01170 0.02211 0.00650 0.00650 0.01040 

Port.9 0.00390 0.01560 0.02731 0.00780 0.00650 0.01040 

Port.10 0.00520 0.02341 0.03251 0.00910 0.01170 0.01170 

Port.11 0.00000 0.01170 0.01951 0.00650 0.00650 0.00650 

Port.12 0.00260 0.01040 0.02081 0.00780 0.00650 0.00910 

Port.13 0.00650 0.01430 0.02341 0.00910 0.00780 0.01170 

Port.14 0.00390 0.01430 0.02471 0.00910 0.00910 0.01170 

Port.15 0.00130 0.01560 0.02081 0.00650 0.00780 0.00780 

Port.16 0.00390 0.02211 0.02861 0.00910 0.00910 0.01170 

Port.17 0.00130 0.00910 0.01560 0.00650 0.00520 0.01040 

Port.18 0.00260 0.01300 0.02211 0.00910 0.01040 0.01040 

Port.19 0.00260 0.01821 0.02341 0.00910 0.00910 0.01040 

Port.20 0.00000 0.00520 0.01821 0.00130 0.00130 0.00520 

Port.21 0.00390 0.01691 0.02081 0.01170 0.01170 0.01040 

Port.22 0.00390 0.01821 0.02601 0.00780 0.00910 0.00780 

Port.23 0.00650 0.02471 0.03251 0.00780 0.00910 0.01300 

Port.24 0.00390 0.02081 0.02601 0.01040 0.01040 0.01170 

Port.25 0.00390 0.01821 0.02991 0.00650 0.00650 0.01170 

Average 0.00328 0.01571 0.02372 0.00806 0.00817 0.00999 

3.1.3. The Parameter Estimation of stable asymmetric model 

In the model with asymmetrically distributed returns we first estimate the maximum like-

lihood stable parameters Y, Y, Y of index Y (that is DAX30 in our empirical analysis). However, 

we assume that the dispersion parameter 
tY  evolves as in formula (11) where the maximum like-

lihood estimate 
0

ˆY  is used as the first value of that recursive formula. Besides, we assume that 

sgn( )
tY Y  such that some portfolios could present large skewness (i.e. ( ), 1/p t t ฀ ±1) 

(because in this model | ( ), 1/ 1
tp t t Y ). With respect to the parameter , we choose 

= Y, equal to the index of stability estimated for the index Y. The vector 
'

1, ,,...,t t n tb b b  is 

estimated considering the OLS estimator then 

( )( )

1

2
( )

1

ˆ

N
kk

i
k

i N
k

k

Y z

b

Y

�

, i=1,…,n. However, after a first 

empirical comparison we observe better performance when we fix the memory of the process and 

the vector 
'

1 1, 1/ , 1/,...,t t t n t tb b b  changes over the time, following the relation: 
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(1)
, , 1/0

, 1/ 2 (2)
1/0

ˆ

ˆ

K
t K k i t K k i t tk

i t t
K

t tt K kk

bY z
b

bY

�
;          i=1,…,n, (17) 

where (1) (1)
, 1 , 1, 1/ , / 1

ˆ ˆ
t i t t K i t Ki t t i t tb b Y z Y z� �  and 2 2(2) (2)

11/ / 1
ˆ ˆ

t t Kt t t tb b Y Y . As 

far as the vector bt is concerned, we assume that it changes over the time, following relation (17). 

As for the sub-Gaussian model we need to estimate other two parameters: the decay factor  and 

parameter p. We evaluate for any series the decay factor: 

Table 3 

This table summarizes the backtesting results of EWMA with Gaussian and Student’s t

distributions, SEWMA and stable asymmetric models for =95%..

Student’s t-distribution Gaussian

Distribution

STABLE DISTRIBUTIONS 

v=4, =0.97

Varying 

v and

Varying 

=1.7444

p=0.55, =0.97

Varying 

 and  p=0.55 

Asymmetric 

varying 

=1.7557

p=0.549

 VaR 5% VaR 5% VaR 5% VaR 5% VaR 5% VaR 5% 

Port.1 0.02731 0.05332 0.05852 0.06112 0.06112 0.04421 

Port.2 0.02601 0.05072 0.05852 0.06242 0.06372 0.05852 

Port.3 0.02471 0.05072 0.05852 0.06632 0.06632 0.04811 

Port.4 0.03511 0.05722 0.06762 0.06632 0.06242 0.06632 

Port.5 0.03381 0.05462 0.05852 0.06502 0.05982 0.06242 

Port.6 0.02861 0.04811 0.05852 0.06502 0.05982 0.04811 

Port.7 0.03771 0.06502 0.07282 0.06242 0.06502 0.06372 

Port.8 0.02861 0.05332 0.06632 0.06632 0.06502 0.06892 

Port.9 0.03381 0.06242 0.07412 0.06632 0.06502 0.05072 

Port.10 0.03901 0.06502 0.07932 0.06242 0.06502 0.06502 

Port.11 0.02471 0.05072 0.05332 0.05982 0.06112 0.04551 

Port.12 0.02471 0.05072 0.05722 0.06632 0.06112 0.04681 

Port.13 0.03251 0.05592 0.06632 0.05852 0.05722 0.04941 

Port.14 0.03381 0.05592 0.06372 0.05982 0.05982 0.04811 

Port.15 0.02731 0.04681 0.05722 0.06112 0.05982 0.05072 

Port.16 0.03511 0.06242 0.06762 0.06632 0.06372 0.04941 

Port.17 0.02731 0.05852 0.06632 0.07672 0.07412 0.06112 

Port.18 0.02861 0.04551 0.05462 0.05462 0.05722 0.05202 

Port.19 0.02731 0.05072 0.05332 0.06242 0.06242 0.04551 

Port.20 0.02471 0.05462 0.06372 0.06632 0.06372 0.07022 

Port.21 0.02731 0.04681 0.05202 0.06242 0.05852 0.04551 

Port.22 0.02731 0.05592 0.06242 0.06762 0.06632 0.05202 

Port.23 0.04161 0.05982 0.06632 0.06242 0.06372 0.07022 

Port.24 0.03511 0.05852 0.06632 0.07022 0.07022 0.05852 

Port.25 0.03511 0.05462 0.06242 0.06372 0.06242 0.06372 

Average 0.03069 0.05472 0.06263 0.06408 0.06299 0.05540 
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2

, ,1 , / 1

1
arg min ( )

p pT
i i t i t tt ii t tA p z b Y

T
� .

Thus, the optimal parameter  is defined as 1
ˆ n

i ii , where 

1

i
i n

kk

 and 
2

, ,1 , / 1

1

1
min ( )

i
p pT

i t i t tt ii t tA p z b Y
T

�

. Analogously, 

to the stable EWMA model and for the same reasons, we assume that parameter p is equal to the 

mean of optimal pi that minimizes the average of distance between the moment dispersion estima-

tor of residuals , ,i t i t tz b Y�  and its maximum likelihood stable estimate (see Table 1).  

3.2. The basic backtest method  

Fig. 1. VaR Bands of SEWMA model with varying . The lowest band represents the forecast 5% percentiles, 

whilst upper band represents the forecast 95% percentiles. The inner path shows sample data of the 4
th
 portfolio 

In the first backtest analysis proposed, we have determined how many times during the 

period taken into account the profits/losses fall outside the confidence interval. In particular, for 

=95% and =99%, the expected number of observations outside the confidence interval must not 

exceed respectively 5% and 1%. 

Tables 2 and 3 show the results for the backtest for the two levels of confidence respec-

tively.

The backtest has been carried out on some randomly selected portfolios. A first analysis 

demonstrates that the RiskMetrics model, under the hypothesis of normality of the conditional 

returns, underestimates the number of observations which falls outside the forecast interval. This 

effect is more evident when the percentiles are low and it confirms that the empirical distribution 

tails are fatter. 

In Tables 2 and 3, we can compare the backtest results among the elliptical EWMA mod-

els and the stable asymmetric model for =95% and =99%. In view of this comparison, we as-

sume that p=0.55 while the stable EWMA stability index  either varies over time as described 

above or it is constant =1.7444. We observe that the results that we obtain varying or non-varying 
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 are not significantly different. Therefore, by a computational point of view, it is more convenient 

to use a fixed . Similarly, we assume that the degrees of freedom v of an elliptical model with 

conditional t distributed returns could vary over the time as described above or they are constant 

with v=4. In this case, varying v improves much more the results. Recall that the formula for the 

portfolio's VaR bands is given by , 1/ 1 ( ), 1/t t p t tVaR k  where 1k  is the percentile of the 

standardized elliptical family. In the stable asymmetric model, we use the DAX 30 series as index 

return Y and we fix the parameters Y,  and p of the model respectively with Y=-1, = Y=1.7557 

and p=0.549. This way, the stable asymmetric model appears as flexible as the stable EWMA 

model and presents better performances for higher percentiles. Therefore, if and v vary over 

time, as described in the above models, the VaR forecasts are much more sensitive to the last in-

formation of the market. 

However, we do not observe significant differences between the stable EWMA model 

with fixed or varying , while important differences exist between the two Student's t models. 

In particular, it seems that the Student's t model with varying v and the stable asymmetric 

model present better performance for higher percentiles, while all the stable models present better 

performance for smaller percentiles. 

Figure 1 shows the typical representation of 1-day stable EWMA VaR forecasts consider-

ing that the index of stability  varies over the time. The lowest band represents the stable EWMA 

VaR forecasts while the upper band represents 95% percentile forecasts and the inner path shows 

the sample data. 

Among the alternative models for the VaR calculation, stable models are more reliable 

than those generated from RiskMetrics, in particular for confidence interval =99%. The advan-

tage of using stable models as an alternative to the normal one is reduced when the percentiles are 

higher than 5%. In this case, the percentage realized is almost equal to that expected, except for the 

stable sub-Gaussian model that overestimates the losses. 

Even if the non-Gaussian models seem more complex than the RiskMetrics one, once we 

estimate the parameters of Table 1, there is no significant difference in computational time be-

tween each parametric model and the RiskMetrics one. Thus, we believe that these parametric 

models could be implemented for online VaR calculation because they show a high degree of effi-

ciency and flexibility for large portfolios. This is a desirable goal, considering that with the advent 

of new technology and on-line trading, there has been a growth in the number of those investors 

who prefer "tailoring" their own portfolios. 

3.3. Conditional and unconditional coverage tests  

Under every distributional hypothesis and for every portfolio ( ), 1p tz  we evaluate daily 

, 1/ ( ), 1( )t t p tVaR z . Following the interval forecast method proposed by Christoffersen (1998) 

we define as efficient the sequence of interval forecasts , 1/ ( ), 1( ),t t p t t
VaR z

฀
, where 

for every t,

1 ( ), 1t t p tE I z ,

where  

( ), 1 , 1/ ( ), 1

1 ( ), 1
( ), 1 , 1/ ( ), 1

1, ( )

0, ( )

p t t t p t

t p t
p t t t p t

if z VaR z
I z

if z VaR z
.

Note that 1 ( ), 1t p tI z  points out when the portfolio losses exceed those estimated. As 

discussed by Christoffersen, 1998, testing 1 ( ), 1t t p tE I z  for all t is equivalent to test-
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ing that the sequence 1 ( ), 1t p t
t

I z
฀

 is an i.i.d. sample from a Bernoulli distribution with 

parameter . That is, we can say that a sequence of interval forecast , 1/ ,t t t
VaR

฀
  has 

correct conditional coverage if 1tI ฀ Bern ( ), for every time t. Interval forecasts can be  

evaluated conditionally or unconditionally, that is, with or without reference to the information 

available at each point in time. 

Table 4 

This table summarizes conditional and unconditional coverage tests where the null hypothesis is 

tested against the alternative at a confidence level 95%. We write "a" when VaR estimates are "acceptably 

accurate" and we write "r" when we reject the null hypothesis. 

Student’s t-distribution Gaussian

Distribution

STABLE DISTRIBUTIONS 

v=4, =0.97

VaR 1% 

Varying 

v and

VaR 1% 

Varying 

VaR 1% 

=1.7444

p=0.55, q=1, 

=0.97

VaR 1% 

Varying 

 and 
p=0.55,

VaR 1% 

Asymmetric 

varying 

=1.7557

 p=0.549 

VaR 1% 

LRuc LRcc LRuc LRcc LRuc LRcc LRuc LRcc LRuc LRcc LRuc LRcc

Port.1 r a a a r a a a a a a a 

Port.2 r a a a r a a a a a a a 

Port.3 r a a a r a a a a a a a 

Port.4 a a r a r r a a a a a a 

Port.5 r a a a r a a a a a a a 

Port.6 r a a a r a a a a a a a 

Port.7 r r r a r r a a a a a a 

Port.8 r a a a r a a a a a a a 

Port.9 a a a a r r a a a a a a 

Port.10 a a r a r r a a a a a a 

Port.11 r r a a r a a a a a a a 

Port.12 r a a a r a a a a a a a 

Port.13 a a a a r a a a a a a a 

Port.14 r a a a r r a a a a a a 

Port.15 r a a a r a a a a a a a 

Port.16 a a r a r r a a a a a a 

Port.17 r a a a a a a a a a a a 

Port.18 r a a a r a a a a a a a 

Port.19 r a r a r a a a a a a a 

Port.20 r r a a r a r a r a a a 

Port.21 r a a a r a a a a a a a 

Port.22 a a r a r r a a a a a a 

Port.23 a a r r r r a a a a a a 

Port.24 r a r a r r a a a a a a 

Port.25 a a r a r r a a a a a a 

Unconditional coverage test. In order to test the unconditional coverage hypothesis, the 

null hypothesis 1tE I  should be tested against the alternative 1tE I , given inde-
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pendence. It can be done using the appropriate likelihood ratio statistic. The likelihood, under the 

null hypothesis, is 0 1
1; ,..., 1

n n
nL I I  and, under the alternative, is 

0 1
1; ,..., 1

n n
nL q I I q q , where 1n  is the number of times for which  

( ), 1 , 1/ ( ), 1( )p t t t p tz VaR z ,

0n is the number of times for which  

( ), 1 , 1/ ( ), 1( )p t t t p tz VaR z .

Table 5 

This table summarizes conditional and unconditional coverage tests where the null hypothesis is 

tested against the alternative at a confidence level 95%. We write "a" when VaR estimates are "acceptably 

accurate" and we write "r" when we reject the null hypothesis. 

Student’s t-distribution Gaussian

Distribution

STABLE DISTRIBUTIONS 

v=4, =0.97

VaR 5% 

Varying 

v and 

VaR 5% 

Varying 

VaR 5% 

=1.7444

p=0.55, =0.97

VaR 5% 

Varying 

 and  p=0.55,

VaR 5% 

Asymmetric 

varying 

=1.7557

 p=0.549 

VaR 5% 

LRuc LRcc
LRuc LRcc LRuc LRcc LRuc LRcc LRuc LRcc LRuc LRcc

Port.1 r a a a a a a a a a a a 

Port.2 r r a a a a a a a a a a 

Port.3 r r a a a a r a r a a a 

Port.4 r a a a r a r a a a r a 

Port.5 r a a a a a a a a a a a 

Port.6 r a a a a a a a a a a a 

Port.7 a a a a r a a a a a a a 

Port.8 r a a a r a r a a a r a 

Port.9 r a a a r a r a a a a a 

Port.10 a a a a r r a a a a r a 

Port.11 r r a a a a a a a a a a 

Port.12 r r a a a a r a a a a a 

Port.13 r a a a r a a a a a a a 

Port.14 r a a a a a a a a a a a 

Port.15 r a a a a a a a a a a a 

Port.16 r a a a r a r a a a a a 

Port.17 r a a a r a r a r a a a 

Port.18 r a a a a a a a a a a a 

Port.19 r a a a a a a a a a a a 

Port.20 r r a a a a r a a a r a 

Port.21 r a a a a a a a a a a a 

Port.22 r a a a a a r a r a a a 

Port.23 a a a a r a a a a a r a 

Port.24 r a a a r a r a r a a a 

Port.25 r a a a a a a a a a a a 
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Thus, a standard likelihood ratio test for unconditional coverage is given by: 

0 01 11

1

; ,...,
2 log 2 log 1 log 1

; ,...,

n nn n n
uc

n

L I I
LR q q

L q I I
� �

�
,

where 
1

1 0

n
q

n n
�  is the maximum likelihood estimate of q. Note that ucLR  has an 

asymptotic ²(1) distribution. The ucLR  test is an unconditional test since it counts the times that 

( ), 1 , 1/ ( ), 1( )p t t t p tz VaR z  over the entire period. However, it is important to consider the 

conditional accuracy of interval forecasts when the variance changes over the time. As a matter of 

fact, interval forecasts that ignore variance dynamics could have incorrect conditional coverage at 

any given time and may have correct unconditional coverage. 

Conditional coverage test. Since efficient VaR estimates exhibit the property of correct 

conditional coverage, then the sequence 1 ( ), 1t p t
t

I z
฀

 must exhibit both correct uncondi-

tional coverage and serial independence. Therefore, in order to test the conditional coverage hy-

pothesis, Christoffersen (1998) proposed a likelihood ratio statistic ccLR  that is a joint test of 

these two properties, i.e. cc uc indLR LR LR  and which is asymptotically distributed ²(2). 

The indLR  statistic is the likelihood ratio statistic for the null hypothesis of serial independence 

against an explicit first-order Markov alternative. Considering that the likelihood under the binary  

first-order Markov alternative is approximated by 

00 1001 11
1 1 01 01 11 11; ,..., 1 1

n nn n
nL I I where 

1Pr /ij t tI j I i  and ijn  is the number of observations with value i followed by j,

then the likelihood ratio test for conditional coverage is given by: 

00 10 001 11 1

1

1 1

2
01 01 11 11

; ,...,
2 log

; ,...,

2 log 1 1 log 1 (2)

n
cc

n

n n nn n n

L I I
LR

L I I�

� � � � ฀

,

where ij�  is the maximum likelihood estimate of ij , which is simply ratios of the count 

of the appropriate cells, i.e. 
01

01
00 01

n

n n
�  and 

11
11

10 11

n

n n
� .

Tables 4 and 5 report the results of conditional and unconditional coverage tests. In par-

ticular, in Table 4 we write the results for each 1% percentiles VaR estimates and in Table 5 we 

test 5% percentiles VaR estimates. In both tables, we test the null hypothesis against the alternative

at a 95% level of confidence. We write "a" when VaR estimates are "acceptably accurate" and we 

write "r" when they are "inaccurate" and we reject the null hypothesis. These tests partially con-

firm the previous basic backtest analysis. In particular, we observe that generally Gaussian and 

Student's t-copula with fixed degrees of freedom do not offer adequate performance, while the 

stable models and the Student's t-copula with variable degrees of freedom present better perform-

ance. The asymmetric stable model is the model that presents better performance among all the 

other models. 
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4. A backtesting analysis of the time rules with simulated and real data 

It is well known that the classical Gaussian time rule cannot be applied to Riskmetrics 

EWMA model. However, practitioners continue to use it in order to evaluate the exposure to risk 

of their portfolio position. In this section, we value the misspecification of this incorrect use for the 

Elliptical and the stable model. In particular, we first value the effect of time rules using the same 

previous data and then we value its impact considering simulating data. 

4.1. Time rules backtesting with historical data  

In order to assess the reliability of the time rules proposed to compute VaR for the auto-

regressive models above, we consider the three previous backtest methods for evaluating the Value 

at Risk estimates of 25 random portfolios. During the period of 15/11/93-30/01/98 we have exam-

ined daily, 10-day, and 60-day returns following: Gaussian distribution (varying ), Student's t
distributions (varying  and ), Stable sub-Gaussian distribution (with p=0.55, =1.7444, =0.97) 

and stable asymmetric distribution (with Y=-1, = Y=1.7557 and p=0.549). We compute the in-

terval forecasts of the above 25 portfolios over a period of 711 days, using the time aggregation 

rules (4), (8), and considering =99% and =95%. 

Table 6 

This table summarizes the average of backtesting results of EWMA with Gaussian and Student’s t

distributions, SEWMA and stable asymmetric models for =95% and =99%. In the second line we 

summarize conditional and unconditional coverage tests where the null hypothesis is tested against the 

alternative at a confidence level 95%. In particular, we forecast VaR estimates for 10 days returns and 60 

days returns, using the respective time rules. Then we determine the average of percentages of times the 

returns fall outside the confidence interval. Finally, we determine the percentages of times VaR estimates are 

"acceptably accurate". 

Student’s t

distribution

Gaussian

Distribution

STABLE

DISTRIBUTIONS

Varying 

v and Varying 

Stable EWMA 

=1.7444

p=0.55, =0.97

Asymmetric 

varying 

=1.7557 p=0.549 

10 days 

VaR 5% 

0.050889

LRuc 72%; LRcc 96% 

0.051284

LRuc 96%; LRcc 96% 

0.038050

LRuc 68%; LRcc 96% 

0.032954

LRuc 48%; LRcc 96% 

10 days 

VaR 1% 

0.017673

LRuc 40%; LRcc 68% 

0.018291

LRuc 76%; LRcc 68% 

0.005675

LRuc 60%; LRcc 88% 

0.001814

LRuc 12%, LRcc 76% 

60 days 

VaR 5% 

0.024329

LRuc 84%; LRcc 36% 

0.026434

LRuc 88%; LRcc 44% 

0.015233

LRuc 12%; LRcc 32% 

0.012590

LRuc 4%; LRcc 20% 

60 days 

VaR 1% 

0.008420

LRuc 48%; LRcc 36% 

0.009027

LRuc 48%, LRcc 28% 

0.002024

LRuc 8%; LRcc 16% 

0.000000

LRuc 0%; LRcc 0% 

The first basic empirical analysis compares the results obtained from the backtest carried 

out among the elliptical EWMA models and the stable asymmetric model for =99% and =95%. 

In view of this comparison, we assume the same parameters of the previously analyzed models. 

Then, we apply the different time rules (4), (8) in order to forecast VaR estimates and compare 

their performance. Table 6 summarizes the average of backtesting results using stable and ellipti-

cal EWMA models. That is, for each portfolio we determine the percentages of times the prof-

its/losses fall outside the confidence interval; then we take the average of these percentages among 

the portfolios taken into account. In particular, when we consider returns on a period of 10 days 

the stable models and their time rules overestimate the losses, while the Student's t and the Gaus-

sian time rules underestimate the losses. With 60-day returns all the time rules overestimate the 

losses, instead. These results are substantially confirmed when we use the conditional and uncon-

ditional coverage tests. Table 6 reports the results in average of these statistics. In particular, for 

every portfolio, we first test if VaR estimates are "acceptably accurate" or they are "inaccurate". 
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Then, we compute the percentage of portfolios which are acceptably accurate. As we can see from 

Table 6, when we use time aggregation rules for 10-day returns the stable EWMA model presents 

the best performance for =99%, while the Student's t model and the classic Gaussian EWMA 

model perform better for =95%. When we consider 60-day returns, all the models do not perform 

well, even if the Gaussian and Student's t times rules perform better than the stable Paretian ones.  

4.2. Time rules backtesting with simulated data 

One of the main problems of using historical data consists in the fact that we cannot value 

the impact of the previous time rules when the data follow exactly the autoregressive model pro-

posed. For this reason, in order to value the misspecification of these aggregation rules we have 

also used simulated data. In particular, we simulate the behavior of the previous models and we 

value these time rules on simulated data. The main problem to generate EWMA-type scenarios is 

due to the non-stationariness of the process that implies that the variance process converges a.s. to 

zero (see Nelson, 1990). This simple observation implicitly suggests that time rules are not valid. 

In this comparison, we simulate 5000 scenarios with Gaussian, t-Student (with 7 degrees of free-

dom), -stable sub-Gaussian (with =1.25 and p=0.55) EWMA models and stable asymmetric 

model (with =1.75, Y=-1, p=0.55, with fixed 0.00312Y  and fixed vector tb ). Then we 

compare the performance of time rules applied to the different models. The Student’s t scenarios 

are generated using formula (13). In order to simulate stable distributions, we follow Chambers, 

Mallows and Stuck’s algorithm (see Chambers et al., 1976). Moreover, in order to generate an -

Stable sub-Gaussian vector Z with null mean and dispersion matrix Q, we can generate a Gaussian 

vector G  with variance covariance matrix Q and then we multiply it for the square root of a stable 

subordinator X

2

2 2 cos ,1, 0
4

S  independent from the vector G, i.e. 

Z GX . In particular, we consider for all models the decay factor 0.98 . Even in this case, 

we compute the interval forecasts of the above 25 portfolios over the 5000 scenarios, using the 

time aggregation rules (4), (8), and considering =99% and =95%.

Table 7 

This table summarizes the average of backtesting results of EWMA with Gaussian and Student’s t

distributions, stable EWMA and stable asymmetric models for =95% and =99% based on simulated data. 

In the second line we summarize conditional and unconditional coverage tests where the null hypothesis is 

tested against the alternative at a confidence level 95%. In particular, we forecast VaR estimates for 10; 20; 

30; 60 and 120 days returns, using the respective time rules on the simulated EWMA and asymmetric models. 

Then we determine the average of percentages of times the returns fall outside the confidence interval. 

Finally, we determine the percentages of times VaR estimates are "acceptably accurate". 

Student’s t

distribution

Gaussian

Distribution

STABLE

DISTRIBUTIONS

v=7 and 

SEWMA

1.25

p=0.55, =0.98

Asymmetric stable

1.75

p=0.55, =0.98

10 days 

VaR 5% 

0.0515

LRuc 100%; LRcc 100% 

0.0521

LRuc 100%; LRcc 100% 

0.0496

LRuc 100%; LRcc 100%

0.05003

LRuc 100%; LRcc 100% 

10 days 

VaR 1% 

0.0117

LRuc 96%; LRcc 96% 

0.0121

LRuc 96%; LRcc 96% 

0.00989

LRuc 96%; LRcc 100%

0.01048

LRuc 96%; LRcc 100% 

20 days 

VaR 5% 

0.0486

LRuc 96%%; LRcc 100% 

0.0495

LRuc 100%; LRcc 100% 

0.04944

LRuc 100%; LRcc 100%

0.04912

LRuc 100%; LRcc 100% 

20 days 

VaR 1% 

0.01087

LRuc 92%; LRcc 96% 

0.0115

LRuc 92%; LRcc 92% 

0.00967

LRuc 92%; LRcc 96% 

0.00981

LRuc 96%; LRcc 100% 
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Table 7 (continuous) 

30 days 

VaR 5% 

0.03891

LRuc 80%; LRcc 92% 

0.04128

LRuc 80%; LRcc 96% 

0.04565

LRuc 88%; LRcc 96% 

0.04645

LRuc 92%; LRcc 96% 

30 days 

VaR 1% 

0.00772

LRuc 80%; LRcc 92% 

0.00826

LRuc 84%; LRcc 96% 

0.00767

LRuc 84%; LRcc 96% 

0.00841

LRuc 88%, LRcc 96% 

60 days 

VaR 5% 

0.02635

LRuc 72%; LRcc 84% 

0.02343

LRuc 68%; LRcc 80% 

0.03164

LRuc 72%; LRcc 84% 

0.02964

LRuc 72%; LRcc 84% 

60 days 

VaR 1% 

0.00536

LRuc 52%; LRcc 60% 

0.00644

LRuc 52%; LRcc 60% 

0.00623

LRuc 56%; LRcc 68% 

0.00694

LRuc 56%; LRcc 68% 

120 days 

VaR 5% 

0.02854

LRuc 44%; LRcc 56% 

0.02941

LRuc 48%; LRcc 56% 

0.03421

LRuc 52%; LRcc 64% 

0.02817

LRuc 48%; LRcc 60% 

120 days 

VaR 1% 

0.004235

LRuc 32%; LRcc 44% 

0.005026

LRuc 36%; LRcc 52% 

0.006041

LRuc 40%; LRcc 56% 

0.004964

LRuc 36%; LRcc 56% 

Table 7 reports the comparison among the different models when we use simulated data. 

As we should expect, we obtain a better performance of time rules using simulated data, in particu-

lar, when we consider a temporal horizon of 10 days. The proposed empirical results show the best 

performance of the simulated stable models as compared of to the Gaussian and the Student’s t one 

(see Table 7). On the other hand, this simulation analysis underlines that scaling up volatility fore-

casts may sometimes lead to results that do not make much sense when estimates of 1-day volatil-

ities are used to predict long time volatilities. Thus, as confirmed by the theory (see Diebold et al., 

1998; Lamantia et al., 2006), the time rules (4), (8) can be limitedly used to forecast future losses 

if returns follow the above models. In particular, when we consider a temporal aggregation of 60-

120 days, the effect of the error in the approximation is big enough as it appears by the empirical 

misspecification.  

5.   Conclusions 

This paper proposes and compares alternative models for the VaR calculation. In the first 

part we describe and recall several elliptical and stable Paretian parametric models. The empirical 

comparison confirms that when the percentiles are below 5%, the hypothesis of normality of the 

conditional return distribution determines intervals of confidence whose forecast ability is low. As 

a matter of fact, the return distributions are asymmetric and leptokurtic and the hypothesis of nor-

mality is usually rejected under statistical test. The stable Paretian models and the Student's t-

copula have shown very good performance in predicting future losses. Among the alternative 

models proposed, the -stable densities are reliable in the VaR calculation and are characterized by 

an approximating temporal aggregation rule. Moreover, some stable parametric models present 

better performance for smaller percentiles and they reveal a high degree of efficiency for large 

portfolios. Thus it is reasonable to believe that implementing stable models for online VaR calcu-

lation is a realistic issue. Finally, the performance analysis of the proposed time aggregation rules 

has shown an adequate capacity of all models to predict future losses when we assume a temporal 

horizon of 10 days. In particular, we observe a better performance of the stable Paretian time rules 

when we use simulated data. However, when we consider 60-120 day returns all the temporal ag-

gregation models do not present very good results when they are based on historical and simulated 

data. This empirical comparison confirms that when the temporal horizon is too large the time 

rules cannot be applied. 
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