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Multiscale hedge ratio between Taiwan stock and futures

index: an application of wavelet analysis 

Abstract 

The objective of this study is to examine the relationship between the stock and futures markets of Taiwan in terms of 

lead-lag relationship, correlation, and hedge ratio using wavelet analysis. We sampled 1,510 observations, from 

January 2002 to December 2007, of TAIEX and TAIFEX for analysis. Empirical results show that (1) there is a 

feedback relationship between the stock and futures markets regardless of time scales; (2) wavelet correlation between 

two markets varies over investment horizons but remains at high level; and (3) hedge ratio and the effectiveness of 

hedging strategies increase as the wavelet time scale increases. 

Keywords: hedge ratio, wavelet analysis, lead-lag relationship. 

JEL Classification: C10, G13. 

Introduction

With the diversification of financial instruments and 

rapid economic growth, it is more convenient and 

necessary for financial managers, as well as inves-

tors, to hedge their investments using the popular 

derivatives, futures. If the movement of futures 

markets could be anticipated precisely, then we 

could take some measures to reduce risk in advance. 

However, to hedge effectively in futures markets, it 

depends not only on an accurate hedging model but 

also a relative insight of it. Thus, precision in adop-

tion of hedging strategy had become a heated re-

search issue. 

As we know, there exists a certain relationship be-

tween stock and futures market. In order to estimate 

hedge ratio, many researchers usually employed 

Ordinary Least Squares (OLS) regression. Early 

work simply used the slope of an OLS regression of 

stock on futures prices. However, there is wide evi-

dence that simple regression model is inappropriate 

to estimate hedge ratios as it suffers from the prob-

lem of serial correlation in the OLS residuals and 

the problem of heteroskedasticity often encountered 

in cash and futures price series. An improvement 

has been made on past literature to adopt a univari-

ate GARCH, bivariate GARCH, or E-GARCH, as 

well as other stochastic volatility models. Although 

these studies are successful in capturing the time-

varying covariance/correlation features, many of 

them focus mainly on the myopic hedging problem. 

Another new analysis method of this topic is Wave-

let analysis, the analysis of change. A wavelet coef-

ficient measures the amount of information that is 

gained by increasing the frequency at which the data 

is sampled, or what needs to be added to the data in 

order for it to look like it had been measured more 
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frequently. Owing to such advantages, we employ 

this method for the research. 

The main purpose of this study is to introduce a new 

approach for investigation of the relationship be-

tween the stock and futures markets of Taiwan in 

terms of the lead-lag relationship, covariance (corre-

lation), and the hedge ratio in various time scales 

using wavelet analysis. In this study, we employ a 

different testing methodology as compared with 

previous studies. 

Applying wavelet analysis to examine these factors 

has at least three salient features. First, the main 

advantage of using wavelet analysis is the ability to 

decompose the data into several time scales (in-

vestment horizons). Consider the large number of 

regulators and speculative investors who trade in the 

stock and futures markets and make decisions over 

different time scales. In fact, owing to the different 

decision-making time scales among traders, the true 

dynamic structure of the relationship between the 

stock and futures markets itself will vary over dif-

ferent time scales associated with those different 

horizons. Economists and financial analysts have 

long recognized that there are several time periods 

in decision making, whereas economic and financial 

analyses have been restricted to at most two time 

scales (the short run and the long run) because of the 

lack of analytical tools to decompose data into more 

than two time scales (In and Kim, 2006). Unlike pre-

vious studies, in this paper we use wavelets to pro-

duce an orthogonal decomposition of correlation and 

the hedge ratio between the stock and futures indices 

over several different time scales. In particular, this 

feature of time scale decomposition enables us to 

examine the lead-lag relationship between the stock 

and futures markets at different investment horizons. 

Secondly, the wavelet co-variance decomposes the 

covariance between two stochastic processes over 

different time scales. A wavelet covariance in a 

particular time scale indicates the contribution to the 
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covariance between two stochastic variables (Lind-

say et al., 1996). This feature of wavelet analysis 

allows us to examine the covariance/correlation over 

different time scales. 

The final feature of wavelet analysis is related to the 

calculation of the hedge ratio. We note that the con-

ventional estimation of the hedge ratio has three 

problems: First, it is an unreliable estimator because 

of a handful of independent observations generated 

from long-horizon return series (see Geppert, 1995). 

Second, computation is burdensome and difficult to 

calculate over longer investment horizons. Third, it 

requires an assumption for the error term for 

GARCH/SV model estimation (see Lien and Luo, 

1993 ), which can cause inaccurate results. Thereby, 

applying wavelet analysis enables us to overcome 

these obstacles through the time scale decomposi-

tion and provision of a non-parametric method. 

The remainder of the paper is organized as follows: 

section 1 reviews related literature. Section 2 dis-

cusses minimum variance hedging and the degree of 

hedging effectiveness that we derive and describes 

the fundamental methods of wavelet analysis that 

we employ. Section 3 presents the data and basic 

statistics and a discussion of the empirical results. 

The last section presents some concluding remarks. 

1. Literature review 

Majority of the studies investigating the hedging on 
stock index futures relates to the U.S. In the first 
analysis of hedging effectiveness of stock index 
futures, Figlewski (1984) calculated the risk and 
returns combination of different capitalization port-
folios underlying five major stock indices that could 
have been achieved by using the S&P 500 stock 
index futures as a hedging instrument. The risk 
minimizing hedge ratios were estimated by OLS on 
historical spot and futures returns. He discovered 
that for all indices represented diversified portfolios, 
minimum variance hedge ratios (MVHRs) were 
better than the beta hedge ratios. With large capitali-
zation portfolios, risk was considerably reduced in 
contrast to smaller stocks portfolios. Moreover, 
Figlewski (1984) pointed out that dividend risk was 
not an important factor, whereas time to maturity 
and hedge duration were. Junkus and Lee (1985) 
investigated the hedging effectiveness of three U.S 
stock index futures under alternative hedging strate-
gies. The optimal hedge ratios were calculated using 
the OLS conventional regression model. Their re-
sults indicated the superiority of MVHR. Moreover, 
there was little evidence about the impact of con-
tract expiration and hedging effectiveness. Ghosh 
(1993) extended studies of lead and lag relationships 
between stock index and stock index futures prices 
by using an ECM, arguing that the standard OLS 

approach is not well specified in estimating hedge 
ratios because it ignores lagged values. Holmes 
(1996) tried to assess the appropriate econometric 
technique when estimating optimal hedge ratios of 
the FTSE-100 stock index by applying a GARCH 
(1, 1) as well. He showed that in terms of risk reduc-
tion a hedge strategy based on MVHRs estimated 
using OLS outperforms optimal hedge ratios that are 
estimated using more advanced econometric tech-
niques such as an error correction model or a 
GARCH (1, 1) approach. 

Wavelet analysis is employed extensively in science 
or engineering filed but far less is applied in eco-
nomics and finance in the past. Many of wavelet 
analysis properties are suitable for description of 
time series data, which drive wavelet analysis flour-
ishing development within this decade. Recent ap-
plications of wavelets in economics and finance 
include Ramsey and Lampart (1998), study the per-
manent income hypothesis, and conclude that the 
time-scale decomposition is very important for ana-
lyzing economic relationships. Norsworthy, Li and 
Gorener (2000) apply wavelet analysis to estimate 
the systematic risk of an asset (the beta of an asset). 
The main conclusion of Norsworthy et al. is that the 
major part of the market’s influence on an individ-
ual asset return is at higher frequencies. In other 
words, the beta coefficient will generally decrease 
when regressing an individual asset return on the 
smoother components of the market portfolio. Fer-
nandez (2006) extended the literature in this area to 
analyze the impact of time scaling on the computa-
tion of value at risk and conclude that risk is con-
centrated at the higher frequencies of the data. 

2. Data and methodology 

We will conduct our study adopting the procedure 
as in Figure 1. First, we transform our data from 
time domain into frequency domain using wavelet 
transform. The next step we take is to reconstruct 
the data into different scales under the condition that 
all of original message is complete reserved. Fi-
nally, we will use these data sets to compute statistic 
estimates like variance, covariance, and correlation 
for the purpose of estimating hedge ratio.  

2.1. Data description. The data set used in the 

analysis is obtained from TAIEX and TAIFEX, 

covering the period from January 4, 2002 through 

December 30, 2007. After matching the daily obser-

vations, we have 1,510 observations for TAIEX. 

These indices are transformed to daily rates of re-

turn by calculating continuously compounded index 

returns, 1-ttt /SSln100R . Note that these 

‘daily’ rates of return on a given calendar day may 

represent the returns realized over different time 

interval depending on trading day schedules. 
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Fig. 1. MODWT Workflow 

2.2. Mean variance hedge. Assume an individual 
has taken a fixed position in some assets and that this 
person is long one unit of the asset without loss of 
generality. Let ht represent the short position taken in 
the futures market at time t under the adopted hedg-
ing strategy. Besides, assuming the investor has the 
mean-variance expected utility function. 

( ) ( ) ( )EU HP E HP Var HP ,               (1) 

where is the degree of risk aversion ( 0 ), the 

hedger’s objective within this framework is to 

maximize the utility subject to Equation (1): 

2 2 2Max  ( ) max ( ) ( ) ( 2 )t s f sf
h h

EU HP E S hE F h h ,      (2)

where HP  change in the value of the hedge port-

folio; S  change in the log of the stock prices; F

 change in the log of the futures prices; h t  opti-

mal hedge ratio; 
2

s ,
2

f  variances of the change 

in the stock and futures prices; sf  covariance 

between the stock and futures prices. 

Suppose the hedger decides to pursue a dynamic 
hedging strategy. The optimal hedge ratio is deter-
mined by solving Equation (2). 

2

( ) 2( )

2

sft

t f

E FVar HP

h
.                      (3) 

If the futures rate follows a martingale (i.e., 

1 0( )E F F ), Equation (3) becomes 

*

2

sf

t

f

h .                                                               (4) 

This corresponds to the conventional hedge ratio 

when changes in both stock and futures prices are 

homoskedastic. Therefore, the optimal hedge ratio is 

the conditional covariance between price changes in 

proportion to the conditional variance of change in 

futures prices. It is known that the optimal hedge 

ratio
*

th is the one-period variance minimization 

solution and termed the myopic optimal hedge ratio. 

In the absence of conditional heteroskedasticity, 

both Cov( St, Ft) and Var( Ft) are independent of 

the information set. As a result, 
*

th is a constant term 

regardless of whatever information is available. 
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Duffie (1989) shows that the optimal hedge ratio 

for a person with mean-variance utility can be de-

composed into two portions: one reflecting specu-

lative demand (which varies across individuals 

according to their risk aversion) and another re-

flecting a pure hedge (which is the same for all 

mean-variance utility hedgers). Because the pure 

hedge term is common to all hedgers and the 

speculative demand term is both difficult to esti-

mate and often close to zero, it is reasonable to 

focus attention on the pure hedge. 

The degree of hedging effectiveness is measured by 

the percentage reduction in the variance of the na-

ked stock prices changes (Geppert, 1995). There-

fore, the degree of hedging effectiveness can be 

expressed as follows: 

2

,
)(

)(
1

)(

)()(
tsf

t

t

t

tt

SVar

HPVar

SVar

HPVarSVar
EH ,(5)

where
2

,tsf is the square of the correlation between 

the change in the stock and futures prices. As seen 

in Equations (2) and (3), the variances, co-

variance, and correlation coefficients need to be 

calculated for the hedge ratio and the hedging ef-

fectiveness. In the next section, we briefly present 

the wavelet analysis and describe how to derive the 

wavelet variance, covariance, and correlation coef-

ficients in the wavelet analysis. 

2.3. Wavelet analysis. Wavelet analysis is a new 
development in the area of applied mathematics. A 
wavelet coefficient measures the amount of infor-
mation that is gained by increasing the frequency at 
which the data are sampled, or what needs to be 
added to the data in order for it to look like it had 
been measured more frequently. 

We offer a brief exposition of wavelet analysis by 
focusing on the basic framework of discrete wavelet 
transform. Wavelet is similar to sine and cosine func-
tions in that they also oscillate about zero. However, 
oscillations of a wavelet fade away around zero, and 
the function is localized in time or space. In wavelet 
analysis, a signal (i.e., a sequence of numerical meas-
urements) is represented as a linear combination of 
wavelet functions (Schleicher, 2002). 

There are father wavelets and mother 

wavelets such that: 

( ) 1,

( ) 0.

t dt

t dt
                                                         (6) 

Father wavelets are good at representing the smooth 
and low frequency parts of a signal, whereas mother 
wavelets are good at representing the detailed and 
high frequency parts of a signal. The most com-
monly used wavelets are the orthogonal ones. In 
particular, the orthogonal wavelet series approxima-
tion to a continuous signal f(t) is given by: 

k k k

KKKJKJ

k

KJKJKJKJ tdtdtdtStf )(....)()()()( ,1,1,1,1,,,,
,                               (7)

where J is the number of multi-resolution compo-

nents or scales, and K ranges from 1 to the number 

of coefficients in the corresponding component, sJ,K,

dJ,K,..., d1,K are the wavelet transform coeffi-

cients, )(kj, t and )(kj, t are the approximating 

wavelet functions. 

These functions are generated from and as fol-

lows:

j

jj
kt

kj t
2

2
,

22)( ,

j

jj
kt

kj t
2

2
,

22)( .                               (8) 

These coefficients are a measure of the contribution 

of the corresponding wavelet function to the total 

signal.

Applications of wavelet analysis commonly make 

use of a discrete wavelet transform (DWT). The 

DWT calculates the coefficients of the approxi-

mation in Equation (7) for a discrete signal of 

final extent, f1, f2, …, fn. That is, it maps the vector 

f = (f1, f2,…, fn)’ to a vector of n wavelet coeffi-

cients that contains 
,J ks  and 

,J kd , j = 1, 2,…, J.

The ,J ks  are called the smooth coefficients and 

the dJ,k are called the detail coefficients. Intui-

tively, the smooth coefficients represent the un-

derlying smooth behavior of the data at the coarse 

scale 2J, whereas the detail coefficients provide 

the coarse scale deviations from it. 

When the length of the data n is divisible by 2J,

there are n/2 coefficients 1,kd at the finest scale 21=2.

At the next finest scale, there are n/2 coeffi-

cients 2,kd . Similarly, at the coarsest scale, there are 

,/ 2J

J kn d  coefficients and ,/ 2J

J kn s  coefficients. 

Altogether, there are nn
J

i
Ji

1 2

1

2

1  coefficients. 

The number of coefficients at a given scale is related 

to the width of the wavelet function. For instance, at 

the finest scale, it takes n/2 terms for the func-

tions 1, ( )k t to cover the interval1 t n .
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The wavelet coefficients are ordered from coarse 

scales to fine scales in the vector . If n is divisible 

by 2J,  will be given by: 

1

1

d

d

d

s

J

J

J

,         

where

1

,1 ,2 ,
2

,1 ,2 ,
2

1 1,1 1,2 1,
2

1 1,1 1,2 1,
2

( , , , ) ',

( , , , ) ',

( , , , ) ',

( , , , ) '.

J

J

J

J

J J J nJ

J J J nJ

J J J nJ

n

s s s s

d d d d

d d d d

d d d d

Each of the sets of coefficients 1, ,...,J Js d d is called 

a crystal. 

Equation (7) can be rewritten as 

KKJKJKJ DDDStf ,1,1,, ...)( , where 

k

K,JK,JK,J tdS ,

k

K,JK,JK,J tdD ,

k

K,K,K, tdD 111 ,

are denominated by the smooth signal and the detail 

signals, respectively. 

The terms in Equation (7) represent a decomposi-

tion of the signal into orthogonal signal compo-

nents SJ(t), DJ(t), DJ – 1(t), ...,D1(t) at different 

scales. These terms are components of the signal 

at different resolutions. That is why the approxi-

mation in (7) is called a multi-resolution decom-

position (MRD). 

2.3.1. Estimation of wavelet variance. Wavelet vari-

ance analysis consists in partitioning the variance of 

a time series into pieces that are associated to differ-

ent time scales. It tells us what scales are important 

contributors to the overall variability of a series 

(Percival and Walden, 2000). In particular, 

let 1 2, ,..., nx x x be a time series of interest, which is 

assumed a realization of a stationary process with 

variance
2

X . Let 
'

2 j
n

jn be the number of discrete 

wavelet transform (DWT) coefficients at level j where 

n is the sample size, and
' ( 2)(1 2 )j

jL L be the 

number of DWT boundary coefficients at level j (pro-

vided that
' '

j jn L  ), where L is the width of the wave-

let filter. An unbiased estimator of the wavelet vari-

ance is defined as: 

'

2 ( )

,

1
( ) .

ˆ
j

N
X

X j j t

t l

v d
N

                                      (9) 

It has been shown that the wavelet variance
2 ( )X jv

can decompose the variance of a time series on a 

scale-by-scale basis, instead of the frequency-by-

frequency basis used the spectrum (Percival and 

Walden, 2000). The wavelet variance is defined to 

be the variance of the wavelet coefficients associ-

ated with scale
12 j

j . This is equivalent to the 

expected value of the squared wavelet coefficients. 

Constructing an estimator of the wavelet variance 

using a variation of the DWT, the maximal overlap 

DWT (MODWT), has been shown to be superior to 

that of the DWT-based estimator (Percival and Wal-

den, 2000). The MODWT coefficients of X1,…,XN

are denoted by 
( )

,

X

j tW  for j = 1,…,J and t = 1,…,N. 

The wavelet variance estimated by the MODWT 

coefficients for scale j is given by: 

2
2 ( )

,

1
( )

j

N
x

X j j t

t Lj

v d
N

,                                (10) 

where j j jN N L  and )21)(2( j
j LL .

2.3.2. Estimation of wavelet covariance. Let

N,...,tY,X tt 1  be a realization of a portion of a 

zero mean stationary process ,t tX Y with cross 

spectrum XYS and auto spectra XS and YS ,

respectively. Just as the periodogram was used in 

the univariate case, the cross periodogram:  

1
( ) 2

,

( 1)

ˆ( )
N

P i f

XY XY

N

S f C e                          (11) 

is utilized here to estimate the cross spectrum. The 

sample cross covariance sequence is defined to 

be ,
ˆ

XY t t

t

C X Y , where the summation goes 

from t = 1 to N-  for 0  and from t -1 to N 

for 0 . The multi-taper estimator of the cross spec-

trum is given by: 
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( ) 2 * 2

, ,

1 1

1ˆ ( ) ( ) ( )
N N

m t i f l i f l

X Y k l l k l l

l l

S f h X e h X e
K

,                                                         (12)

where tkh ,  is the kth-order data taper for a sequence 

of length N normalized such that 
2

, 1 1,...,k t

t

h k K . Let tX  and 

, 1,...,tY t N  be defined as before.  For jN L ,

we can define an unbiased estimator ( )XY jCov of the 

wavelet covariance based upon the MODWT via 

( ) ( )

, ,

1
( )

j

N
X Y

XY j j t j t

t Lj

Cov d d
N

.                        (13) 

The estimator does not include any coefficients that 

make explicit use of the periodic boundary condi-

tions. We can construct a biased estimator of the 

wavelet covariance by simply including the 

MODWT wavelet coefficients affected by the 

boundary and renormalizing. 

2.3.3. Estimation of wavelet correlation. Given the 
covariance does not take into account the variation 
of the univariate time series, a natural next-step is to 
introduce the concept of wavelet correlation. As 
with the usual estimator for correlation in time se-
ries, the wavelet correlation is simply made up of 

the wavelet covariance for ,t tX Y and wavelet 

variances for tX  and tY . The DODWT estima-

tor of the wavelet cross-correlation is simply 

,

,

( )
( )

( ) ( )

XY j

XY j

X j Y j

r

v v
,                               (14) 

where , ( )XY jr  is the wavelet covariance, ( )X jv

and ( )Y jv are the wavelet variances. When 0 ,

we obtain the MODWT estimator of the wavelet 

correlation between ,t tX Y .

3. Empirical results 

Table 1 summarizes selected basic statistics. All 
sample means are positive in the sample period. 
Variances are 2.736 for the futures index and 
3.591 for the stock index, showing that the futures 
market has higher volatility than the stock market. 
The signs of skew are all negative. The values of 
Ljung-Box up to 14 lags (LB(14)) for the return 
series are significant at the 1% level. The 
LB(14)’s for squared return series are highly sig-
nificant for both markets, suggesting the possibil-
ity of the presence of autoregressive conditional 
heteroskedasticity. 

Table 1. Basic statistics 

 STOCK FUTURE 

Mean -0.019270 -0.019451 

Variance 2.736416 3.5911387 

Skewness -0.003464 -0.098053 

Kurtosis 4.606049 5.492309 

Q value 
LB(14) for Rt 

35.082 
 (0.001) 

32.317 
(0.004) 

Notes: Sample period from January 4, 2002 to December 30, 

2007. Significance levels are in parentheses. LB(n) is the Ljung-

Box statistic for up to n lags. 

Table 2. Granger causality test in wavelet domain 

 Original d1 d2 d3 d4 

Future  Stock 2.083* (0.0004) 2.011* (0.0008) 2.118* (0.0003) 2.383* (0.0001) 2.400* (0.000) 

Stock  Future 2.699* (0.000) 1.541* (0.030) 1.790*(0.005) 2.185* (0.000) 2.962* (0.000) 

 d5 d6 d7 d8  

Future  Stock 2.678* (0.000) 3.476* (0.000) 3.669* (0.000) 4.470* (0.000)  

Stock  Future 3.126* (0.000) 6.553* (0.000) 3.533* (0.000) 5.127* (0.000)  

Notes: The original data have been transformed by the wavelet filter (LA(8)) up to time scale 8. The significance levels are in paren-

theses. The first detail (wavelet coefficient) d1 captures oscillations with a period length two to four days. The last detail d8 captures 

oscillations with a period length of 128-256 days. * Significant at 1% level. 

The main purpose of this paper is to examine the 
lead-lag relationship, correlation, and the hedge ratio 
between the stock and futures markets over the vari-
ous time scales using wavelet analysis. To examine 
the lead-lag relationship in wavelet analysis, we first 
test for Granger causality up to level 8. The results of 
the Granger causality tests are stated in Table 2. As 
seen in Table 2, the stock and futures markets show a 

feedback relationship contemporaneously as well as 
in various time scales. This result is consistent with 
the assumption of the cost-of-carry (COC) model and 
indicates that the two markets are efficient and fric-
tionless. The COC model states that as new informa-
tion arrives simultaneously to the stock and futures 
markets and is reflected immediately in both stock 
and futures prices, profitable arbitrage should there-
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fore not exist, under the assumption that the two mar-
kets are perfectly efficient and frictionless and act as 
perfect substitutes. In other words, if both markets are 
efficient, the COC model indicates that the two mar-
kets have a feedback relationship in terms of Granger 
causality. 

Turning to the second purpose of our paper (correla-

tion in the various time scales), we first examine the 

variances of the futures and the stock markets’ re-

turns in various time scales. An important character-

istic of the wavelet transform is its ability to decom-

pose the variance of the stochastic process. Figure 2 

illustrates the MODWT-based wavelet variance of 

two series against the wavelet scales. The straight 

lines indicate the variance and the box bar indicates 

the 95% confidence interval. 

Fig. 2. Estimated wavelet variance of stock and futures returns 

There is an approximate linear relationship between 
the wavelet variance and the wavelet scale. The vari-
ances of both the stock and futures markets decrease as 
the wavelet scale increases. Note that the variances 
versus wavelet scale curves show a broad peak at the 
lowest scale (d1) in both markets, which is consistent 
with the result of In and Kim (2006). More specifi-
cally, a wavelet variance in a particular time scale 
indicates the contribution to sample variance. The 
sample variances of the stock and futures markets are 

2.736 and 3.591, respectively. Notice that the wavelet 
variances show that the futures market is more volatile 
than the stock market regardless of the time scale. This 
is consistent with the results of Lee (2001), who found 
that the futures market has higher volatility than the 
stock market using a GARCH model. 

In addition to the examination of variances of the 

two time series, a natural question is to consider 

how the two series are associated with one another. 

Note that a wavelet covariance in a particular time 

scale indicates the contribution to the covariance 

between two series. Figure 3 shows the MODWT 

based wavelet covariance of the returns of the 

stock and futures markets using the LA(8) wavelet 

filter. Approximate confidence intervals are also 

presented. Overall, the movements of covariance 

are decreasing as the time scale increases. The 

sample covariance between the stock and futures 

markets is 2.943, and presents a decreasing trend. 

Although there is a decreasing association between 

the stock and futures markets, it is difficult to 

compare the wavelet scales because of the different 

variability exhibited by them. In this case, dividing 

by the variance of each series is a natural way to 

standardize the covariance, thereby overcoming 

this influence and making it possible to compare 

the magnitude of the association across scales. 

Therefore, the wavelet correlation should be con-

structed to examine the magnitude of the associa-

tion of each series. 

Figure 4 illustrates the estimated wavelet correla-
tion between the stock and futures returns. The 
high and significant positive relationship can be 
observed in all time scales. The correlation be-
tween the two markets varies over time scales but 
remains very high. 
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Fig. 3. Estimated wavelet covariance between the stock and futures returns 

Fig. 4. Estimated wavelet correlation between the stock and futures returns 
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The final purpose of this paper is to examine the 
multi-period hedge ratio, based on the results of 
variance and co-variance obtained from wavelet 
analysis. As indicated in Lien and Luo (1993), 
realism suggests that the hedger’s planning horizon 
usually covers multiple periods. Therefore, exam-
ining the multi-period hedge ratio is more appro-
priate than examining the one-period hedge ratio. 
Figure 6 shows the hedge ratio and hedging effec-
tiveness using the various time scales up to level 8. 
Note that these wavelet hedge ratios are estimated 
by a nonparametric method. Therefore, it is not 
necessary to assume a particular distribution of the 
error term as in the GARCH/SV model. As seen in 
Figure 5, the decomposition hedge ratio increases 
monotonically at a decreasing rate, converging 
toward the long-horizon hedge ratio of one. This 
result is consistent with the findings in In and Kim 
(2006). As indicated in Figure 6, the degree of 
hedging effectiveness approaches one as the wave-
let time scale increases. Intuitively, hedging effec-

tiveness approaches one because, over long hori-
zons, the shared permanent component ties the 
stock and futures series together and the effect of 
the transitory components becomes negligible. In 
the long run, the stock and futures prices are per-
fectly correlated. This result is consistent with the 
results of Geppert (1995) and Low et al. (2002), 
who compare the hedge ratios and hedging effec-
tiveness obtained from various models. 

Figures 6 and 7 show the MODWT MRA of the 

stock and futures returns using various time scales. 

There is a fierce fluctuation in the original series in 

November 2002, which is captured in the d1-d3 

component. Interestingly, the shock of November 

2002 is getting smaller as the time scale increases, 

implying that the short-term shock does not affect 

the long-run movement of the stock and futures 

markets. At the highest time scale, d8, representing 

the deviation from the long-term trend, there is a 

smooth and similar movement for both markets. 

Fig. 5. Hedge ratio and hedging effectiveness with different wavelet domains 

Fig. 6. MODWT multi-resolution analysis – stock market
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Fig. 6 (cont.). MODWT multi-resolution analysis – stock market
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Fig. 7. MODWT multi-resolution analysis – futures market 
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Fig. 7 (cont.). MODWT multi-resolution analysis – futures market 

Another finding, in average, there are about two 
recycles within one year in Taiwan, especially ob-
served in the higher time scale. However, in the 
finer scale (d1-d4), it is difficult to find the trend of 
stock market. Overall, it is interesting to observe 
that as the time scale increases from the finer time 
scale (d1) to the highest time scale (d8), the wavelet 
coefficients show a smooth movement, implying 
that short-term noise in the market is cancelled out 

as the wavelet time scale increases, and conse-
quently the “true” underlying economic relationship 
between stock and futures prices will prevail in the 
long run. These wavelet MRA figures indicate that 
the wavelet stock decomposition gathers informa-
tion that cannot be captured by conventional analy-
sis. In other words, the decomposition of data into 
several time scales is important in economics and 
finance since it detects the frequency burst in vari-
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ous time scales. In the co-integration literature on 
hedge ratios, the presence of both long-run and 
short-run components in the stock and futures mar-
kets causes the hedge ratio and the degree of hedg-
ing effectiveness to depend on the time horizon. As 
the wavelet time scale increases, the decomposed 
data are close to the long-run trend. Therefore, over 
long horizons, the shared long-run component ties 
the stock and futures series together, and the two 
prices will be perfectly correlated. 

Conclusions

In this paper, we use wavelet analysis to propose a 
new approach to investigate the relationship be-
tween the stock and futures markets over different 
time scales. The paper examines this relationship in 
three ways: (1) the lead-lag relationship, (2) covari-
ance/correlations, and (3) the hedge ratio. To exam-
ine the lead-lag relationship between the two mar-
kets, we employ the Granger causality test for vari-
ous time scales. The wavelet correlation is estimated 
by testing the correlation between the two markets 
in the various time scales from the wavelet coeffi-
cients. The hedge ratio, defined by the co-variance 
between the stock return and the futures return di-
vided by the volatility of futures return, is calculated 
from the wavelet covariance and variance. The main 
advantage of using wavelet analysis is the ability to 
decompose the data into the various time scales. 
This advantage allows researchers to investigate the 
relationship between two variables in various time 
scales, whereas the traditional methodology only 
allows examination of only two time scales: short- 
and long-run scales. 

The wavelet analysis is undertaken using the LA(8) 
wavelet filter and supports our main conclusions. 
First, it is found that the stock and futures markets 
show a feedback relationship regardless of the time 
scale. According to the assumption of the cost-of-
carry model, this could imply that the two markets 

are perfectly efficient and frictionless and act as 
perfect substitutes. This result also implies that a 
profitable arbitrage does not exist between the two 
markets, regardless of the time scale. 

Second, it is found that there is an approximate linear 

relationship between the wavelet variance and the 

wavelet scale. Both wavelet variances and covariance 

of the stock and futures returns decrease as the wave-

let time scale increases. Overall, the wavelet vari-

ances show that the futures market is more volatile 

than the stock market regardless of the time scale, 

which is consistent with the results of Lee (2001). It 

is also interesting to observe that the wavelet correla-

tion between the two markets varies over time but 

remains very high, over 0.92 on average. 

Third, we examine the multi-period hedge ratio, 
based on the variances and covariance obtained 
from wavelet analysis. We find that (1) each hedg-
ing horizon has a unique hedge ratio, (2) the long-
horizon hedge ratio converges to one, and (3) 
hedging effectiveness converges to one as the 
hedging horizon (wavelet time scale) increases. 
This is consistent with the results of Low et al. 
(2002) on Nikkei index futures. As indicated in 
Baillie and Myers (1991), there are two reasons for 
this. The economic rationale is that the arrival of 
information in the market resolves price uncer-
tainty. More uncertainty is resolved, and over a 
longer amount of time, the basis risk is reduced. 
The statistical rationale is that the noise in the 
market tends to be canceled over time; the true 
underlying relationship between the stock and fu-
tures prices emerges in long investment horizons, 
evidenced by the wavelet MRA. Our result indi-
cates that as the wavelet time scale increases, the 
decomposed data are close to the long-run trend. 
Therefore, over long horizons, the shared long-run 
component ties the stock and futures series together, 
and the two prices will be perfectly correlated. 
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