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A defaultable callable bond pricing model  

Abstract 

This paper presents a 3D model for pricing defaultable bonds with embedded call options. The pricing model 
incorporates three essential ingredients in the pricing of defaultable bonds: stochastic interest rate, stochastic default 
risk, and call provision. Both the stochastic interest rate and the stochastic default risk are modeled as a square-root 
diffusion process. The default risk process is allowed to be correlated with the default-free term structure. The call 
provision is modeled as a constraint on the value of the bond in the finite difference scheme. The numerical example 
shows that the 3D model is capable of pricing defaultable bonds with embedded call options adequately. This paper can 
provide new insight for future research on defaultable bond pricing models. 

Keywords: defaultable bond, embedded option, square-root diffusion process, partial differential equation, finite dif-
ference method. 
JEL Classification: C00, G13. 

Introduction  

The pricing of defaultable securities has occupied a 
central place in the academic and practitioner lit-
erature. The standard theoretical paradigm for pric-
ing defaultable securities is the contingent claims 
approach pioneered by Black and Scholes (1973) 
[1]. Much of the literature follows Merton (1974) 
[2] by explicitly linking the risk of a firm’s default 
to the variability in the firm’s asset value. Al-
though this line of research has proven very useful 
in addressing the qualitatively important aspects of 
pricing defaultable securities, it has been less suc-
cessful in practical applications. The lack of suc-
cess owes to the fact that firms’ capital structures 
are typically quite complex and priority rules are 
often violated. In response to these difficulties, an 
alternative modeling approach has been pursued in 
a number of papers, including Madan and Unal 
(1994) [3], Jarrow and Turnbull (1995) [4], Duffie 
and Singleton (1999) [5]. At each instant, there is 
some probability that a firm defaults on its obliga-
tion. This is called the instantaneous probability of 
default. The processes of both this probability and 
the recovery rate determine the value of default 
risk. Although these processes are not formally 
linked to the firm’s asset value, there is presumably 
some underlying relation, thus Duffie and Single-
ton describe this alternative approach as a reduced-
form model (Duffee, 1999) [6].  

This paper is an effort to develop one such model in 
a 3D setting for pricing defaultable bonds with em-
bedded call options. The remainder of this paper is 
organized as follows. Section 1 presents the model. 
Section 2 describes the methodology. Section 3 
provides a numerical example. The last section con-
cludes this paper. 

                                                      

© David Hua, Heng-Chih Chou, David Wang, 2009. 

1. Model 

We derive the pricing model for defaultable bonds 
with embedded call options by adopting Duffie and 
Singleton (1999) [5]’s reduced-form approach and 
Hull (2000) [7]’s replicating-portfolio approach. 

According to Duffie and Singleton, defaultable 
bonds can be valued by discounting at a default-
adjusted interest rate, R:  

hLrR ,       (1) 

where r is the risk-free interest rate, h is the hazard 
rate for default (i.e., the instantaneous probability of 
default) at time t, and L is the loss rate (i.e., the ex-
pected fractional loss in the market value) if default 
was to occur at time t, conditional on the informa-
tion available up to time t. That is, the price at time 
0 of a defaultable discount bond, f, is: 

T

XRdtEf
0

])[exp( ,     (2) 

where X is the face value, T is the maturity time, and 
E  is the risk-neutral, conditional expectation at date 
0. This is natural, in that hL is the risk neutral mean-
loss rate of the defaultable discount bond due to 
default. Discounting at the default-adjusted short-
term interest rate R therefore accounts for both the 
probability and timing of default, as well as for the 
effect of losses on default. A key feature of Equa-
tion (2) is that, assuming the risk neutral mean-loss 
rate process hL being given exogenously, standard 
term-structure models for default-free debt are di-
rectly applicable to defaultable debt by parameteriz-
ing R instead of r (Duffie and Singleton, 1999) [5]. 

We assume that both the default-adjusted interest 
rate R and the hazard rate h fit a Cox, Ingersoll, and 
Ross (CIR)-style model (1985) [8], a square-root 
diffusion model: 

RRRR dzRdtRbadR )( ,    (3) 
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hhhh dzhdthbadh )( ,    (4) 

where dzR and dzh are Wiener processes, and the 
drift and the diffusion parameters are constants and 
are assumed to be known. The CIR-style model 
incorporates mean reversion and ensures that the 
default-adjusted interest rates and the hazard rates 
are always non-negative. As for the loss rate L, it is 
assumed to be a constant.  

We make the assumption that there are a total of 
three defaultable bonds whose prices depend on the 
default-adjusted interest rate R and the hazard rate h. 
Because the three defaultable bonds are all depend-
ent on the default-adjusted interest rate R and the 
hazard rate h, it follows from Ito’s lemma that the 
price of the jth defaultable bond, fj, follows a diffu-
sion process: 

hjhjRjRjjjj dzfdzfdtfdf ,   (5) 

where 
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In these equations, j  is the instantaneous mean 

rate of return provided by jf , Rj  and hj  are the 

components of the instantaneous standard deviation 

of the rate of return provided by jf  that may be 

attributed to R and h, and Rh  is the correlation 

between Rdz  and hdz . 

Because there are three defaultable bonds and two 
Wiener processes in equation (5), it is possible to 

form an instantaneously riskless portfolio, , using 
the defaultable bonds. Define kj as the amount of the 
jth defaultable bond in the portfolio, so that  

j

jj fk .     (9) 

The kj must be chosen so that the stochastic compo-
nents of the returns from the defaultable bonds are 
eliminated. From equation (5) this means that 

j

jRjj fk 0 ,    (10) 

j

jhjj fk 0 .    (11) 

The return from the portfolio is then given by 

j

jjj dtfkd .    (12) 

The cost of setting up the portfolio is 
j

jj fk . If 

there are no arbitrage opportunities, the portfolio 
must earn the default-adjusted interest rate, so that 

j j

jjjjj fkRfk    (13) 

or 

j

jjj Rfk 0 .    (14) 

Equations (10), (11) and (14) can be regarded as 
three homogeneous linear equations in the kj‘s. The 
kj‘s are not all zero. From a well-known theorem in 
linear algebra, equations (10), (11) and (14) can be 
consistent only if 

jhjhjRjRjj ffRf   (15) 

or 

hjhRjRj R    (16) 

for R  and h  that are dependent only on the default-

adjusted interest rate R, the hazard rate h and time t.  

Substituting from equations (6), (7) and (8) into 
equation (15), we obtain 
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that reduces to 
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Dropping the subscripts to f, we deduce that any 
defaultable bond whose price, f, is contingent on the 
default-adjusted interest rate, R, the hazard rate, h, 
and time, t, satisfies the second-order differential 
equation 
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On a coupon date, the bond value must jump by the 
amount of the coupon payment. Hence, to incorpo-
rate coupon payments into the model, we impose a 
jump condition: 

CCC Kt,h,Rft,h,Rf ,   (20) 

where a coupon of KC is received at time tC.  

Bonds often have a call feature which gives the issu-
ing company the right to purchase back the bond at 
any time during specified periods for a specified 
amount. According to the no-arbitrage argument, to 
incorporate a call feature into the model, we must 
impose a constraint on the bond’s value: 

DD Xt,h,Rf ,                  (21) 

where XD is the call price and tD is the call date.  

To find a unique solution of equation (19), we must 
impose one final condition and four boundary con-
ditions.  

The final condition corresponds to the payoff at 
maturity and so for a coupon-paying bond: 

TT KPT,h,Rf ,                  (22) 

where a principal amount of PT and a coupon pay-
ment of KT are received at maturity. 

The first boundary condition, when the default-
adjusted interest rate, R, approaches zero percent, 
can be stated as: 

T,h,RfeT,h,Rft,h,Rf
tTR

.     (23) 

The second boundary condition, when the default-
adjusted interest rate, R, approaches infinity, can be 
stated as: 

0tTR
eT,h,Rft,h,Rf .  (24) 

The third boundary condition, when the hazard rate, 

h, approaches zero percent, can be stated as: 

tTR
eT,h,Rft,h,Rf  

tThLr
eT,h,Rf  

tTr
eT,h,Rf .     (25) 

The forth boundary condition, when the hazard rate, 

h, approaches infinity, can be stated as: 

tTR
eT,h,Rft,h,Rf  

0tThLr
eT,h,Rf .    (26) 

2. Methodology 

We solve the pricing model for defaultable bonds 

with embedded call options by a 3D explicit finite 

difference method (Hull, 2003 [9]; Wilmott, 2000 

[10]).  

Suppose that the number of months to maturity is T. 

We divide this into L equally spaced intervals of 

length t = T / L. t is fixed at one month. A total 
of L+1 times are, therefore, considered: 

0, t, 2 t, …, T. 

Suppose that hmax is a hazard rate sufficiently high 

that, when it is reached, the bond has virtually no 

value. We define h = hmax / M and consider a total 
of M+1 equally spaced hazard rates: 

0, h, 2 h, …, hmax. 

h is set to be one percent. 

Suppose that Rmax is a default-adjusted interest rate 
sufficiently high that, when it is reached, the bond 

has virtually no value. We define R = Rmax / N and 
consider a total of N+1 equally spaced default-

adjusted interest rates: 

0, R, 2 R, …, Rmax. 

R is set to be one percent. 

The time points, hazard rate points and default-

adjusted interest rate points define a 3D grid consist-

ing of a total of (L+1)(M+1)(N+1) points as shown 

in Figure 1. The (i, j, k) point on the 3D grid is the 

point that corresponds to default-adjusted interest 

rate i R, hazard rate j h and time k t. We use 

the variable 
k

jif ,  to denote the value of the bond at 

the (i, j, k) point. 

Recall that the differential equation for the price of a 

defaultable bond, f(R, h, t), is given as: 
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For an interior point (i, j, k) in the 3D grid, 
t

f
 can 

be approximated by using a symmetric central dif-
ference:  
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and 
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ric central difference: 
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Substituting equations (28), (29), (30), (31), (32) 
and (33) into the differential equation (27) and not-

ing that R = i R, h = j h and f = 
k

jif , , the corre-

sponding difference equation can be shown as: 
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where i = 0, 1, …, N, j = 0, 1, …, M and k = 0, 1, …, 

L. Rearranging terms, this equation becomes: 
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i = 0, 1, …, N, j = 0, 1, …, M and k = 0, 1, …, L. 

The value of the bond at time T is PT +KT, where PT 
is the principal amount and KT is the coupon pay-
ment. Hence, 

TT

k

ji KPf ,       (36) 

for i = 0, 1, …, N, j = 0, 1, …, M-1 and k = 0.  

The value of the bond when the default-adjusted 

interest rate is zero percent is T,h,Rf . Hence, 

k

ji

k

ji ff ,

1

,       (37)  

for i = 0, j = 0, 1, …, M-1 and k = 0, 1, …, L-1. 
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We assume that the bond is worth zero when the 
default-adjusted interest rate is one hundred percent, 
so that 

01

,

k

jif       (38) 

for i = N, j = 0, 1, …, M-1 and k = 0, 1, …, L-1. 

The value of the bond when the hazard rate is zero 

percent is 
tTr

eT,h,Rf . Hence, 

tTrk

j,i

k

j,i eff
1

     (39) 

for i = 1, 2, …, N-1, j = 0 and k = 0, 1, …, L-1. 

We assume that the bond is worth zero when the 
hazard rate is one hundred percent, so that 

01

,

k

jif       (40) 

for i = 0, 1, …, N, j = M and k = -1, 0, …, L-1. 

To incorporate coupon payments into the model, we 
impose a jump condition. Hence,  

C

k

ji

k

ji Kff ,,       (41) 

for i = 0, 1, …, N-1, j = 0, 1, …, M-1, k = tC or the 
coupon date and KC is the coupon payment. 

To incorporate call features into the model, we im-
pose a constraint on the bond’s value. Hence, 

D

k

ji Xf ,       (42) 

for i = 0, 1, …, N-1, j = 0, 1, …, M-1, k = tD or the 
call date and XD is the call price. 

Equations (36), (37), (38), (39) and (40) define the 
value of the bond along the five planes of the 3D 
grid in Figure 1, where t = T, R = 0%, R = 100%, h 

= 0% and h = 100%. Equation (35) defines the 
value of the bond at all other points.  

Equation (35) shows that there are nine known bond 
values linked to one unknown bond value. See Fig-
ure 2. Hence, for each time layer there are (N-1)(M-
1) equations in (N-1)(M-1) unknowns; the boundary 
conditions yield the values at the four boundaries for 
each time layer and the final condition gives the 
values in the last time layer. 

To find the bond value of interest, go backwards in 
time, solving for a sequence of linear equations. 

Eventually, 
L

f 1,1 , 
L

f 2,1 , 
L

f 3,1 , …, 
L

MNf 1,1  are ob-

tained. One of these is the bond price of interest. If 
the initial default-adjusted interest rate or the initial 
hazard rate does not lie on the grid point, we use a 
linear interpolation between the two bond prices on 
the neighboring grid points to find the bond price 
of interest.  

3. Numerical example 

We validate the pricing model for defaultable bonds 
with embedded call options by a numerical example.  

The input data used for the model are summarized 
in Table 1. For the default-adjusted interest rate 

model, Ra = 0.35, Rb = 0.20, R = 0.15 and R = -

0.50. For the hazard rate model, ha = 0.30, hb = 

0.15, h = 0.10 and h = -0.50. The loss rate L is set 

to be 0.50. The correlation Rh  is set to be 0.20. 

The bond to be priced is assumed to have a maturity 
T of ten years. The coupon payment K is set to be 
$10.00. Both the principal amount P and the call 
price X are set to be $100.00. We assume that the 
coupon is paid semiannually in the 6th month and 
the 12th month each year, and that the bond is call-
able in the 3rd month and the 9th month of the 4th 
year, the 5th year, the 6th year and the 7th year.  

We first compute the value of both the straight bond 
and the callable bond using different values of the 
risk-free interest rate r. Intuitively, we expect that as 
the value of r increases, the value of both the straight 
bond and the callable bond will decrease, and that the 
value of the straight bond will be greater than the 
value of the callable bond. The results are reported in 
Table 2 and depicted in Figure 3. As expected, the 
results show that as the value of r increases, the value 
of both the straight bond and the callable bond de-
creases, and that, for r less than or equal to twenty-
five percent, the value of the straight bond is greater 
than the value of the callable bond.  

We also compute the value of the callable bond with 
various numbers of call dates using different values 
of r. With one call date, the bond is callable in the 
3rd month of the 4th year; with two call dates, the 
bond is callable in the 3rd month and the 9th month 
of the 4th year; with three call dates, the bond is 
callable in the 3rd month and the 9th month of the 
4th year and the 3rd month of the 5th year; with four 
call dates, the bond is callable in the 3rd month and 
the 9th month of the 4th year and the 5th year; with 
five call dates, the bond is callable in the 3rd month 
and the 9th month of the 4th year and the 5th year 
and the 3rd month of the 6th year. Intuitively, we 
expect that as the number of call dates increases, the 
value of the callable bond will decrease. The results 
are reported in Table 3 and depicted in Figure 4. As 
expected, the results show that, for r less than or 
equal to five percent, as the number of call dates 
increases, the value of the callable bond decreases.  

Conclusion 

This paper presents a 3D model for pricing de-
faultable bonds with embedded call options. The 
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pricing model incorporates three essential ingre-
dients in the pricing of defaultable bonds: sto-
chastic interest rate, stochastic default risk, and 
call provision. Both the stochastic interest rate 
and the stochastic default risk are modeled as a 
square-root diffusion process. The default risk 
process is allowed to be correlated with the de-
fault-free term structure. The call provision is 
modeled as a constraint on the value of the bond 

in the finite difference scheme. The numerical 
example shows that the 3D model is capable of 
pricing defaultable bonds with embedded call 
options adequately. The model is by no means a 
complete success. To improve the model, one can 
assume that the recovery rate in the event of de-
fault varies stochastically through time. In sum-
mary, this paper can provide new insight for fu-
ture research on defaultable bond pricing models. 
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Appendix 

Table 1. The input data used for the model 

Default-adjusted interest rate model: Hazard rate model: 

Reverting speed Ra 0.35 Reverting speed ha 0.30 

Reverting level Rb 0.20 Reverting level hb 0.15 

Volatility R
0.15 Volatility h

0.10 

Market price of risk R
-0.50 Market price of risk h

-0.50 

Loss given default:  Correlation between R and h:  

Loss rate L 0.50 Correlation Rh
0.20 

   

Bond characteristics:    

Maturity year T 10.00 Principal amount P $100.00 

Coupon payment K $10.00 Call price X $100.00 

Table 2. The bond values obtained by the model for the straight bond and the callable bond 

Interest rate Straight bond Callable bond 

0% $300.0000 $160.0000 

5% $106.2483 $103.3899 

10% $100.9673 $95.8269 

15% $84.5680 $86.2457 

20% $93.3852 $83.7381 

25% $83.2655 $57.5245 

30% $51.8970 $77.1003 

35% $75.4322 $54.9788 
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Table 2 (cont.). The bond values obtained by the model for the straight bond and the callable bond 

Interest rate Straight bond Callable bond 

40% $108.5197 $49.4651 

45% $54.3336 $58.6361 

50% $86.9984 $80.6622 

55% $51.1595 $63.3907 

60% $58.4502 $53.7722 

65% $58.1146 $47.7598 

70% $47.6593 $32.0013 

75% $48.2886 $52.7612 

80% $25.1535 $33.7920 

85% $36.2448 $33.6953 

90% $30.8447 $38.4609 

95% $30.8861 $36.4523 

100% $0.0000 $0.0000 

Table 3. The bond values obtained by the model for the callable bond with various numbers of call dates 

Interest rate One call date Two call dates Three call dates Four call dates  Five call dates 

0% $160.0000  $160.0000  $160.0000  $160.0000  $160.0000 

5% $137.5249  $126.6696  $111.5418  $121.7842  $92.7850 

10% $101.0545  $122.3038   $111.7092  $76.4883  $113.2784 

15%  $99.6830  $120.2098  $105.0775  $117.3193  $107.1442 

20% $108.9300  $88.3653  $111.3260  $78.7300   $113.3002 

25%  $86.6670  $78.6220  $76.4078  $96.8279  $82.0580 

30%  $82.9879  $63.0716  $83.8521  $65.2455  $67.1679 

35%  $91.6000  $65.1001  $68.0214  $81.1618  $90.7496 

40% $63.6140   $60.5333  $82.7413  $77.0803  $61.1198 

45%  $74.7206  $57.2084  $77.3416  $42.5685  $51.3476 

50%  $67.1843  $65.1175  $40.3724  $46.6710  $50.5664 

55%  $76.2999  $45.7887  $54.8481  $53.1783  $45.0959 

60%  $57.7708  $61.1667  $56.4496  $40.5881  $42.1916 

65%  $47.6409  $48.7265  $45.6140  $48.2443  $34.1868 

70%  $60.4386  $32.5112  $35.0392  $46.0530  $53.1147 

75%  $48.8009  $28.5854  $28.2614  $42.3923  $38.9696 

80%  $29.6277  $32.3797  $35.8705  $29.2817  $24.8010 

85%  $31.6728  $46.8083  $20.0052  $31.0321  $28.1002 

90%  $29.1352  $23.1515  $23.3416  $32.7578  $30.2341 

95%  $27.9046  $20.8893  $31.5143  $28.7969  $24.8387 

100%  $0.0000  $0.0000  $0.0000 $0.0000   $0.0000 
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Fig. 1. The 3D finite difference grid 

 

Fig. 2. The relationship between bond values in the 3D explicit finite difference method 
 

 

Fig. 3. The bond values obtained by the model for the straight bond and the callable bond 
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Fig. 4. The bond values obtained by the model for the callable bond with various numbers of call dates 
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