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Abstract

Motivated by the growing importance of systemic risk in the global banking system, the authors measure the risk of the 
system and the marginal contributions of the institutions in several ways in terms of stock markets. The undiversifiable 
risk appearing in specific market sectors is called systematic risk rather than systemic risk. The paper focuses on global 
banking stocks comprising global systemically important financial institutions (G-SIFIs), and discusses the global 
systematic risk measurement. To forecast future joint distribution of returns, the authors utilize the multivariate 
autoregressive moving average generalized autoregressive conditional heteroscedasticity (ARMA-GARCH) model 
with the multivariate normal tempered stable (MNTS) distributed and multivariate normal distributed innovations. This 
work statistically demonstrates that the ARMA-GARCH model with the MNTS distributed innovations is a more 
realistic model for G-SIFI stocks. In line with previous studies, the authors estimate four systematic risk measures: 
joint probability and conditional probability of negative stock return movements, CoVaR, and CoAVaR. It is found 
that the joint probability of negative movements is a good indicator for a significant increase in systematic risk. 
Subsequently, the authors investigate the relationship among the other three measures and find the following. Cross-

sectional linkages between AVaR and CoAVaR are few, if any, but there is a strong time series linkage. On the other 
hand, the conditional probability of negative movements and CoAVaR show similar cross-sectional magnitude 
relations, though their time series linkage is not clear. Thus, both AVaR and conditional probability of negative 
movements reinforce each other and serve a useful reference for CoAVaR-based systematic risk measurement. 

Keywords: ARMA-GARCH model, multivariate normal tempered stable distribution, CoVaR, CoAVaR, systematic 

risk measurement, G-SIFIs, global banking stock markets. 

JEL Classification: F37, G01, G15, G17, G20, G32. 

Introduction

In the modern financial system, global financial 

institutions become strongly interconnected, leading to 

awareness of the so-called “systemic risk”. According 

to the definition given by Kaufman and Scott (2003), 

in contrast to the risk that there will be a breakdown in 

individual parts or components of the financial system, 

systemic risk refers to the probability that there will be 

a breakdown of the entire financial system. Moreover, 

this risk is evidenced by the comovements of the 

different parts of the financial system. 

We can observe the applicability of this definition of 

systemic risk in the case of global financial system 

in 2008, following the bankruptcy of the United 

States (U.S.) investment banking firm Lehman 

Brothers. The financial crisis triggered by the failure 

of Lehman Brothers, referred to as the “Lehman 

shock”, had a spillover effect in every sector of the 

global financial market (stock, bond, currency, 

credit markets, and the like).

Following the Lehman shock, the Basel Committee 

on Banking Supervision (BCBS) began to formulate 

a new regulatory framework for international banks 

known as Basel III to mitigate the risk of a 

reoccurrence of financial crises due to the problem 

of large financial institutions. One of the most 

significant enhancements in Basel III relative to 
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Basel I and II is that of protecting the global 

financial system from systemic risk. More specifically, 

Basel III calls for additional capital requirements for 

global systemically important financial institutions (G-

SIFIs), in contrast to the uniform capital requirement 

imposed on every bank in Basel II. More recently, an 

initial list of 29 G-SIFIs (8 from the United States, 17 

from Europe, and 4 from Asia) was identified and 

published based on the BCBS methodology (Financial 

Stability Board, 2011). See the Appendix for the list of 

financial institutions. 

The recent debt crisis in Greece calls for greater 
attention to systemic risk in another way. Because 
financial institutions typically have large positions in 
sovereign bonds, there was great concern in the market 
that a systemic downturn would occur because of the 
European sovereign debt crisis. This, in fact, did occur 
for one G-SIFI, Dexia Group, because of exposures to 
these countries. There are some market observers with 
such a pessimistic view that if Greece collapses, the 
adverse impact on the financial system would be 
greater than that of the Lehman shock. 

Motivated by the growing importance of systemic 
risk, the purpose of this paper is to investigate such 
risk in the global banking system. This is done by 
focusing on systemic risk observed in stock markets 
and investigating stocks that are included in G-
SIFIs, as of November 2011. Our methodology 
involves time series analysis to generate a future 
joint distribution of stock returns, and accordingly 
we estimate risk measures. 
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We emphasize that, strictly speaking, we are not 
going to quantify systemic risk itself given that we 
exclusively deal with stock returns. There are systemic
risk and systematic risk. Even though both emerge 
with a downslide of total market returns, systemic 
risk is considered as the risk that specifically arises 
from intense interconnectedness and results in a 
breakdown of the entire system. Aggregate adverse 
impact in a specific sector of a market should be 
classified as systematic risk. For this reason, we 
hereafter refer to the risk that we quantify based on 
stock returns as systematic risk rather than 
systemic risk1.

For time series analysis, we use a multivariate 
autoregressive moving average generalized auto-
regressive conditional heteroscedasticity (ARMA-
GARCH) model, where the innovation terms are 
assumed to follow the multivariate normal tempered 
stable (MNTS) and multivariate normal distributions. 
The MNTS distribution is a relatively new non-
Gaussian stock return model proposed by Kim et al. 
(2012). Each marginal of the MNTS distribution is 
referred to as a univariate normal tempered stable 
(NTS) distribution. For systematic risk measures, we 
use the CoVaR methodology proposed by Adrian 
and Brunnermeier (2011). CoVaR, or more 
specifically, CoVaRj i, is defined between two 
institutions i and j. CoVaRj i is the Value at Risk 
(VaR) of j on a certain condition of i. Setting j as the 
market index, we consider the difference between 
CoVaR on i’s distress and “normal” conditions, 
denoted by CoVaRindex i. CoVaRindex i can be 
interpreted as the marginal contribution of i to the 
overall market risk. 

There are two problems we address in this issue. 
The first is how to measure and predict systematic 
risk. The second is how to determine the influence 
of a financial institution on the entire financial 
system, i.e., how to quantify the risk spillover effect. 
From a regulatory perspective, it is critical to 
recognize signals of a meltdown of the financial 
system and specify the financial institutions that 
potentially have considerable influence on the 
financial system. 

For the first problem, we propose the joint 
probability of negative stock return movements as a 
measure of systematic risk. This is necessary 
because although CoVaR can be a measure of 
marginal contribution to systematic risk, it is not a 
measure of systematic risk itself. For the second 
problem, we employ CoVaR to quantify the risk 
spillover effect. In addition, we extend CoVaR

                                                     
1 The basic measure of systematic risk is beta. Similar to beta, we focus 

on the comovement between the entire system and each institution in 

the global banking stock market. 

into the counterpart of average VaR (AVaR), which 
we refer to as CoAVaR. An alternative approach 
for the risk spillover effect is to describe an 
institution’s power of influence on the system as 
the probability of a negative comovement of the 
market return on the condition that a return of the 
institution moves downward. The idea underlining 
the use of conditional probability is parallel to the 
idea of addressing the first problem via joint 
probability. We examine the relationship among 
AVaR, CoAVaR, and conditional probability using 
regression analysis. 

The rest of this paper is organized as follows. In 

section 1, we introduce an ARMA-GARCH-MNTS 

model for time series analysis. Subsequently, we 

define the following systematic risk measures: the 

joint probability and conditional probability of 

negative movements, CoVaR, and CoAVaR.

Section 2 describes the data to be used. Section 3 

presents the results and discussion. After we 

demonstrate that the ARMA-GARCH-MNTS model 

is a better model for G-SIFI stocks, we present the 

estimation results of systematic risk measures. We also 

discuss the relationship among the different types of 

measures. The final section concludes the paper. 

1. Methodology

Our methodology for the investigation of systematic 

risk has the following two steps: (1) generating the 

future joint distribution of stock returns via the 

ARMA-GARCH model; and (2) deriving systematic 

risk measures from the predicted joint distribution. 

We also briefly explain our simulation-based 

estimation methods. 

1.1. ARMA-GARCH-MNTS model. Our time 

series model for stock returns is the ARMA(1,1)-

GARCH(1,1) model given by 
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where the index j =1, 2,…, J corresponds to each 

institution, t represents a time period, 
j

tR  is the 

stock return, j

t
 is the conditional mean, j

t
 is the 

conditional standard deviation, j

t
 is i.i.d. with zero 

mean and unit variance, called (standardized) inno-

vation, and the other symbols are model parameters. 

We describe the multivariate distribution whose 

every marginal has zero mean and unit variance as 

standard. Thus, ),...,,( 21 J

tttt
 forms a standard 

multivariate distribution. Note that ARMA(1,1)-

GARCH(1,1) is a standard specification for financial 

data in the GARCH framework. 
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There are several candidate models for each 

marginal 
j

t . We choose the NTS distribution because 

it has the ability to capture stylized properties of 

stock return distributions such as fat-tailness and 

skewness, which the normal distribution lacks. In 

addition, we use the normal distribution for the 

purpose of comparison. The standard NTS 

distribution is characterized by three parameters: 

two fat-tailness parameters ( , ) and one skewness 

parameter . If we assume common ( , ) among NTS 

marginals with  as a still free parameter for 

calibration, we can join marginals into MNTS via the 

variance-covariance matrix of t without computa-

tional difficulty even in a considerably high-

dimensional system. See Kim et al. (2012) for the 

definition and estimation of the MNTS distribution. In 

the case of the normal model, we can also join 

marginals into the multivariate distribution via the 

variance-covariance matrix, because it is the single 

parameter of the standard multivariate normal 

distribution. The multivariate distribution of t

accounts for the dependent structures among stock 

returns. Following the same approach as Kim et al. 

(2012), we first estimate the univariate NTS 

parameters )ˆ,ˆ,ˆ(),,(  for the innovation of 

the representative stock, i.e., the market index. Then, 

we use the estimated parameters )ˆ,ˆ(  as those of 

MNTS. For the CoVaR estimation, Adrian and 

Brunnermeier (2011) mainly use quantile regressions 

supplemented with the GARCH model with the 

normal distributed innovations as a robustness check. 

Girardi and Ergün (2013) use the GARCH model with 

Hansen’s skewed t distributed innovations. Our 

methodology is different from the previous studies 

because we first apply the multivariate tempered stable 

distribution to the CoVaR estimation. Another 

advantage of MNTS is that it has the reproductive 

property; the linear combination of NTS distributed 

random variables still follows NTS. This property 

enables us to easily deal with the portfolio of stocks. 

Model (1) forecasts the joint distribution of stock 

returns at t+1 period on the basis of the information 

up to t. We refer to Model (1) with the standard 

MNTS distributed and standard multivariate normal 

distributed t as the ARMA-GARCH-MNTS 

(AGMNTS) model and ARMA-GARCH-multi-

variate normal (AGMNormal) model, respectively. 

We primarily use an AGMNTS forecast, whereas we 

use an AGMNormal forecast as a reference. 

1.2. Systematic risk measures. Before introducing 
systematic risk measures, we begin with VaR. VaR is 
the most standard market risk measure used by finan-
cial institutions. Consider the VaR of j’s stock return 

j

tR  at the confidence level 1 q(0 q  1), denoted 

by j

tqVaR ,
. The definition of j

tqVaR ,
 is given by 

}.)(obPrinf{, qRRRVaR j

t

j

tq      (2)

If
j

tR  is continuous, j

tqVaR ,
 is the q-quantile of the 

distribution of 
j

tR , which satisfies 

.)ob(Pr , qVaRR j

tq

j

t       (3) 

An alternative risk measure is AVaR. The definition 

of j

tqAVaR ,
 is given by 
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1
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AVaR      (4) 

If
j

tR  is continuous, AVaR is equivalent to 
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t

j
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which is called expected tail loss. Henceforth, for 
simplicity, every stock return distribution is assumed 
to be continuous. AVaR has more desirable properties 
than VaR as a risk measure (e.g., the ability to account 
for risk above the VaR level, often referred to as “tail 
risk”)1. In literature, AVaR is also called conditional 
VaR (CVaR2) or Expected Shortfall (ES). 

While VaR and AVaR are micro-prudential risk 
measures on the premise of an institution being 
isolated, alternative macro-prudential risk measures 
for systemic risk have recently been explored in the 
context of global financial turmoil. While some 
consider probability-based approaches (Segoviano and 
Goodhart, 2009; Zhou, 2010; Giesecke and Kim, 
2011), others put weight on quantifying systemic risk 
such as CoVaR (Adrian and Brunnermeier, 2011), 
SES and MES (Acharya et al., 2010). In line with the 
previous studies of systemic risk, we introduce four 
systematic risk measures in stock markets on the basis 
of VaR and AVaR, in which two out of four are 
probability-based indicators: joint and conditional 
probabilities of negative movements. The other two 
are measures to quantify the marginal contribution to 
systematic risk: CoVaR and CoAVaR.

1.2.1. Joint probability of negative movements 
(JPNM). We consider systematic risk as simul-
taneous negative movements of stock returns, where 
the negative movement simply means the return 
being less than the conditional mean. Note that this 
definition is consistent with the definition of 
systemic risk given by Kaufman and Scott (2003). 
Accordingly, we introduce the joint probability of 
negative movements (JPNM), 

,Prob
1

J

j

j

t

j

tt RJPNM      (6)

                                                     
1 For further information, see Rachev et al. (2008). 
2 Note that CoVaR is a different concept from CVaR, despite the 

analogous name.
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as a measure of systematic risk. Because massive 
simultaneous negative comovement is a very rare 
event, the joint probability is low. However, we 
expect that such a low probability captures the 
common distress factor among financial institutions 
and signals crisis. In a previous study, Segoviano 
and Goodhart (2009) estimate the joint probability 
of distress among financial institutions from the 
credit default swaps data. 

1.2.2. CoVaR. To investigate and quantify the risk 
spillover effect, we adopt Adrian and Brunner-
meier’s CoVaR methodology. CoVaR is a bivariate 
concept between two institutions i and j. While j

tqVaR ,

is the q-quantile of the unconditional distribution of 
j

tR ,
ij

tqCoVaR ,
is the -quantile of the conditional 

distribution of 
j

tR  on a certain condition of i, more 

specifically, .i

tR When we specify the condition of i

tR

as )( i

tRC , we denote 
)(

,

i
tRCj

tqCoVaR  instead of 

ij

tqCoVaR ,
. The implicit definition of 

)(

,

i
tRCj

tqCoVaR for 

continuous
j

tR is given by 

.)(obPr
)(

, qRCCoVaRR i

t

RCj

tq

j

t

i
t     (7) 

Let )( i

t

d RC  and )( i

t

n RC  be the distress and “normal” 

conditions of i

tR , respectively. Adrian and Brunner-

meier (2011) suggest that the difference of 
ij

tqCoVaR ,

between the two conditions )( i

t

d RC  and )( i

t

n RC ,

,
)(

,

)(

,,

i
t

ni
t

d RCj

tq

RCj

tq

ij

tq CoVaRCoVaRCoVaR   (8) 

accounts for the risk contribution of i to j.

For the application of CoVaR to systematic risk in 
stock markets, we highlight the case of j being a 

market index. 
iindex

tqCoVaR ,
 is regarded as the mar-

ginal contribution of i to the overall systematic risk. 

Regarding the conditions, Adrian and Brunnermeier 
(2011) define the distress and normal conditions as 
the institution’s loss and return being exactly at its 
VaR and median, respectively,  
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However, we adopt the modified definition by 
Girardi and Ergün (2013), where the distress and 
normal conditions denote the institution’s loss and 
return being above its VaR and within the range of 
one standard deviation from its mean state, 
respectively, 
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We make the confidence level 1 q of Cd coincide 
with that of CoVaR, which is conditioned by Cd. As 
Girardi and Ergün point out, the modified definition 
has several merits. First, it focuses on tail risk, i.e., 
the loss above the VaR level, and thus, the resulting 
CoVaR becomes more insightful. Second, it allows 
backtesting of CoVaR. We can apply the ordinary 

VaR backtesting methods to 
)(

,

i
t

d RCindex

tqCoVaR  for 

the days during which VaR violation of i occurs. 
Here, the VaR violation of i means the event when the 

observed loss 
i

tR  exceeds i

tqVaR ,
; i.e., the condition 

)( i

t

d RC  actually occurs1. The simplest way of VaR 

backtesting is to observe how often VaR violations 
occur. If one attempts to estimate 100(1 – q)% VaR, 
violations should occur at 100q% of whole 
observations. Following Girardi and Ergün (2013), we 
shall use the likelihood ratio (LR) tests of the 
unconditional and conditional coverages by 
Christoffersen (1998) as a more sophisticated VaR 
backtesting method. The conditional coverage test is 
more desirable than the unconditional one because it 
can consider the tendency for consecutive 
violations, which is observed for ordinary VaR 
during financial turmoil. We define the CoVaR 
violation of i as the event when the observed loss

index

tR  exceeds 
)(

,

i
t

d RCindex

tqCoVaR  during the VaR 

violation days of i. Through the Christoffersen tests, it 
can be tested whether CoVaR violation occurs with a 
reasonable probability during VaR violation days; that 

is,
)(

,

i
t

d RCindex

tqCoVaR is appropriately estimated at the 

given confidence level. In the conditional test of 
)(

,

i
t

d RCindex

tqCoVaR , the conditions are considered 

between two adjacent days of the VaR violations of i.
The last convenience of the modified definition (10) 
for our study is to make scenario simulation-based 
estimation of CoVaR feasible (see section 1.3). 

1.2.3. Conditional probability of negative movements 
(CPNM). We can create an alternative probability-

based indicator for the risk spillover effect. Given 

that systematic risk is the simultaneous negative 

movement of stock returns, the probability of the 

market index going down contingent on the 

institution being distressed is regarded as the 

indicator for systematic risk originating from that 

institution. Then, we introduce the conditional 

probability of negative movements (CPNM), 

)()(obPr,

i

t

dindex

t

diindex

tq RCRCCPNM . (11) 

                                                     
1 Although we can test )(

,

i
t

n RCindex

tqCoVaR  in the same way, we 

concentrate on the distress condition Cd, which is more associated with 

systematic risk, as Girardi and Ergün (2013) do. 
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We still follow equation (10) regarding the definition 

of Cd. In this case, CPNM is proportional to the joint 

probability of both a market index and an individual 

institution incurring the loss beyond their respective 

VaRs. Note that, in contrast to the case of JPNM, 

negative movement does not stand for the return 

being less than the conditional mean but rather the 

loss exceeding VaR in the case of CPNM. This is 

because the joint probability of returns less than 

conditional means appears insufficient to inspect 

bivariate tail dependency.

1.2.4. CoAVaR. We can consider the Co-version of 
AVaR by considering equations (4) and (5).  
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,
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tqCoAVaR  is defined by 
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In an analogous fashion to CoVaR, the risk 
contribution of i to j in terms of CoAVaR is 
expressed by 
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In Adrian and Brunnermeier (2011), CoAVaR is 
mentioned as CoES. Because AVaR has some merits 
compared with VaR, we primarily use CoAVaR rather 
than CoVaR for the assessment of systematic risk. 

1.3. Scenario simulation. We rely on scenario 

simulation for estimation of systematic risk measures. 

It flexibly enables the estimations of various risk 

measures. On the basis of the AGMNTS 

(AGMNormal) model, we generate a large number S

of scenarios about one-period-ahead multivariate stock 

returns SsRRRR sJ

t

s

t

s

t

s

t 1),,...,,( ,

1

,2

1

,1

11
 via a 

Monte Carlo simulation. For the AGMNTS model, 

the random variables that follow the MNTS 

distribution are easily simulated using its subor-

dinated representation1. The risk measures can be 

estimated from the selected scenarios, where a 

relevant or conditioning event like )( i

t

d RC  or 

)( i

t

n RC  is realized out of the overall scenarios. For 

the estimations of 
iindex

tqCoVaR , ,
iindex

tqCoAVaR , ,

and
iindex

tqCPNM ,
, we specify the bivariate ARMA-

GARCH model of the market index and institution i.

                                                     
1 It is specifically a mixture of the multivariate normal distribution and 

classical tempered stable (CTS) subordinator. See Kim et al. (2012). 

2. Data

For empirical research, we use daily stock logarithmic 

return data for 28 out of 29 G-SIFIs, as of November 

2011. We refer to each stock by its ticker symbol or 

abbreviation. The list of G-SIFIs is given in the 

Appendix. The only exclusion is Banque Populaire 

CdE because it is unlisted. We use the S&P global 

1200 financial sector index to represent the global 

banking stock market. The sample period is from 

January 1st, 2000 to June 30th, 2012. We exclude the 

U.S. non-business days from this period, which leads 

to 3260 observations for each stock. BOC, ACA, and 

three Japanese G-SIFIs (MUFG, MHFG, and SMFG) 

do not have sufficient length of historical data to cover 

the whole sample period. Regarding BOC and ACA, 

we backfill historical data using Cognity2. Regarding 

the three Japanese G-SIFIs, we extrapolate historical 

data using those of their representative affiliates, which 

had been listed before the establishments of holding 

companies3. All stock return data are downloaded 

from Bloomberg. 

We set the 1 q = 0.95 confidence level for risk 

measures unless otherwise noted. The number of 

scenarios in the Monte Carlo simulation is S = 106.

The forecast of stock returns is made on a daily basis. 

Each business day, the model parameters are updated 

from a moving window of the most recent 1250 days’ 

sample return data. It means that we have 2011 daily 

parameter estimates starting from October 15th, 2004. 

In individual model parameter estimations, the 

variance-covariance matrix of t is estimated from the 

most recent 250 days’ sample innovations. 

3. Estimation results

We present the estimation results of systematic risk 

measures. The measures are estimated on the basis 

of the AGMNTS model unless otherwise noted, 

whereas they are estimated on the basis of the 

AGMNormal model, if needed for a reference. 

First, we validate the usage of the AGMNTS model 
with G-SIFI stocks. For this validation, we test the 
standard NTS and normal distributional assumptions 
for the innovation of each stock in the ARMA(1,1)-
GARCH(1,1) model (1) through the Kolmogorov-
Smirnov (KS) test. Because we have 2011 daily 
estimations of the ARMA-GARCH model, the KS test 
is accordingly applied 2011 times for each stock. 
Table 1 reports the number of days on which the NTS 
and normal assumptions for each stock are rejected at 
three different significance levels: 1%, 5%, and 10%. 

                                                     
2 Risk management software provided by FinAnalytica, Inc. 
3 Specifically, we substitute Bank of Tokyo-Mitsubishi UFJ (8315 JP) 

for MUFG, Dai-Ichi Kangyo Bank (8311 JP, until September 2000) and 

Mizuho Holdings (8305 JP, from October 2000) for MHFG, and 

Sumitomo Mitsui Banking Corporation (8318 JP) for SMFG.



Investment Management and Financial Innovations, Issue 1, 2013 

189

The result is that NTS provides much better fitting for 
innovations than normal. The only exception is BOC. 
Both NTS and normal assumptions are rejected by all 
2011 estimations for the innovations of BOC. 
However, except BOC, the rejections of the NTS 
assumption are much lower than those of the normal 
assumption at every significance level. The normal 
assumption is totally rejected by BOC, BK, MUFG, 
MHFG, STT, and SMFG even at the 1% significance 
level. These observations support the usage of 
AGMNTS model with G-SIFI stocks. 

To illustrate the basic risk profiles of G-SIFI stocks, 

we refer to VaR and AVaR. We adopt an equally 

weighted portfolio as the most representative portfolio, 

and consider the VaR and AVaR of the portfolio to be 

equally weighted by the 28 G-SIFI stocks. Figure 1 

represents the time series plot of the VaR and AVaR of 

the equally weighted portfolio estimated by the 

AGMNTS and AGMNormal models. AVaR estimated 

from the AGMNTS model tends to be higher than the 

AGMNormal model, especially during financial crisis, 

because of its capability of accounting for fat-tailness, 

whereas both models give similar VaR at the 95% 

confidence level. Through a simple graphic 

comparison, we find that the AGMNTS model and 

AVaR is the best combination for the purpose of 

warning of distress of individual institutions or their 

portfolios in terms of micro-prudential perspective. 

Subsequently, we apply the unconditional and 

conditional Christoffersen’s likelihood ratio tests to the 

estimated daily VaR of each stock to clarify whether 

the estimations of VaR are reasonable. Tables 2 and 3 
report the number of violation days and p-values of the 
tests for 90% VaR, 95% VaR, and 99% VaR, respect-
tively. Both AGMNTS and AGMNormal models 
show similar performance on the 90% VaR and 95% 
VaR estimations. The AGMNTS model gives fewer 
VaR violations and higher p-values for some stocks, 
whereas the AGMNormal model does this for other 
stocks; a higher p-value means less probability of 
rejection of the VaR estimation. However, this is not 
the case for the 99% VaR estimation; the AGMNTS 
model clearly gives a better forecast of VaR than the 
AGMNormal model. The AGMNTS model generally 
has fewer violation days and higher p-values. The 
number of 99% VaR violations based on the 
AGMNTS model is lower than the AGMNormal 
model, except for BOC and MUFG. In addition, the 
number of rejections of each stock’s 99% VaR 
estimation under the unconditional and conditional 
tests are 10 and 17 at the 5% significance level for 
AGMNTS, whereas 22 and 25 for AGMNormal, 
respectively. The fact that the 99% VaR estimation of 
the AGMNTS model is relatively more accurate than 
the 90% VaR and 95% VaR estimations implies that 
the deeper tail structure of the distribution is better 
captured by the AGMNTS model than the 
AGMNormal model. This property of the AGMNTS 
model is desirable for our study because our main 
interest CoVaR casts a spotlight on the deeper tail 
structure. Therefore, the AGMNTS model is 
preferable in terms of risk measure estimation as well 
as fitting performance. 

Table 1. Number of rejections of distributional assumptions for each stock on the basis of the KS test  

(out of 2011 estimations) 

Significance level: 10% Significance level: 5% Significance level: 1% 

AGMNTS AGMNormal AGMNTS AGMNormal AGMNTS AGMNormal

1463 2007 1219 2007 400 1979 

BOC 2011 2011 2011 2011 2011 2011 

1890 2011 1617 2011 997 2011 

BARC 4 1635 4 1017 2 302 

BNP 16 1527 4 1345 3 841 

1446 1960 1224 1846 523 1460 

694 2002 486 2002 59 1963 

CSGN 1388 2011 943 2011 152 1548 

DBK 367 1898 72 1553 6 864 

DEXB 1076 2009 547 1888 6 1176 

GS 893 1883 591 1608 3 855 

138 1744 38 1502 0 918 

HSBA 159 2011 13 2008 1 1421 

INGA 1183 1804 765 1551 4 571 

JPM 1437 2011 891 1984 82 1601 

LLOY 342 1945 93 1838 15 1092 

MUFG 1775 2011 1436 2011 436 2011 

MHFG 1558 2011 1288 2011 385 2011 

MS 1718 1807 1087 1476 272 1205 

NDA 663 2011 577 2010 317 1528 

RBS 628 2011 396 1927 100 1556 
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Table 1 (cont.). Number of rejections of distributional assumptions for each stock on the basis of the KS test  

(out of 2011 estimations) 

Significance level: 10% Significance level: 5% Significance level: 1% 

AGMNTS AGMNormal AGMNTS AGMNormal AGMNTS AGMNormal

SAN 1677 1930 1453 1640 654 888 

GLE 665 1988 334 1855 9 913 

STT 1311 2011 1198 2011 961 2011 

SMFG 1695 2011 1352 2011 770 2011 

UBSN 1449 2010 1012 1960 245 1111 

UCG 74 1256 4 1027 1 555 

WFC 722 1425 597 1272 409 1164 

Fig. 1. Time series of the VaR and AVaR of the equally weighted portfolio 

Table 2. Number of VaR violations (out of 2011 estimations) 

90% VaR 95% VaR 99% VaR 

AGMNTS AGMNormal AGMNTS AGMNormal AGMNTS AGMNormal 

214 178 111 112 29 46

BOC 155 151 75 79 29 29

188 186 104 104 35 39

BARC 214 196 112 113 31 42

BNP 216 202 118 116 24 35

219 203 120 124 34 48

203 195 102 100 31 34

CSGN 204 189 100 102 21 28

DBK 226 205 126 122 23 36

DEXB 235 216 131 129 33 44

GS 209 187 109 109 25 29

218 198 109 105 29 35

HSBA 212 188 103 105 31 38

INGA 239 220 126 122 26 35

JPM 211 196 99 94 27 33

LLOY 220 204 107 104 31 39

MUFG 180 167 91 85 26 24

MHFG 186 173 89 80 20 23

MS 217 203 108 111 28 37

NDA 211 180 112 104 27 36

RBS 211 196 104 105 36 45

SAN 239 225 124 130 23 43

GLE 236 206 116 113 32 41

STT 168 141 84 80 22 35

SMFG 179 161 99 87 22 24

UBSN 221 199 118 118 21 34

UCG 247 235 140 139 25 41

WFC 202 195 116 115 33 42
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Table 3. p-values of the likelihood ratio test for VaR 

90% VaR 95% VaR 99% VaR

Unconditional Conditional Unconditional Conditional Unconditional Conditional 

AGMNTS AGMNormal AGMNTS AGMNormal AGMNTS AGMNormal AGMNTS AGMNormal AGMNTS AGMNormal AGMNTS AGMNormal 

0.342 0.080 0.175 0.026 0.293 0.250 0.063 0.061 0.062 0.000 0.037 0.000 

BOC 0.000 0.000 0.000 0.000 0.006 0.022 0.006 0.012 0.062 0.062 0.043 0.037 

0.325 0.256 0.167 0.105 0.726 0.726 0.655 0.457 0.003 0.000 0.001 0.000 

BARC 0.342 0.704 0.128 0.052 0.250 0.211 0.061 0.029 0.024 0.000 0.000 0.000 

BNP 0.273 0.947 0.040 0.041 0.082 0.122 0.036 0.074 0.398 0.003 0.176 0.001 

0.189 0.888 0.081 0.394 0.053 0.020 0.050 0.020 0.005 0.000 0.000 0.000 

0.888 0.649 0.015 0.002 0.882 0.955 0.044 0.084 0.024 0.005 0.018 0.004 

CSGN 0.830 0.364 0.017 0.008 0.955 0.882 0.364 0.413 0.843 0.095 0.487 0.059 

DBK 0.069 0.773 0.068 0.695 0.012 0.033 0.011 0.032 0.527 0.001 0.334 0.001 

DEXB 0.014 0.273 0.000 0.001 0.003 0.005 0.000 0.000 0.008 0.000 0.004 0.000 

GS 0.559 0.289 0.248 0.048 0.393 0.393 0.393 0.393 0.291 0.062 0.187 0.043 

0.215 0.817 0.003 0.023 0.393 0.651 0.012 0.126 0.062 0.003 0.043 0.002 

HSBA 0.421 0.325 0.311 0.294 0.803 0.651 0.019 0.057 0.024 0.000 0.018 0.000 

INGA 0.006 0.166 0.001 0.006 0.012 0.033 0.000 0.007 0.207 0.003 0.002 0.000 

JPM 0.465 0.704 0.395 0.659 0.874 0.498 0.588 0.307 0.142 0.008 0.087 0.007 

LLOY 0.166 0.830 0.000 0.030 0.513 0.726 0.131 0.430 0.024 0.000 0.014 0.000 

MUFG 0.111 0.009 0.048 0.003 0.321 0.103 0.320 0.099 0.207 0.398 0.115 0.176 

MHFG 0.256 0.033 0.063 0.011 0.228 0.029 0.003 0.009 0.980 0.527 0.015 0.021 

MS 0.243 0.888 0.155 0.535 0.451 0.293 0.131 0.193 0.095 0.001 0.062 0.001 

NDA 0.465 0.111 0.002 0.027 0.250 0.726 0.232 0.241 0.142 0.001 0.089 0.001 

RBS 0.465 0.704 0.019 0.004 0.726 0.651 0.022 0.009 0.001 0.000 0.000 0.000 

SAN 0.006 0.081 0.004 0.031 0.020 0.004 0.018 0.004 0.527 0.000 0.334 0.000 

GLE 0.011 0.717 0.002 0.062 0.122 0.211 0.025 0.102 0.014 0.000 0.003 0.000 

STT 0.012 0.000 0.005 0.000 0.082 0.029 0.078 0.026 0.676 0.003 0.416 0.001 

SMFG 0.095 0.002 0.063 0.001 0.874 0.156 0.030 0.120 0.676 0.398 0.212 0.176 

UBSN 0.145 0.876 0.006 0.047 0.082 0.082 0.021 0.036 0.843 0.005 0.018 0.000 

UCG 0.001 0.014 0.000 0.001 0.000 0.000 0.000 0.000 0.291 0.000 0.020 0.000 

WFC 0.947 0.649 0.674 0.608 0.122 0.148 0.052 0.029 0.008 0.000 0.004 0.000 

# of p-values less than 5% 7 6 16 19 6 9 16 13 10 22 17 25

# of p-values less than 1% 4 4 11 10 3 3 5 6 5 22 8 22
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We now proceed to the estimation results of 
systematic risk measures. Figure 2 illustrates the 
time series of JPNM1. We can see that JPNM has 
high sensitivity to important financial events. We 
distinguish three turmoil periods when JPNM 
rapidly goes up: Period 1 is from July 2007 to 
September 2008 (subprime loan problem and 
Lehman’s collapse), Period 2 is from April 2010 to 
March 2011 (dawn of Greek sovereign problem), 

and Period 3 is from August 2011 to May 2012 
(U.S. credit rating downgrading and Greek political 
turmoil). It is remarkable that JPNM warns the 
adverse impact of the very recent Greek crisis 
(Period 3) even more seriously than the Lehman 
shock (Period 1), whereas VaR or AVaR in Figure 1 
describes Period 3 relatively moderately. JPNM 
could be a reference for a forthcoming crisis beyond 
VaR or AVaR. 

Fig. 2. Time series of JPNM 

To quantify risk spillover effects, we estimate 
iindex

tqCoVaR ,  and 
iindex

tqCoAVaR , . We backtest 

)(

,

i
t

d RCindex

tqCoVaR  as well as VaR, on the basis of the 

Christoffersen tests. Tables 4 and 5 report the violation 

rates and p-values of the tests for 90% CoVaR, 95% 

CoVaR, and 99% CoVaR, respectively2. Note that it is 

not the number of CoVaR violations but the rate of 

CoVaR violations to VaR violations that is reported in 

Table 4, because the number of VaR violations differs 

among individual stocks. In general, the rates of 

CoVaR violations are lower and the p-values of the 

tests are higher for the AGMNTS model than for the 

AGMNormal model. The number of rejections of each 
stock’s 95% CoVaR estimation under the uncondi-
tional and conditional tests are 3 and 8 at the 5% 
significance level for AGMNTS, whereas 26 and 27 
for AGMNormal, respectively. The AGMNormal 
estimation of CoVaR is rejected by almost all stocks. 
These imply that, unlike the case of VaR, the 

AGMNTS model gives a better forecast of CoVaR 
than the AGMNormal model regardless of significance 
levels. As can be observed from the definition, CoVaR 
addresses tail dependencies among stocks. A better 
estimation of CoVaR reflects the superior descriptive 
power for tail dependencies of the MNTS distribution. 

Table 4. Rate of CoVaR to VaR violations12

90% CoVaR 95% CoVaR 99% CoVaR 

AGMNTS AGMNormal AGMNTS AGMNormal AGMNTS AGMNormal

0.150 0.213 0.063 0.143 0.034 0.065

BOC 0.142 0.146 0.067 0.139 0.034 0.103

0.186 0.210 0.087 0.135 0.029 0.051

BARC 0.136 0.179 0.071 0.124 0.032 0.048

BNP 0.144 0.163 0.076 0.138 0.000 0.057

0.146 0.197 0.067 0.137 0.029 0.021

0.138 0.190 0.088 0.170 0.032 0.059

CSGN 0.162 0.196 0.090 0.127 0.048 0.071

DBK 0.128 0.156 0.071 0.139 0.043 0.056

                                                     
1 The resulting value of JPNM is in the order of 10 2. The number of simulation, S = 106, is enough for the estimation because the standard deviation 

of the estimated JPNM is about .10/)ˆ1(ˆ 4Spp
2 We do not deal with the likelihood ratio tests for 99% CoVaR because 99% VaR violations are not frequently observed to test 99% CoVaR.
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Table 4 (cont.). Rate of CoVaR to VaR violations 

90% CoVaR 95% CoVaR 99% CoVaR 

AGMNTS AGMNormal AGMNTS AGMNormal AGMNTS AGMNormal

DEXB 0.132 0.190 0.084 0.155 0.030 0.091

GS 0.139 0.182 0.083 0.147 0.040 0.069

0.147 0.182 0.083 0.143 0.034 0.057

HSBA 0.108 0.149 0.087 0.114 0.000 0.053

INGA 0.121 0.164 0.087 0.139 0.000 0.029

JPM 0.142 0.199 0.111 0.191 0.037 0.061

LLOY 0.118 0.157 0.075 0.144 0.000 0.026

MUFG 0.094 0.120 0.055 0.094 0.000 0.042

MHFG 0.086 0.110 0.022 0.088 0.000 0.000

MS 0.147 0.187 0.056 0.135 0.036 0.081

NDA 0.147 0.222 0.089 0.163 0.037 0.083

RBS 0.133 0.173 0.077 0.143 0.000 0.022

SAN 0.121 0.160 0.081 0.131 0.043 0.070

GLE 0.127 0.155 0.095 0.133 0.000 0.024

STT 0.179 0.213 0.095 0.188 0.045 0.086

SMFG 0.101 0.112 0.051 0.103 0.000 0.000

UBSN 0.140 0.181 0.076 0.144 0.048 0.059

UCG 0.134 0.162 0.079 0.122 0.000 0.000

WFC 0.168 0.200 0.095 0.148 0.030 0.071

Table 5. p-values of the likelihood ratio test for CoVaR 

90% CoVaR 95% CoVaR 

Unconditional Conditional Unconditional Conditional

AGMNTS AGMNormal AGMNTS AGMNormal AGMNTS AGMNormal AGMNTS AGMNormal

0.023 0.000 0.023 0.000 0.543 0.000 0.250 0.000

BOC 0.099 0.078 0.082 0.076 0.528 0.003 0.289 0.002

0.000 0.000 0.000 0.000 0.120 0.001 0.115 0.001

BARC 0.098 0.001 0.079 0.001 0.327 0.002 0.138 0.000

BNP 0.044 0.005 0.012 0.001 0.223 0.000 0.084 0.000

0.032 0.000 0.019 0.000 0.424 0.000 0.181 0.000

0.087 0.000 0.067 0.000 0.108 0.000 0.104 0.000

CSGN 0.006 0.000 0.005 0.000 0.097 0.002 0.033 0.000

DBK 0.172 0.013 0.079 0.013 0.298 0.000 0.115 0.000

DEXB 0.118 0.000 0.042 0.000 0.102 0.000 0.102 0.000

GS 0.076 0.001 0.060 0.001 0.152 0.000 0.055 0.000

0.030 0.000 0.007 0.000 0.152 0.000 0.055 0.000

HSBA 0.684 0.036 0.026 0.010 0.114 0.009 0.039 0.002

INGA 0.286 0.004 0.172 0.002 0.081 0.000 0.023 0.000

JPM 0.053 0.000 0.038 0.000 0.015 0.000 0.003 0.000

LLOY 0.381 0.012 0.380 0.012 0.272 0.000 0.226 0.000

MUFG 0.802 0.408 0.535 0.353 0.831 0.094 0.426 0.034

MHFG 0.516 0.671 0.454 0.307 0.183 0.162 0.172 0.069

MS 0.028 0.000 0.026 0.000 0.795 0.001 0.377 0.000

NDA 0.032 0.000 0.013 0.000 0.084 0.000 0.084 0.000

RBS 0.130 0.002 0.127 0.002 0.241 0.000 0.205 0.000

SAN 0.286 0.005 0.002 0.002 0.149 0.000 0.144 0.000

GLE 0.181 0.013 0.180 0.013 0.047 0.001 0.012 0.000

STT 0.002 0.000 0.001 0.000 0.089 0.000 0.032 0.000

SMFG 0.980 0.624 0.467 0.313 0.982 0.044 0.463 0.044

UBSN 0.058 0.001 0.037 0.001 0.223 0.000 0.084 0.000

UCG 0.092 0.003 0.006 0.003 0.151 0.001 0.047 0.001

WFC 0.003 0.000 0.002 0.000 0.047 0.000 0.012 0.000

# of p-values less than 5% 10 24 16 24 3 26 8 27

# of p-values less than 1% 4 20 7 21 0 25 1 25
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An alternative approach to risk spillover effects is 
CPNM. We compare CoAVaR and CPNM 
separately, both in time series and cross-section 
directions. Recall that CoAVaR is preferable to 
CoVaR for risk assessment. 

To compare time series, we prepare three regional 
portfolios in the United States, Europe, and Asia. 
These are equally weighted portfolios comprising G-
SIFI stocks belonging to each region, and are 
intended to represent the time series of stock returns 
in each region. In Figure 3, the AVaR of regional 
portfolios and CoAVaR and CPNM of each 
regional portfolio on the market index are plotted in 
the time series direction. The estimations are made 
using both AGMNTS and AGMNormal models. We 
observe that the AGMNTS model gives more conser- 

vative estimations of systematic risk measures than 

the AGMNormal model because of its superior 

descriptive power for tail dependencies. From a 

comparison among risk measures, CoAVaR is 

found to move significantly parallel to AVaR in the 

time series direction. It is a natural consequence 

that higher risk leads to higher risk spillover 

effects. On the other hand, neither does CPNM 

show strong linkage with AVaR or CoAVaR, nor 

it is very sensitive to global adverse impacts. 

However, CoAVaR and CPNM agree with the 

magnitude relation; the influence of Asia on the 

system is relatively lower than that of the United 

States and Europe. It also follows our assumption 

regarding the regional power of influence on the global 

financial system. 

Fig. 3. Time series of AVaR, CoAVaR, and CPNM by region 

The situation is different in the cross-section 
direction. To gain visual understanding, the scatter 
plots of cross-sectional CoAVaR vs. AVaR and 

CoAVaR vs. CPNM are depicted in the upper and 
lower halves of Figure 4, respectively, where the 
average of risk measures is taken over each stock’s 
time series during the three turmoil periods 
suggested by JPNM in Figure 2. It appears that the 
cross-sectional AVaR has very weak linkage with 
the cross-sectional CoAVaR. This result supports 
the idea that the institution that has higher risk is not 
necessarily the same one as the institution whose 
risk contribution to the entire system is larger. The 
contribution to systematic risk should be dependent 
not only on the institution’s stand-alone risk 
measured by, for example, VaR, but also on other 
factors such as interconnectedness with other 
institutions. By contrast, CPNM has strong positive 
linear linkage with CoAVaR. Though four points 
corresponding to the Asian G-SIFIs outlie others in 
each scatter plot, they still appear to be on a line. This 

suggests that CoAVaR and CPNM are consistent 
when ranking the power of influence on the entire 

system among institutions at the same time. This 
consentience is already observed about the ranking 
among three regions in Figure 3. We further 
investigate the relationship among cross-sectional 
AVaR, CoAVaR, and CPNM via the single linear 
regression, where the explained variable is CoAVaR
and the explanatory variables are AVaR and CPNM. 
Because we have 2011 daily cross-sectional datasets 
for 28 G-SIFI stocks, we iteratively run the regression 
2011 times. Table 6 reports the number of significantly 
non-zero regression coefficients at the 1% level by 
signs and average R2 out of 2011 tests by risk measures 
at three different confidence levels. For AVaR, 
significantly positive coefficients at the 1% level to 

CoAVaR are obtained from less than 10% of all 
trials and R square is, on average, quite low regardless 
of confidence levels. For CPNM, in contrast, all trials 
result in a significantly positive coefficient at the 1% 
level with very high average R2. Therefore, from 
statistical evidence, we confirm that AVaR has almost 
nothing to do with CoAVaR, but that CPNM has 
very strong positive linkage with CoAVaR in the 
cross-section direction. 
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Fig. 4. Cross-sectional linkage among AVaR, CoAVaR, and CPNM 

Table 6. Iterative single regression analysis for 2011 cross-sectional datasets  

among AVaR, CoAVaR, and CPNM 

Explanatory variable Sign of coefficient Confidence level: 90% Confidence level: 95% Confidence level: 99% 

AVaR
# of significant coefficients at the 1% level 

Positive 
Negative 

155 
231 

170 
218 

188 
177 

Average R2 0.129 0.127 0.124

CPNM
# of significant coefficients at the 1% level 

Positive 
Negative 

2011 
0

2011 
0

2011 
0

Average R2 0.982 0.973 0.943

Concluding remarks

In this paper, we measure global systematic risk and 
the marginal contributions to it of the institutions by 
using stock return data of G-SIFIs, which constitute 
a large portion of the global banking system. To 
generate the future joint distribution of stock 
returns, we utilize the ARMA-GARCH-MNTS and 
ARMA-GARCH-MNormal models. The statistical 
tests demonstrate that the ARMA-GARCH-MNTS 
model is highly preferable to the ARMA-GARCH-
MNormal model, mainly because of its capability of 
describing fat-tailness and skewness of stock return 
distributions.

We prepare both probability-based indicators and 
measures to quantify the marginal contribution to 
systematic risk. To be specific, we estimate the joint 
probability and conditional probability of negative 
stock return movements, CoVaR, and CoAVaR 
against the market index. The joint probability of 

negative movements turns out to vividly describe a 
significant increase of systematic risk. It provides 
information that VaR or AVaR lacks and could be 
referred to as a signal of financial turmoil. The other 
measures are for risk spillover effects rather than 

systematic risk itself. We find that AVaR has very 
weak linkage with CoAVaR in the cross-section 
direction, even though both are strongly connected 
to each other in the time series direction, implying 
that the institution having higher risk is not necessarily 
the institution having a larger power of influence on 
the entire system. Therefore, exclusively referring to 
VaR can be misleading for a macro-prudential 
purpose. These results are consistent with those of 
Adrian and Brunnermeier (2011) for the U.S. financial 
institutions. On the other hand, the probability of 
negative movements of the market index on the 
condition of the instituion’s distress tends to provide 
very similar implications to CoAVaR about the 
ranking of the institution’s power of influence on the 
entire system. The relative merit of CoAVaR to 
conditional probability is a stronger sensitivity to 
adverse impact on the global financial system and the 
ability to quantify the impact, whereas the relative 
merit of conditional probability to CoAVaR is the 
easiness of estimation. From these observations, we 
conclude that combining AVaR and the conditional 
probability of negative movements would give a 
useful reference for CoAVaR-based systematic risk 
measurement. 
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Appendix

Table A1. List of 29 G-SIFIs as of November 20111

United States Europe Asia

Bank of America (BAC) 
Bank of New York Mellon (BK) 
Citigroup (C) 
Goldman Sachs (GS) 
JP Morgan Chase (JPM) 
Morgan Stanley (MS) 
State Street (STT) 
Wells Fargo (WFC) 

Banque Populaire CdE 
Barclays (BARC) 
BNP Paribas (BNP) 
Commerzbank (CBK) 
Credit Suisse (CSGN) 
Deutsche Bank (DBK) 
Dexia (DEXB) 
Group Crédit Agricole (ACA) 
HSBC (HSBA) 
ING Bank (INGA) 
Lloyds Banking Group (LLOY) 
Nordea (NDA) 
Royal Bank of Scotland (RBS) 
Santander (SAN) 
Société Générale (GLE) 
UBS (UBSN) 
Unicredit Group (UCG) 

Bank of China (3988)  
Mitsubishi UFJ FG (8306)  
Mizuho FG (8411)  
Sumitomo Mitsui FG (8316) 

Note: Characters in parentheses stand for the ticker symbols in each domestic market. We refer to G-SIFIs by their ticker symbol

except the Asian G-SIFIs. We refer to the Asian G-SIFIs by their abbreviations: BOC (Bank of China), MUFJ (Mitsubishi UFJ FG), 

MHFG (Mizuho FG), and SMFG (Sumitomo Mitsui FG). 

                                                     
1 The most recent list contains revisions owing to the update on November 2012. See Financial Stability Board (2012). 
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