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Elsa Martin (France) 

Is the gain from a groundwater management policy insignificant? 

Abstract 

The point of departure of this work is Gisser and Sanchez’s (1980) findings according to which an optimal groundwa-
ter management policy would not generate significant gain with respect to a situation with no optimal control. Their 
theoretical result is evidently checked for a fixed number of agents when the storage capacity of the aquifer is relatively 
large. The article proposes to add an open-access component into Rubio and Casino’s (2001) adaptation from Gisser 
and Sanchez’s (1980) seminal model, in order to make the number of farmers exploiting the resource endogenous. The 
author then shows that, at the stationary equilibrium, the Gisser and Sanchez’s theoretical result does not persist any-
more since the rent is zero at this state, although it is positive under optimal control of a water agency. 

Keywords: renewable resource management, groundwater extraction regulation, entry. 
JEL Classification: Q10, Q25, Q28. 
 

Introduction© 

Serious depletion of aquifers is a major threat to 
many freshwater ecosystems all over the world. 
From a public economics angle, this phenomenon is 
due to the inefficiencies of aquifer exploitation. A 
frequently asked question is how we go about cor-
recting these inefficiencies. In this context, we wish 
to address the following question: what is the size of 
the gains from a groundwater management policy?  

In the seminal work of Gisser and Sanchez (1980) 
the “competitive” solution is analytically compared 
with the one of optimal control. The so-called com-
petitive solution is defined as a “common property” 
situation with a fixed number of groundwater ex-
ploiters. Gisser and Sanchez’s theoretical prediction 
is that if the storage capacity of the aquifer was rela-
tively large, the two systems would be very close. 
The economic intuition for this is quite obvious 
because the storage capacity, at the limit, is so large 
that each agent becomes atomist, no longer having 
any impact on the groundwater stock when ex-
ploiting it. Nevertheless, their result has produced 
a wide literature about the economics of ground-
water management (see Koundouri (2004) for a 
complete literature review) because of the policy 
implications.  

Rubio and Casino (2001) confirmed Gisser and 
Sanchez’s prediction when a strategic setting is add-
ed into the seminal model. In their framework, 
agents are able either to pursue path (open-loop 
equilibrium) or decision rule (closed-loop or feed-
back equilibrium) strategies. In order to model this, 
they adapted the Gisser and Sanchez’s model by 
explicitly introducing a fixed number of homogene-
ous agents who are playing extraction strategies.  

Koundouri and Christou (2006) tested the persis-

tence of the Gisser and Sanchez’s result with and 
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without the presence of a backstop substitute (rain 

fed agriculture or desalinized water for instance) in 

a groundwater problem. Their finding is that it pers-

ists in the presence of a backstop substitute and not 

in its absence. Thus, they considered the possibility 

of exit from what we will call an irrigation race.  

The main motivation of our work is to also consider 

entry, like it is the case in the literature on fisheries, 

through making the number of farmers endogenous. 

Gisser and Sanchez (1980) explained that, contrary 

to fish harvesting, when dealing with groundwater, 

the entry is restricted by land ownership. However, 

Gisser and Sanchez’s theoretical result is that there is 

no gain from groundwater management when the 

storage capacity of the aquifer is relatively large. The 

explanation according to which the entry is restricted 

by land ownership becomes false within such a theo-

retical framework. Indeed, in his model, the main 

way through which the storage capacity of the aquifer 

can become higher lies in the increase of the covered 

area. An entry phenomenon can hence be at work in 

their groundwater exploitation model. From the best 

of our knowledge no paper on the economics of 

groundwater is addressing this question. However, 

the literature on fisheries has long been concerned 

with such problems of unregulated entry since the 

seminal paper of Gordon (1954). However the 

framework is quite different: in the fishery story, fish 

is both the resource and the product sold. This is not 

the case in the groundwater story where the product 

is an agricultural one. We will show that the implica-

tions of such specificity are weak.  

More precisely, we will take Rubio and Casino’s 
(2001) adaptation from Gisser and Sanchez’s (1980) 
seminal model as a point of departure. They post-
ulate a disaggregate water demand function built on 
the assumptions that all farmers are identical and 
that their number is fixed. We propose to make this 
number endogenous. For this purpose, we assume 
that farmers face climatic conditions such that they 
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can either cultivate rain fed crops or irrigated one. If 
they choose irrigated crops, they begin to extract 
groundwater. We incorporate an opportunity cost 
into the basic formulation of the profit function of 
the farmers in order to take into account the outside 
possibility of rain fed crops.  

Our main claim is that the consideration of an entry 
phenomenon in the groundwater exploitation prob-
lem can considerably increase the gain from a 
groundwater policy. Indeed, in the long run, the 
rents linked to the resource extraction are complete-
ly dissipated although it is not the case anymore 
under a benevolent water agency intervention. We 
thus show that the Gisser and Sanchez’s theoretical 
result does not persist if we introduce the possibility 
of entry into an irrigation race.  

In the next section, we will quickly recall the as-
sumptions made by Rubio and Casino (2001) in 
order to adapt Gisser and Sanchez’s (1980) model to 
a differential game framework. The reader is re-
ferred to Rubio and Casino’s paper for more details. 
Section 2 will be devoted to the entry setting that we 
add into their basic model. We will then conduct, in 
section 3, a stationary analysis on the basis of this 
new setting. Finally, we will propose some conclud-
ing remarks and possible extensions. All technical 
proofs are relegated to the appendices.  

1. The basic model 

The basic model proposed by Gisser and Sanchez 
(1980) is a simplified representation of the econom-
ic, hydrologic and agronomic facts that must be 
considered relative to the irrigator’s choice of water 
pumping. We are going to describe how Rubio and 
Casino (2001) adapted it. When the number of far-
mers N equals 1, both of the models coincide.  

1.1. The farmer’s revenues. The global demand for 

irrigation water is assumed to be negatively sloped 

linear function as follows:  

, 0, 0,t tW g kP k g= + < >  

where Wt is the amount of groundwater pumped at 

each time t, Pt the price of water at time t, k is the 

price coefficient and g is the intercept of the water 

demand function. In order to simplify notations, 

parameters denoting time are subsequently omitted 

unless otherwise stated.  

Rubio and Casino (2001) furthermore postulate that 
all farmers are identical. The idea behind this sym-
metry assumption is to be able to solve their diffe-
rential game analytically and to evaluate the effects 
of strategic behavior on private groundwater pump-
ing. In order to be in phase with their basic model, 
we propose to make the same assumption. The au-

thors then propose to write the aggregate rate of 
groundwater extraction as W = Nwi, where N is the 
number of farmers and wi is the pumping rate of the 
farmer i, and the individual demand functions as:  

( )1
, 1,..., .iw g kP i N

N
= + =  

It is important to mention that with this specifica-
tion, when the number of farmers increases, the 
individual demand for water is reduced. This speci-
fication is slowing down the over-exploitation of the 
resource caused by congestion effects, i.e., pumping 
cost externalities, and will prevent us to speak about 
a “tragedy of the commons” situation. Finally, Ru-
bio and Casino proposed to write the farmer’s i wil-
lingness-to-pay for groundwater use as:  

( ) 2

0

, 1,..., .
2

iw

i i

N g
P w dw w w i N

k k
= − =∫  

Some basic static comparative allows us to see that 
when the number of farmers increases, the willing-
ness-to-pay for groundwater is reduced (k < 0). If 
we assume that the agricultural production can ei-
ther be made with irrigated or rain fed crops, this 
means that when the number of farmers irrigating 
increases, their willingness-to-pay for groundwater 
is decreasing because there are more products on the 
market and the selling price decreases1. This means 
that there are some intra-marginal losses.  

In Gisser and Sanchez’s model, the cost of extrac-
tion depends on the quantity of water extracted and 
on the depth of the water table. Like most ground-
water models, costs vary directly with the pumping 
rate and inversely with the level of the water table 
(or, equivalently, the stock of water):  

( ) ( )0 1 1 0, , 0, 0,C h W c c h W c c= + < >  

where h is the height of the aquifer, i.e., the water 
table elevation above some arbitrary level that is 
considered as being the bottom of the aquifer by 
Rubio and Casino, c0 is the fixed (with respect to the 
aquifer height) cost linked with the hydrologic cone 
and c1 is the marginal pumping cost per acre foot of 
water pumped per foot of lift.  

As the unit groundwater pumping costs do not de-
pend on the rate of extraction, Rubio and Casino 
propose to postulate that the individual farmer’s 
withdrawal costs are as follows:  

                                                      
1 We could have included in the model the supply and demand functions 
of the product but this does not change our main message. As a conse-
quence, for clarity sake, we will not include them. 
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( ) ( ) ( )1 0 1 0 1 1

1
, .iC h w c c h W c c h w

N
= + = +  

It is here implicitly assumed that the well pump 
capacity constraint is nonbinding and that energy 
costs are constant along time. Moreover, sunk costs, 
replacement costs, and capital costs in general are 
ignored in this seminal formulation.  

Finally, the farmer’s i is net revenues per unit of 
time are equal to the willingness-to-pay for ground-
water minus the extraction costs of this resource:  

( )2 , .
2

i i i i

N g
w w C h w

k k
− −  

1.2. The simplified hydraulic model. The hydrau-
lic model from Gisser and Sanchez is based on clas-
sical assumptions such as the “bathtub” one, which 
consists in postulating that the aquifer has parallel 
sides and a flat bottom. The differential equation 
that describes the water table as a function of time is 
obtained by equating inflows minus outlets with the 
impact on the water table:  

( )1 ,0 1,AS h R Wγ γ= + − < <  

where AS denotes the storage capacity of the aquifer: 
area, A, time storage coefficient, S, which measures 
the average saturation of water in the aquifer; γ is the 
constant return flow coefficient of irrigation water; R 
denotes the deterministic and constant recharge.  

2. The myopic solution with unregulated entry 

In order to add unregulated entry into the seminal 
model, we assume that each farmer who wants to 
irrigate his lands located above the aquifer compares 
the benefits of this choice to outside opportunities 
(rain fed agriculture), which are represented by an 
opportunity cost (of the irrigation capital), s, as-
sumed sunk and identical for each farmer.  

The net farm rent per unit of time is total revenue 
minus total cost:  

( )2 , ,
2

i i i i

N g
w w C h w s

k k
− − −  

where the number of farmers N can now possibly 
evolve along time.  

2.1. The unregulated entry setting. In a dynamic 
perspective, when the revenues from irrigated agri-
culture exceed the opportunity cost, farmers enter 
into the irrigated agriculture race. If we now add the 
fact that this adjustment is taking time, we have the 
following law of motion that is governing the entry 
temporal phenomenon:  

( ) ( )2

0, , 0 1,
2

i i i i

N g
N w w C h w s N N

k k
η⎛ ⎞= − − − = >⎜ ⎟
⎝ ⎠

 

where η > 0 is an adjustment parameter and i de-
notes the last farmer who is entering into the irri-
gated agriculture race. This equation correspond to 
the seminal model of dynamic entry to a fishery, 
developed by Smith (1968), which is still used 
nowadays in the literature on fisheries: see for in-
stance Sanchirico and Wilen (1999) who proposed 
to add a spatial component in the basic model. 
However, this specification suffers from vague-
ness. Indeed, the literature on fisheries measures 
the fishing effort as the number of boats that must 
be an integer variable. Some authors proposed to 
partially solve this issue by reasoning on a conti-
nuous variable like the number of fishing days. The 
same problem holds in our framework with the 
number of farmers. We could also have preferred 
to reason on a number of irrigation days but such a 
specification would have created another problem: 
the rationality of agents would thus have been ig-
nored. Indeed, with such an interpretation of N, its 
dynamics would have suffered from not being 
based on an optimization process but on an evolu-
tionary one. It is in order to stay in phase with Ru-
bio and Casino framework that we chose to keep 
the number interpretation. We hope that the reader 
will not suffer from this imprecision.  

This entry equation is defined in such a way that, 

in the long run, the number of agents exploiting the 

resource is characterized by the complete dissipa-

tion of the rents. Even if this setting is currently 

referred as a “tragedy of commons” one, it does not 

lead inevitably to the disappearance of the natural 

resource. As a consequence and in line with Ciria-

cy-Wantrup and Bishop (1975), we will rather refer 

to a “tragedy of unregulated entry”. This is espe-

cially true in our model because the number of 

farmers is entering into their individual water de-

mand function in such a way that the global de-

mand is always the same one, hence having the 

same impact on the stock whatever the number of 

agents is.  

2.2. The stationary equilibrium. As a first step, 

we chose to concentrate on the solution of myopic 

agents. In such a setting, each agent is a too small 

part of the whole to give serious considerations to 

how his pumping decision affects future water 

supplies. Such agents are not able to consider the 

inter-temporal effect of their current choices. So 

they maximize their current rents without taking 

into account the impact of their pumping decision 

on the groundwater stock:  

( )2

0 1 1max .
2i

i i
w

N g
w w c c h w s

k k
− − + −
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The aquifer height are then determined thanks to 

their respective dynamic equations. 

Proposition 1. The unique myopic (denoted m) 
stationary equilibrium (denoted e) with unregulated 
entry is stable and is characterized as:  

( )
( )

( )

2

2

0

1 1 1

2 1
,

2 1

,
1

m m

e e

m

e

skR
N w

Rsk

cR g
h

kc kc c

γ

γ

γ

⎡ ⎤ −−
= =⎢ ⎥

−⎢ ⎥⎣ ⎦
−

= − −
−

 

where [x] denotes the integer part of x. 

Tables 1 and 2 (see Appendix A) summarizes the 
analytical expressions at the stationary equilibrium 
when N = 1 (Gisser and Sanchez, 1980), when N is 
fixed (Rubio and Casino, 2001), and when N is en-
dogenous (our modified framework with unregu-
lated entry). As it can easily be checked, the aquifer 
height at the stationary equilibrium with unregulated 
entry is the same one as in the Gisser and Sanchez’s 
so-called competitive case. Indeed, Rubio and Casi-
no’s introduction of the number of farmers does not 
affect the aggregate groundwater demand: when the 
number increases, the individual demand for the 
resource is reduced but the aggregate one remains 
the same. So an increase in the number of farmers 
(with respect to one) does not affect the aquifer 
height at the stationary equilibrium.  

Proposition 2. The number of farmers at the myo-
pic stationary equilibrium is:  

1. Increasing with the natural recharge, R, with the 

percolation coefficient, γ, and with the price 

coefficient, k, because more groundwater is then 

available.  

2. Decreasing with the opportunity cost, s, because 
it measures the cost of entry into the irrigated 
agriculture race.  

3. The gain from a groundwater  

management policy 

In order to measure the gain from a groundwater 

management policy when the number of farmers is 

endogenous, we are now going to compare the un-

regulated entry solution to the optimal one. Since 

our entry model is mainly a stationary one, we will 

focus on comparisons at the stationary equilibrium. 

We will derive results in the general case and then 

run some numerical illustrations.  

3.1. The general case. In the optimal solution, the 
unregulated entry hypothesis does not hold: a water 
agency with perfect foresight is assumed to control 
both the volume of groundwater pumped (with a 

fiscal scheme on each unit of groundwater used for 
instance) and the number of farmers having an 
access to the aquifer (with a fiscal scheme on the 
irrigation capital for instance) that is assumed to be 
adjusted instantaneously. Thus, the dynamic equa-
tion of N does not hold anymore here. The symme-
try of this solution is obvious: a water agency max-
imizing the rents accruing to homogenous farmers 
has never an incentive to discriminate between them 
because they are all identical. This benevolent agen-
cy’s objective is to maximize the future value of the 
rent stream that is given by the sum of the individual 
ones, taking into account the impact of these deci-
sions on the hydraulic system1:  

( )

( ) ( )

2

0 1
,

0

0

max
2

1
. . 1 , 0 0

1.

rt

w N

N g
N w w c c h w s e dt

k k

s t h R Nw h h
AS

N

γ

∞
−⎡ ⎤− − + −⎢ ⎥⎣ ⎦

= + − = >⎡ ⎤⎣ ⎦

≥

∫

 

We need to constrain the number of farmers be-
cause of the sunk cost. Indeed, without this con-
straint, a number of agents lower than one (but 
different from zero) could be optimal from a water 
agency point of view.  

Proposition 3. The unique optimal stationary solu-
tion (denoted *) is stable and can be analytically 
derived as:  

( )

( )

( )

0

1 1 1

1

1, ,
1

,
1

, ,
1

e e

e

e e

R
N w

cR g R
h

kc kc c rAS

c R
s

r

γ

γ

λ μ
γ

∗ ∗

∗

∗ ∗

= =
−

−
= − − +

−

= =
−

 

where γ denotes the shadow price of the aquifer 
height and μ denotes the Lagrange multiplier asso-
ciated to the constraint on the number of farmers.  

The optimum corresponds to Gisser and Sanchez’s 
one (see Appendix A). Such a monopoly solution 
can be efficient because the opportunity cost, s, is 
sunk. This is the solution of a sole owner who may 
be imagined as either a private farmer or a govern-
ment agency that owns complete rights to the ex-
ploitation of the groundwater. The aquifer height at 
the stationary equilibrium is also the same one as 
the Rubio and Casino’s efficient one that, as 

                                                      
1 The non-negativity constraints on the control variables are implicitly 
assumed and h ≥ 0 is not imposed as a state constraint but as a terminal 
condition for simplicity: limt→∞ht ≥ 0. 
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stressed by the authors, does not depend on the 
number of agents.  

We now turn to the comparison of these values at the 
stationary equilibrium with the one obtained in the 
myopic case in order to check if the result of Gisser 

and Sanchez still holds. Since
m

eN  cannot be lower 

than one and the aggregate demand does not change 
with the number of farmers (remind that W = nwi), 
the individual volume of groundwater pumped at the 
myopic stationary equilibrium with unregulated entry 
is always lower or equal to the one obtained by a 
benevolent water agency. Concerning the aquifer 
heights at the two stationary equilibriums, we obtain 
the same difference as in the literature because these 
values do not depend on the number of agents:  

0.m

e e

R
h h

rAS

∗ − = >  

So, our results differ from Rubio and Casino’s one 

simply by the fact that the number of farmers and 

the individual amounts of groundwater pumped are 

different. However, this is of major interest: it has 

an impact on the individual rents and we even know 

from the setting with unregulated entry that the rents 

are completely dissipated at the stationary equili-

brium. And this is true without any additional social 

damage linked to groundwater extraction. This leads 

us to the main point of this work.  

Proposition 4. Making the number of agents endo-
genous in Rubio and Casino’s model adapted from 
Gisser and Sanchez’s one leads to a related result: 
when the storage capacity of the aquifer studied is 
relatively large, the aquifer height at the stationary 
equilibrium tends to be the same one in the regime of 
private extraction and in the one of a benevolent wa-
ter agency. However, in such a setting, private extrac-
tion leads to the complete dissipation of the farmers’ 
rent in the long run that destroys the theoretical result 
of Gisser and Sanchez because the rents of the myo-
pic with unregulated entry case at the stationary equi-
librium then equal zero and not the one characterizing 
the water agency solution. As a consequence, a “tra-
gedy of the unregulated entry” can also be at work 
when dealing with groundwater extraction.  

3.2. Numerical illustrations. We ran some simula-
tions in order to illustrate this result to the Pecos 
Basin studied by Gisser and Sanchez (1980). For 
this purpose, we used the corresponding parameters 
presented in Table 3 (see Appendix C).  

We first use the Gisser and Mercado’s (1972) set of 
parameters. Concerning the sunk cost, s, we cali-
brated it in such a way that the rent of a private far-
mer at the myopic stationary equilibrium is equal to 

zero: sm=17 233$. Notice that, by doing so, we im-
plicitly assume that the number of farmers in the 
Basin at the dates of the authors’ study is the equili-
brium one. Note also that this value is of major im-
portance: it fully determines the number of farmers 
at the stationary equilibrium.  

We obtained the following results1:  

6

500 1

473ac ft 236 986ac ft

1525 ft 1538 ft

0$ 8.7 10 $ ,

m

e e

m

e e

m

e e

m m

e e e e

N N

w w

h h

π π

∗

∗

∗

∗ ∗

= =

= =

= =

= ∏ = = ∏ = ×

 

whereπ denotes the rent of an individual farmer and 

Π is the aggregate value for all the N agents. We 
hence easily verify that the benefits from managing 
the system can be very high, even if the aquifer 
height difference is very low. 

Furthermore, a numerical example allows to look in 
an easier way at what happens when the agents are 
foresight. The problem to solve then corresponds to 
the ith farmer’s dynamic optimization problem de-
fined as:  

( )

( ) ( )

2

0 1

0

0

1

max ,
2

1
s.t. 1 , 0 0.

i

rt

i i i
w

N

i

i

N g
w w c c h w s e dt

k k

h R w h h
AS

λ

∞
−

−

⎡ ⎤− − + −⎢ ⎥⎣ ⎦

⎡ ⎤= + − = >⎢ ⎥⎣ ⎦

∫

∑
 

It can be solved thanks to two equilibriums concepts 
according to the behavioral assumptions made: 
open-loop or feedback. The resolution methods used 
will be the same as in Rubio and Casino (2001) and 
the number of farmers will be determined thanks to 
the dynamic equation of N.  

We now propose to turn to the case of the high 
plains of Texas studied by Nieswiadomy (1985). 
The new sunk cost is calibrated as before and 
sm=106 907$. With this new set of parameters, the 
myopic and optimal stationary equilibriums become 
the following one:  

7 1

64057 ac ft 448 400ac ft

3156,106 ft 3161 ft

0$ 728632$ .

m

e e

m

e e

m

e e

m m

e e e e

N N

w w

h h

π π

∗

∗

∗

∗ ∗

= =

= =

= =

= ∏ = = ∏ =

 

Here the number of groundwater users at the stationary 

equilibrium of the myopic case with unregulated entry 

                                                      
1 Note that we did not need any estimate of the adjustment parameter, η, 
since we are at the steady state. 
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is very small. It is why we turned to more foresight 

behavioral assumptions of our agents: we are going to 

assume that they are either able to pursue path (open-

loop equilibrium) or decision rule (feedback equili-

brium) strategies. The open-loop with unregulated 

entry symmetrical1 stationary equilibrium is characte-

rized by the following system that is derived from the 

problem previously defined: 

( ) ( )

( )

( )

0 1

2

0 1

1

1
0

1
1 0

0
2

0

olol
eol ole

e e

ol ol

e e

ol
ol ol ol ole
e e e e

ol ol

e e

N g
w c c h

k k AS

R N w
AS

N g
w w c c h w s

k k

r c w

λ γ

γ

η

λ

⎧ ⎫−
− − + + =⎪ ⎪

⎪ ⎪
⎪ ⎪⎡ ⎤+ − =⎪ ⎪⎣ ⎦
⎨ ⎬
⎪ ⎪⎛ ⎞

− − + − =⎪ ⎪⎜ ⎟
⎝ ⎠⎪ ⎪

⎪ ⎪+ =⎩ ⎭

 

Because of the second degree equation, this sys-

tem of equations admits two sets of possible solu-

tions between which we can choose thanks to the 

positivity constraints on the control. Concerning 

the feedback equilibrium with unregulated entry, 

the resolution is much more complicated. Even if 

the reader can refer to Rubio and Casino’s paper 

for more details, we recall that the resolution me-

thod is based on the assumptions of linear strate-

gies such that: λfb = αh + β. It hence begins with 

the computation of α. Once it has been expressed as 

a function of the other parameters (including N at 

this stage), the symmetrical2 stationary equilibrium 

is given by the system that follows:  

( ) ( )

( )

( )

( )

0 1

2

0 1

1

1
0

1
1 0

0
2

1
0

fbfb
efb fbe

e e

fb fb

e e

fb
fb fb fb fbe

e e e e

fb

efb fb

e e

N g
w c c h

k k AS

R N w
AS

N g
w w c c h w s

k k

r c w
AS

λ γ

γ

η

λ γ α
λ

⎧ ⎫−
− − + + =⎪ ⎪

⎪ ⎪
⎪ ⎪⎡ ⎤+ − =⎪ ⎪⎣ ⎦⎪ ⎪
⎨ ⎬⎛ ⎞⎪ ⎪− − + − =⎜ ⎟⎪ ⎪⎝ ⎠
⎪ ⎪

−⎪ ⎪+ − =⎪ ⎪⎩ ⎭

 

As before, we have to choose the number of farmers 

inducing positive controls. Our computations finally 

lead us to the following numerical solutions:  

                                                      
1 For a proof of the symmetry of this equilibrium, refer to Rubio and 
Casino (2001). 
2 For a proof of the symmetry of this equilibrium, refer to Rubio and 
Casino (2001). 
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These simulations confirm our main result accord-
ing to which, in a setting with unregulated entry, the 
gain from groundwater management is significant in 
the long run. However, the simulations show that 
this gain is reduced when agents are considered as 
being foresight. This is due to the fact that we had to 
round off the number of agents at the equilibrium.  

Conclusion 

The Gisser and Sanchez’s theoretical result states 
that the numerical magnitude of benefits of optimal-
ly managing groundwater is insignificant. Our main 
claim is that it cannot persist when considering that 
entry is possible because, in such a setting, at the 
stationary equilibrium, the rents from irrigated agri-
culture equal zero, which is not the case within the 
framework of a benevolent water agency interven-
tion. This point considerably differs from the litera-
ture on the economics of groundwater that omitting 
entry. The main explanation given by authors is that 
the access to an aquifer is limited by land owner-
ship. However, each farmer can become very small 
in a “competitive” setting. The economics concept 
of entry can then be at work even if the area giving 
an access to the resource is limited.  

In order to show this, we chose to follow the 
framework proposed by Rubio and Casino (2001) 
that is a priori internalizing some groundwater 
extraction externalities by constraining the aggre-
gate water demand to be the same one whatever the 
number of agents is. However, even if some of 
these congestion external effects then disappear, 
some others are still remaining. And, in a setting in 
which the number of agents is exogenously fixed, 
this specificity helps to confirm the Gisser and 
Sanchez’s theoretical result: the externalities do 
not hold anymore when the aquifer size becomes 
infinite (agents become a too small part of the 
whole). It is because of this a priori internalization 
that our setting with unregulated entry (characte-
rized by a number of agents endogenous) leads to 
the complete dissipation of the rent without leading 
to the disappearance of the natural resource ex-
ploited. The force of the result relies on the fact 
that the gain of the management policy is signifi-
cant even without adding any social cost (and 
hence externalities) of groundwater extraction in 
the basic model.  
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The main implication in terms of policy intervention 
is that when there is an unregulated entry to irri-
gated agriculture with groundwater, there is strong 
needs to manage this resource. Even if our model 
does not tell anything about which instruments to 
use, it leads to the conclusion that it’s necessary to 
regulate both the amount of groundwater extracted 
and the number of farmers irrigating.  

However, our model contains limits. First, a com-
plete dynamic analysis of entry would consist in 
comparing the net present value of future rent 
 

stream in the different cases studied. In order to 

compute this one, it is necessary to fully character-

ize the paths leading to the stationary equilibriums. 

However, the equation of entry introduced in our 

work, which is largely based from the fishing litera-

ture, is a stationary one. Indeed, the economic ratio-

nality (profit maximization) would be affected if we 

used this equation in order to characterize dynamics. 

Nevertheless, this work path the way for future 

analysis of groundwater management that include 

the dynamics of the number of pumpers. 
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Appendix A. Synopsis of results 

Table 1. Aquifer height at the stationary equilibrium in the different settings 
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Table 2. Other stationary equilibria 

 Number of farmers, N Private groundwater withdrawals, w Shadow price of the stock  
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Appendix B 

Proof of proposition 1 

In a myopic setting, the first order necessary condition for an interior solution is: 

( )0 1 0.
N g

w c c h
k k

− − + =  

Remark 1: The second order condition is checked because N/k < 0.  

Furthermore, because at the stationary equilibrium we have that: 
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We then directly deduce the aquifer height at the stationary equilibrium from: 
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and the number of farmers from: 

0,N = i.e.: 
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Remark 2: The local stability of this equilibrium is checked. Indeed, if we denote J the Jacobian matrix of: 
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The local stability directly comes from the negativity of both eigenvalues: 
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of the Jacobian matrix, J, evaluated at the equilibrium.  

Proof of proposition 2 

These results directly come from some basic static comparative on the number of agents at the myopic stationary equi-
librium with unregulated entry:  
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Proof of proposition 3 

In order to solve the water agency problem, we propose to use the maximum principle. We define the current value 
Hamiltonian as: 
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and the Lagrangian as: 
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At the stationary equilibrium, because of: 
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Remark 3: The second order conditions are checked. Indeed, if we denote: 
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The Hessian matrix of our Hamiltonian H, and if we compute this matrix at the equilibrium, we obtain: 
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that is concave. 

Remark 4: The stability of this stationary equilibrium is checked. Indeed, we can write again the dynamic system that 
leads to our stationary equilibrium as: 
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where: 
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which means that the equilibrium has a saddle point property. 

Proof of proposition 4 

The result directly comes from the fact that the rents are dissipated at the stationary equilibrium.  

Appendix C. Parameters values used for the simulations 

The two sets of parameters used in our numerical examples are presented in Table 3:  

♦ the first one comes from Gisser and Mercado (1972) empirical analysis of the Pecos Basin, in New Mexico1,  

♦ the second one from Nieswiadomy (1985) one applied to the High Plains of Texas2.  

Table 3. Parameters values 

Symbol Description Gisser and Mercado’s estimations Nieswiadomy’s estimations 

k Slope water demand function -3 259 ac ft/yr -134 337 ac ft/yr 

g Intercept water demand function 470 375 ac ft/yr 2 401 161 ac ft/yr 

c1 Slope pumping cost function -0,035 $/ac ft/ft of lift -0,035 $/ac ft/ft of lift 

c0 Intercept pumping cost function 125 $/ac ft 125 $/ac ft 

γ Return flow coefficient 0,27 0,20 

AS Storage capacity 135 000 ac/yr 645 696 ac/yr 

R Natural recharge 173 000 ac ft/yr 358 720 ac ft/yr 

h0 Initial water table elevation 3 400 ft above sea level 3 400 ft above sea level 

N Number of pumpers 500 7 

Note: The number of pumpers item corresponds to a number of farmers in Gisser and Mercado (1972) and to a number of counties 
in Nieswiadomy (1985). 1 2 

                                                      
1 The demand parameters estimate is based on 1968 dollars. 
2 The demand parameters estimate is based on 1967 dollars. 
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