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Capturing the volatility smile: parametric volatility models versus 

stochastic volatility models 

Abstract 

Black-Scholes option pricing model (1973) assumes that all option prices on the same underlying asset with the same 

expiration date, but different exercise prices should have the same implied volatility. However, instead of a flat implied 

volatility structure, implied volatility (inverting the Black-Scholes formula) shows a smile shape across strikes and 

time to maturity. This paper compares parametric volatility models with stochastic volatility models in capturing this 

volatility smile. Results show empirical evidence in favor of parametric volatility models. 
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Introduction

In financial economics, there is a concern about 

how modelling the volatility, and more specifical-

ly, how modelling the volatility in option pricing. 

There are two main alternatives available for this 

purpose: the first one is parametric volatility mod-

els (as the Dumas et al.’s model (1998)), and the 

second one is stochastic volatility models (as the 

Heston’s model (1993)).  

Under Black-Scholes option pricing model (1973) 

assumptions, all option prices on the same underly-

ing asset with the same expiration date, but different 

exercise prices should have the same implied vola-

tility. Empirically, this is not what I observe using 

traded option prices. Instead of flat implied volatil-

ity structure, prior literature finds implied volatility 

(inverting the Black-Scholes formula) showing a 

smile shape across strikes and time to maturity (i.e., 

Cont and Fontseca, 2001; Alerton, 2004). With the 

aim to fit the implied volatilities, Derman & Kani 

(1994), Dupire (1994) and Rubinstein (1994), 

among others, develop a volatility function that fits 

the observed cross-section of option prices. A more 

recent stream of literature uses parametric models to 

fit the implied volatilities (Ncube, 1996; Dumas et 

al., 1998; Peña et al., 1999). 

In contrast, other stream of literature uses stochastic 

volatility models to fit the volatility surface. The 

paper of Hull and White (1987) was the first sys-

tematic approach in option pricing literature to rec-

ognize nonconstant volatility. They show that the 

price of a European option is the Black-Scholes 

price integrated over the probability distribution of 

the average variance during the life of the option. 

Later, Heston (1993) shows that a closed-form solu-

tion for a European call can be derived as an integral 

of the future security price density, calculated by an 

                                                     
 Belen Blanco, 2016. 

Belen Blanco, Dr., The University of Adelaide, Australia. 

inverse Fourier transform, what is potentially more 

precise than the approximation suggested by Hull 

and White (1987). More recently, Bakshi et al. 

(1997), Ball and Roma (1994), Bates (1996), among 

others, analyze if stochastic volatility or random 

jumps resolve the anomalies in the Black-Scholes 

model. They find that stochastic volatility models 

seem to behave slightly better than jumps.  

The main objective in this paper is to compare the 

performance of stochastic volatility models with that 

of parametric volatility models. To this aim, I use 

data of transaction prices for future call
1
 options on 

the Spanish IBEX-35 stock exchange index. I em-

ploy a database transacted on 6
th
 of November 

2,015. To estimate stochastic volatility models, I use 

the Heston’s model (1993); on the other hand, to 

estimate parametric volatility models, I use the Du-

mas et al.’s model (1998), but with small variations 

in the variables. 

The results obtained show empirical evidence in 

favor of parametric volatility models, respect to the 

stochastic volatility models. In particular, I find that 

the parametric volatility models fit the data better 

than the stochastic volatility models, because the 

last ones tend to overprice out of the money calls. 

This paper is organized as follows: the next section 

contains a description of how obtaining the implied 

volatility. In section 2, I present the parametric vola-

tility models, which are based on some adaptations 

of the parametric models from Dumas et al. (1998), 

to estimate the surface across moneyness. In section 

3, I describe the Heston’s model (1993) as an ap-

proach to stochastic volatility models. The data are 

                                                     
1 In principle, call and put options should yield the same implied volatil-

ity, based on the Call Put parity theorem. Some argue (Ncube, 1996) that 

since the put option is a natural hedging instrument, investors may be 

willing to pay more for it and, therefore, its implied volatility would be 

higher than the call counterpart. However, I will not take into account this 

possible bias in my model, since I am interested in obtaining a more 

generic solution, from which both call and put options can be priced.
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described in section 4. The estimation results of the 

volatility surfaces for both models are discussed in 

section 5, I conclude in last section.  

1. Obtaining the implied volatility with the 
Newton-Raphson algorithm 

The Black-Scholes European call option formula is 
the following one: 
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where S0 is the underlying asset (in this case, the 
future contract of IBEX-35 index), q is the expected 
dividends paid over the option’s life, X is the op-
tion’s strike price, (T-t) is the time to expiration, r is 
the risk-free interest rate, 
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 is the volatility rate, and N(d) is the cumulative 

unit normal density function with upper integral 

limit d. The implied Black-Scholes volatility can be 

found individually from traded option prices: 
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The Newton-Raphson algorithm provides a numeri-

cal way to invert the Black-Scholes formula in order 

to recover  from the market prices of the call op-

tion C (or Put option P) 
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2. The parametric volatility models 

To estimate parametric volatility models, I use an 

adaptation of the parametric models proposed by 

Dumas et al. (1998). In particular, I run the fol-

lowing three models, as a function of moneyness 

and time: 

Model 0: 0),( TMN ,

Model 1: ,)log()log(),( 2

210 MNMNTMN                                                                          (5) 

Model 2: .)log()log()log(),( 43

2
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Model 0 is the volatility function representing the 
constant volatility as in the Black-Scholes model. 
Model 1 captures the quadratic volatility smile 
across moneyness, and model 2 captures extends 
model 1 by capturing the variation across time, and 
a combined effect of time and moneyness.  

The moneyness in this work is defined as MN = 

K/F. If K/F > 1, the call option is out-the-money 

(OTM), and when K/F < 1, the call option is in-the-

money (ITM). When K/F 1, I can say that the call 

option is at-the-money (ATM). 

0 is the constant of the regression. 1 coefficient 

captures the dislocation of the origin of the parabola 

with respect to the ATM options, and 2 coefficient

controls the size of the smile. 3 and 4 capture the 

term structure of the implied volatility.  

 vector is estimated with nonlinear least-squares 

function as follows: 
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where prdi(w) is the function that implements each 

specific model of the volatility surface equation.  

Later, I measure how successful the fit of the model 

is in explaining the variation of the data with the R
2

statistic. For the nonlinear least squares estimation, 

is defined as the square of the correlation between 

the observations (Greene, 2000): 
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From this formula, I can calculate the adjusted R
2

statistic: 

),1(
1

1 22
R

pn

n
R                                   (8) 

where p is the number of variables. 

I will choose the model with higher R
2

to compare it 
to stochastic volatility model. 

3. The stochastic volatility models 

To estimate stochastic volatility models, I use the 
Heston’s (1993) model. Heston (1993) proposed the 
following model: 
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where 0}{ ttS  and 0}{ ttV are the price and volatil-

ity processes, respectively, and 0

1}{ ttW , 0

2}{ ttW

are correlated Brownian motion processes (with 
correlation parameter ).  is the instantaneous ex-

pected rate of return of the underlying asset. 0}{ ttV
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is the instantaneous stochastic variance,  is the long 
term mean of the variance, and rate at which the vari-
ance converges to this mean is .  is referred to as 
the volatility of the variance process. All the parame-
ters , , ,  and  are time and state homogenous. 

If  > 0, then, volatility will increase as the asset 
price/return increases. Conversely, if  < 0, then, 
volatility will increase, when the asset price/return 
decreases. , therefore, affects the skewness of the 
distribution. When  is 0, the volatility is determi-
nistic and, hence, the log-returns will be normally 
distributed. Higher  makes the skew/smile more 
prominent and means that the volatility is more 
volatile. , the mean reversion parameter, can  
be interpreted as representing the degree of volatility  

clustering. This is something that is observed in the 
market, large price variations are more likely to be 
followed by large price variations. 

3.1. Risk neutral approach. Risk neutral valuation 
is the pricing of a contingent claim in an equivalent 
martingale measure (EMM). The price is evaluated 
as the expected discounted payoff of the contingent 
claim, under the EMM Q. So, 
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where H(T) is the payoff of the option at time T and 
r is the risk free rate of interest over [t, T]. 

Moving from a real world measure to an EMM is 
achieved by Girsavov’s theorem. In particular,  
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where P is the real world measure and 0

1}
~

{ ttW  and 

0

2}
~

{ ttW are Q-Brownian Motions. ),,( tVS  is 

called the market price of volatility risk. Under 

measure Q, (9) becomes 
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where, 

.*

,*

                                                      (13) 

Under the risk-neutral measure,  has effective- 

ly been eliminated. In a complete market, every as 

set/option has the same market price of risk. But 
volatility is not a traded asset, so the market is in-

complete and ),,( tVS  is not constant. It is clear 

that (11) solely determines the EMM. This implies 
that the EMM is not unique and is dependent on the 

value of ),,( tVS . Different EMM’s will produce 

different option prices, depending on the value of 

),,( tVS . Initially, this could be a problem. How-

ever, this problem is overcome due to the parametric 
nature of the model and the existence of a closed 
form solution. 

3.2. The closed form solution. The closed-form 
solution of a European call option on a non-dividend 
paying asset for the Heston’s model is:
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for j=1,2, where 

,
2

1
1u

2

1
2u , a , ,1b

2b .

In this formula, what is really difficult to solve is the 
equation (15). This integral cannot be evaluated exact-
ly, but it can be approximated with reasonable accura-
cy by using some numerical integration techniques.  

Under EMM, Q some parameters simplification 
takes place: 

*,*a ,*1b *2b .

The parameter  has been eliminated. 

A method to evaluate formulas in the form of (14) 
has been proposed by Carr & Madan (1999). I use 
this method

1
 in order to solve the problem (see Carr 

& Madan for more details about this method).  

To estimate the parameter vector, I follow the same 
process as for  vector (equation (6)). I examine the 
goodness of fit statistics as in (7) and (8). 

4. The data and variable measurement 

The database is comprised of all call options on the 
future of IBEX-35 index traded daily on MEFF during 
6

th
 of November 2.015 for different expiration dates. 

The set of observations includes only calls which have 
acceptable level of moneyness

2
. Moreover, I eliminate 

from the sample all call prices that violate the well-
known arbitrage bounds. 

These exclusionary criteria yield a final sample of 113 

observations. Then, I estimate the implied volatility for 

each of the 113 options. I take as the underlying asset 

the average of the bid and ask price quotation given for 

each futures contract associated with each call option. I 

am allowed to use futures prices given that the expira-

tion day of the futures and option contracts systemati-

cally coincides during the expiration date cycle. More-

over, note that dividends are already taken into account 

by the futures price. To proxy for riskless interest rate, 

I use the rate which gives MEFF to use in order to 

price derivatives, so I take a rate of 3.03%, and is fixed 

for all expiration dates.  

I define moneyness as the ratio between the exercise 

price and the average of the futures price relative to 

each average implied volatility as previously obtained.  

5. Empirical analysis  

5.1. Parametric volatility model. Each of the three 

models was estimated for the data set, using the esti-

mator described in the section 3. Table 1 below shows 

the estimated constant parameter for model 0, and 

Figure 1 below shows the implied volatility surface for 

6
th
 November 2.015. As expected, the volatility surface 

is a simple flat surface. Nevertheless, this benchmark 

model will be used for comparison purposes. 

Table 1. Estimated parameters for model 0, RMSE 
and R

2
statistic

0 RMSE adjR2

0.1208 0.0420 0

Fig. 1. Estimated implied volatility surface for model 0. The blue circles are the observed volatilities 

The
1
estimation

2
results for model 1 can be found in 

Table 2 below. When comparing the RMSE values of 

model 0 with model 1, I can see that model 1, with an 

                                                     
1 This method use Fast Fourier Transform in order to solve the problem. 
It is known as FFT. 
2 Moneyness is going to be between 0.7 and 1.3 in order to avoid prob-

lems with extreme values of implied volatility. 

RMSE of 1.7%, is a considerable improvement over 

model 0, which had a RMSE of 4.2%. If I look at the 

goodness of fit of model 1 with the R
2
 statistic, the 

model has a value of 0.8292, that is, it is able to ex-

plain 82.92% of the variance on the implied volatility. 

The benchmark model has an R
2
 of zero, since it is a 

constant function. 
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Fig. 2. Estimated implied volatility surface for model 1. The blue circles are the observed volatilities 

Table 2. Estimated parameters for model 1, RMSE

and R
2
statistic

 0 1 2 RMSE adjR2

0.1053 -0.2499 0.7187 0.0170 0.8292

And finally, the estimated parameters for model 2, 

and a sample implied volatility surface, can be 

found in Table 3 and Figure 3 below. The RMSE for 

model 2 is 1.41%, with a R
2

statistic of 88.30%. 

This model, with two additional parameters to cap-

ture the term structure dependency, results on a 

0.29% reduction of the RMSE with respect to model 

1, and on a 5.38% improvement on explaining the 

variance of the volatility. 

Table 3. Estimated parameters for Model 2, RMSE and R
2
statistic

0  1  2  3  4 RMSE adjR2

0.1025 -0.2698 1.2764 0.0105 -1.6707 0.0141 0.8830

Fig. 3. Estimated implied volatility surface for model 2. The blue circles are the observed volatilities 

The best model estimating the volatility surface  
is the model 2, so I choose this model in or 
der to compare it with the stochastic volati- 
lity model. 

5.2. Stochastic volatility model. This model was  

estimated for the data set, using the risk neutral 

valuation described in section 4. Table 4 below 

shows the estimated constant parameter for 

Heston’s model, and Figure 4 below shows the 

implied volatility surface for 6
th

 Novem-ber 2015. 
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Table 4. Estimated parameters for Heston’s model and R
2
statistic

r * *  adjR2

0.0127 0.2495 19.6490 1.1233 -0.5530 0.5188 

If I look at the goodness of fit of the Heston’s model 

with the R
2
 statistic, the model has a value of 

0.5188, that is, it is able to explain 51.88% of the 

variance on the implied volatility.  

Fig. 4. Estimated implied volatility surface for Heston’s model. The blue circles are the observed volatilities 

I can see that parametric volatility model (model 

2) is able to explain more variance on the implied 

volatility. The results obtained show empirical 

evidence in favor of parametric volatility models, 

respect to the stochastic volatility models. In par-

ticular, I find that the parametric volatility models 

fit the data better than the stochastic volatility 

models, because the last one tends to overprice 

out of the money calls. I can see this fact if I ro-

tate the figures.  

Fig. 5. Estimated implied volatility surface (2D) for model 2. The blue circles are the observed volatilities
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Fig. 6. Estimated implied volatility surface (2D) for Heston’s model. The blue circles are the observed volatilities 

If I focus only in OTM options in the Heston’s 

model, I can see that the estimate volatility is always 

higher than the real volatility, and this implies di-

rectly that the call price should be higher than in the 

case of Black-Scholes option pricing model, be-

cause volatility and option price are directly and 

positively associated.  

Conclusion 

In financial economics, there is a concern about how 

modelling the volatility in option pricing. There are 

two main alternatives available for this purpose: the 

first one is a parametric volatility model (as the Dumas 

et al.’s model (1998)), and the second one is a stochas-

tic volatility model (as the Heston’s model (1993)).  

My main objective in this paper is to compare the 

performance of the stochastic volatility model with 

that of parametric volatility model. For this purpose, I 

employ a database of transaction prices for future 

options on the Spanish IBEX-35 stock exchange 

index transacted in 6
th
 of November 2015. To esti-

mate stochastic volatility models, I use the Heston’s 

model (1993); on the other hand, to estimate paramet-

ric volatility models I use the Dumas et al.’s model 

(1998), but with small variations in the variables.    

The model that best fits the data is model 2, which 

captures both the smile across moneyness, as well 

as the term structure across time to expiration. So 

the results obtained show empirical evidence in 

favor of parametric volatility models, respect to 

the stochastic volatility models. In particular, I 

find that parametric volatility models fit the data 

better than stochastic volatility models, because 

the last ones tends to overprice out of the  

money calls. This is an important result, as sto-

chastic volatility models are widely used in the 

financial community as a refinement of the Black-

Scholes model. 
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