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Growth Optimal Investment Strategy Efficacy: An 
application on long run Australian equity data 

Ben F. Hunt 

Abstract

A number of investment strategies designed to maximise portfolio growth are tested on a 
long run Australian equity data set. The application of these growth optimal portfolio techniques 
produces impressive rates of growth, despite the fact that the assumptions of normality and stabil-
ity that underlie the growth optimal model are shown to be inconsistent with the data. 

Growth optimal portfolios are constructed by rebalancing the portfolio weights of 25 Aus-
tralian listed companies each month with the aim of maximising portfolio growth. These portfolios 
are shown to produce growth rates that are up to twice those of the benchmark, equally weighted, 
minimum variance and 15% drift portfolios. The key to the success of the classic, no short-sales, 
growth optimal portfolio strategy lies in its ability to select for portfolio inclusion a small number 
of Australian stocks during their high growth periods. 

The study introduces a variant of ridge regression to form the basis of one of the growth 
focused investment strategies. The ridge growth optimal technique overcomes the problem of nu-
merically unstable portfolio weights that dogs the formation of short-sales allowed growth portfo-
lios. For the short sales not allowed growth portfolio, the use of the ridge estimator produces in-
creased asset diversification in the growth portfolio, while at the same time reducing the amount of 
portfolio adjustment required in rebalancing the growth portfolio from period to period.  

Key words: Growth Optimal Portfolios, Australian Equity Returns, Feasible Investment 
Strategy, Ridge Regression.  

Introduction 

The expected rate of growth of value is considered by many investors to be the pre-
eminent characteristic of an investment portfolio. Ways to construct portfolios that maximise ex-
pected growth are well documented1. Considering the importance of expected portfolio growth to 
both professional and retail investors, it is surprising that so few examples of studies that focus on 
the empirical strategies to maximise portfolio growth exist. This study aims to redress this defi-
ciency by applying growth optimal techniques to long-run Australian equity data. As a first step in 
the study, let us set out a stochastic model of asset price evolution, upon which the growth opti-
mising investment strategy will be based. 

Suppose that investment choice is confined to n assets, each governed by geometric 
Brownian motion (generalised Wiener process). That is, the value of the ith asset, Vi, evolves as2

iiii dztVdttVµtdV )()()( i , (1) 

where, i is the ith asset’s rate of drift and z is a Wiener process with zero mean and vari-

ance, i
2. The expected rate of growth of the asset, E[Gi], over time t, can, using Ito’s lemma, be 

derived as 
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1 See Hakansson (1971), Luenberger (1998) and Hunt (2002). 
2 The derivation of the portfolio dynamics follows Luenburger (1998, pp. 428-429).  



Investment Management and Financial Innovations, 1/2005 9

Consider the dynamics of a portfolio constructed using specific asset weights, wi. The rate 
change of portfolio value is thus the weighted sum of the rates of change of the individual assets: 
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Assuming that the n assets are correlated through the Wiener process, i.e., 

dtji,ji )dz,(dzcovariance , the value of the portfolio, Vp(t), also follows geometric Brownian 

motion with per period, expected growth, gp, given by 
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where, wT = (w1, …, wn) is the vector of portfolio weights, T = ( 1, …,  n) is the vector 

of asset drift parameters and  is a matrix containing n2 variance and covariance terms, i,j.

It is evident from (5) that the rate of growth of a portfolio of assets is governed by the 
choice of the individual asset weightings, w. Naturally, the structure of w may be fashioned to 
maximise the expected rate of growth. The portfolio, w*, that maximises expected portfolio 
growth is referred to as the growth optimal portfolio.

A strategy designed to maximise expected growth has an obvious and intuitive appeal. 
Moreover, maximising expected growth has strong theoretical support. Consider the broad class of 
power utility of wealth functions: 

WWU
1

)( . (6) 

It is easily shown that for individuals possessing a utility function such as (5), the prob-
lem of maximisation of expected utility of wealth after n periods, Wn, reduces to the myopic strat-

egy of the maximisation of wealth over one period, W1
1
. Further, if  is small, the expected value of 

power utility E[U(W)] is closely approximated by 
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Thus, when is small, it follows that the only two variables of interest in the quest to 
maximise expected utility of n period wealth, are expected growth rate and the variance of the 

growth rate. Investors with a log utility function )ln()( nn WWU , which is the limit case of (7) 

when 0, will choose between investments based solely on expected portfolio growth2.
Investment techniques based on optimising expected growth have appeal to both theorists 

and practitioners as they: 

are consistent with asset diversification, 

are consistent with n period utility maximisation, 

maximise expected terminal value of wealth, and 

minimise the expected time required for accumulated wealth to reach any specified 
threshold value. 

                                                          
1 See Luenberger (1998, pp. 425-427). 
2 Luenberger (1993) provides a broader rationale for basing portfolio choice on expected growth using so called tail prefer-
ence theory.  
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The theoretical attractiveness of maximal growth portfolios is clear. What is less apparent 
is whether or not investment strategies based on growth portfolios are efficacious. The aim of this 
paper is to examine the suitability of growth optimal portfolio techniques to the Australian equity 
investment environment.  

Data

Hakansson (1971) suggested that growth optimum portfolios dominate all other portfolios 
in the long run. While Merton and Samuleson (1974) pointed out the fallacy in this argument, it 
remains true that it is easier to identify the characteristics of alternative investment portfolios when 
observed over a long period of time. The desire to test the efficacy of growth-oriented investment 
led us to seek out a long run Australian equity data set. The study applies the growth optimal port-
folio investment strategy techniques to 25 years of monthly data, starting in April 1977 and ending 
in March 2002. The data were obtained from Reuter’s Australia’s Beacon data service. 

The data set comprises price observations on 25 Australian listed companies. These com-
panies selected themselves, being the only corporations currently included in the ASX’s 150 larg-
est capitalised companies (as of March 2002) whose prices from March 1972 were recorded in the 
Beacon data tables 1. The price data were transformed into measures of periodic growth (or returns) 
by using the formula for continuous compounding: 

)/ln( 1,,, tititi PPg , (8) 

where Pt is the price of asset i in month t, and gi,t is the growth of asset i in month t2.

Table 1 displays annualised statistics on rates of growth and volatility of growth for the 

companies included in the data set. The annual rate of growth of asset i, iĝ , was estimated as the 

sample aggregate growth divided by the 25 years of the sample. The estimate of the asset drift rate, 

,
ˆ

i , was computed as 2/ˆĝ 2

ii , where 
2ˆ
i  is the estimate of the ith asset variance.  

 As expected, there is some survivor effect to be evident in the 25-company data set. Ta-
ble 1 shows that the All Ordinaries Index grew at a rate of 9.68% p.a. whereas the equally 
weighted portfolio grew at a rate of 11.71% p.a. 

Table 1 

Australian Equity Performance Summary Statistics 

Code Name Growth 

(g, % p.a.) 

Rank Drift*

( , p.a.)

Rank Volatility 

( , % p.a.) 

Rank

1 2 3 4 5 6 7 8 

AGL Australian Gas Light 13.28%  7  17.99%  6  30.71%  8  

AMC Amcor 8.62%  19  11.22%  19  22.80%  23  

ANZ ANZ Bank 13.09%  8  16.11%  12  24.57%  19  

BHP BHP Billiton 12.61%  10  16.06%  13  26.25%  17  

BIL Brambles Industries 14.74%  5  17.75%  7  24.52%  20  

CML Colonial Mutual  11.49%  13  14.10%  16  22.82%  22  

CSR Colonial Sugar 3.95%  23  7.75%  22  27.55%  15  

FGL Fosters Brewing 11.10%  14  15.46%  14  29.53%  10  

GMF Goodman Fielder 3.72%  24  7.28%  23  26.71%  16  

                                                          
1 Although the growth techniques were applied to 300 monthly observations, beginning in April 1977, the actual data set 
employed by the study starts in April 1972, to facilitate historical parameter estimation.  
2 The expected return over a very short period of time is t. However, over a longer period of time the expected return is 

 - 2/2. As Hull (2000, pp. 240-241) notes, “the term expected return is ambiguous. It can either refer to or  - 2/2”.

When the term expected return ( or symbol r) is used in this paper it is in reference to the drift term, , in a generalised 
Wiener process. 
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Table 1 (continuous) 

1 2 3 4 5 6 7 8 

GPT General Property Trust 4.29%  22  5.57%  25  16.01%  25  

LLC Lend Lease 12.48%  11  16.30%  11  27.64%  14  

MAY Mayne Nicholas 9.04%  18  13.20%  17  28.83%  11  

MIM Mt. Isa Mining -2.70%  25  5.73%  24  41.06%  2  

NAB National Australia Bank 12.67%  9  15.22%  15  22.60%  24  

NCP News Corporation 23.49%  2  32.86%  2  43.29%  1  

ORI Orica 6.05%  20  10.12%  20  28.51%  12  

PDP Pacific Dunlop 6.05%  21  10.04%  21  28.27%  13  

QBE QBE Insurance 18.60%  3  23.21%  3  30.39%  9  

RIO Rio Tinto 10.57%  15  16.79%  9  35.27%  7  

SRP Southcorp 14.35%  6  17.68%  8  25.79%  18  

STO Santos 15.33%  4  21.79%  4  35.94%  5  

WBC Westpac Bank 9.54%  17  12.41%  18  23.97%  21  

WMC Western Mining 9.86%  16  16.78%  10  37.21%  4  

WPL Woodside Petroleum 11.68%  12  18.00%  5  35.54%  6  

WSF Westfield Holdings 38.82%  1  47.23%  1  41.02%  3  

ZAORD All Ordinaries Index 9.68%  11.61%  19.65%  

Equal
Equally weighted portfo-
lio 11.55%  13.35%  18.95%  

* The implied  of equation (1) was computed for each stock by using equation (4) as the rate of 
growth plus the half the variance. 

Some impressive individual growth performances are evidenced in Table 1. Westfield 
Holdings and News Corp have grown on average 39% p.a. and 23% p.a. respectively. At the other 
end of the performance spectrum lies MIM who managed an almost 3% p.a. decline in value over 
the 25 year period. Table 1 contains some superficial evidence of a positive relationship between 
historical share growth and the volatility of that growth. For example, the two highest growth 
stocks are also the two most volatile ones. Further analysis reveals that the correlation and the rank 
correlation between growth and volatility for the 25 stocks are 0.37 and 0.21 respectively.  

Testing the Assumptions of the Growth Model  

There are a number of assumptions implicit in the model of growth upon which the in-
vestment strategies tested in this paper are based. Most obviously, the Wiener process of equation 
(1) assumes investment returns are normally distributed. Possibly less obvious is the model’s reli-

ance on the stability of stochastic process parameters of  and . The degree to which these as-
sumptions are consistent with the features of the historical data set ought to provide a guide to the 
likely success or otherwise of growth optimal investment strategies. 

Normality

The 25 companies and the benchmark equally weighted portfolio and All Ordinaries Index 
series were tested for normality of returns with the results recorded in Table 2. Three tests of normal-
ity, based on skewness and kurtosis measures, were applied to the data set. The results of these tests 
reveal that the period-by-period returns in the data set were far from normally distributed.  

22 out of the 25 stocks displayed significant skewness. In addition, all 25 stocks had re-
turns that were significantly leptokurtic (at the 1% level). Naturally, the Jacque-Berra statistics, 
which jointly tests for skewness and kurtosis, rejected normality in all cases, including the two 
benchmark series. 
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Fig. 1. Distribution of Returns of an Equally Weighted, 25 Stock Portfolio 

Figure 1 depicts the distribution of returns for the equally weighted portfolio compared to 
its equivalent normal distribution. The typical peaked centre of a leptokurtic distribution is clearly 
displayed.  

Table 2  

Tests of Normality1 and Stability 

Code Skewness Kurtosis
†
 Jacque-Berra

1
 ANOVA Kruksal-Wallis Variance Ratio 

1 2 3 4 5 6 7 

AGL -0.66 ** 7.02 ** 109.36 ** 1.06  2.08  4.72 ** 

AMC -0.58 ** 4.76 ** 76.30 ** 0.37  1.82  2.58 * 

ANZ -0.54 ** 2.05 ** 40.23 ** 0.34  0.80  1.94  

BHP -0.19  1.51 ** 20.73 ** 0.96  3.02  2.27  

BIL -0.91 ** 4.50 ** 98.03 ** 0.66  3.74  2.02  

CML -0.98 ** 7.19 ** 137.96 ** 0.64  4.38  2.74 * 

CSR -0.53 ** 2.74 ** 48.22 ** 0.06  0.89  3.56 ** 

FGL -1.73 ** 19.40 ** 391.97 ** 1.66  5.86  5.38 ** 

GMF -0.64 ** 4.41 ** 75.65 ** 2.49 * 7.17  3.92 ** 

GPT -0.77 ** 4.12 ** 81.16 ** 0.87  4.22  2.32  

LLC -1.62 ** 11.51 ** 275.80 ** 1.23  2.93  4.54 ** 

MAY -0.95 ** 6.27 ** 123.83 ** 0.60  3.25  2.21  

MIM -0.66 ** 3.82 ** 69.78 ** 0.04  0.89  4.00 ** 

NAB -0.70 ** 2.76 ** 58.95 ** 0.32  1.29  2.49 * 

NCP -1.39 ** 9.84 ** 219.03 ** 2.67 * 9.08  6.58 ** 

ORI -0.41 ** 5.41 ** 76.19 ** 0.78  3.66  2.37  

PDP -0.64 ** 3.34 ** 61.96 ** 3.06 * 12.59 * 1.87  

QBE -2.14 ** 13.49 ** 398.45 ** 1.00  4.30  3.62 ** 

RIO -1.42 ** 13.66 ** 271.06 ** 0.42  3.44  8.52 ** 

                                                          
1 The skewness and kurtosis tests are based on the following. For a normal distributed random variable, x, the skewness 

coefficient, 
33

1 /])[(xE  estimated from a sample of size n is distributed as )./6,0(ˆ
1 nN The 

coefficient of kurtosis, 
44

2 /])[(xE is distributed as )/24,3(ˆ
2 nN , where E is the expectation 

operator,  is the mean and  is the standard deviation. The Jacque-Berra statistics, J,
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Table 2 (continuous) 

1 2  3  4  5  6  7  

SRP -0.62 ** 7.23 ** 109.70 ** 0.75  3.65  2.19  

STO 0.18  3.39 ** 43.97 ** 3.16 * 9.50 * 7.01 ** 

WBC -0.50 ** 3.64 ** 57.93 ** 0.32  1.77  2.75 * 

WMC -0.36 * 4.25 ** 59.39 ** 0.16  0.31  3.61 ** 

WPL 0.15  1.97 ** 25.72 ** 0.37  1.20  6.68 ** 

WSF 5.29 ** 67.36 ** 2241.86 ** 0.14  5.64  26.28 ** 

ZAORD -3.27 ** 31.04 ** 921.65 ** 1.29  5.54  5.18 ** 

Equal -2.80 ** 25.30 ** 709.05 ** 0.98  5.30  5.20 ** 

* indicates significance at the 5% level, ** indicates significance at the 1% level. 
† The kurtosis figure displayed was computed using Excel’s KURT() function and is equal to the 

traditional measure of kurtosis less 3. 

The results of the analysis of skewness and kurtosis allow us to confidently conclude that 
the data upon which we are to test the growth optimal portfolio strategies are non-normal. Exactly 
how the non-normality will impinge upon the investment results is problematical. For example, it is 
not clear that excessive kurtosis will have a deleterious effect on the growth optimal investment 
strategies. Of more concern is the question as to the stability of the distributional statistics overtime. 

Serial Stability 

The expected growth rate for each stock, the variance of that growth rate and the covari-
ances between each stock’s growth rates are essential inputs to the process of determining growth 
optimal portfolio weights. Thus any serial instability in these input parameters will imperil the 
success of any investment strategy based on an assumption of parameter constancy. The growth 
optimal strategy relies on the stability of the input parameter estimates. 

Table 3 

Sub-period Statistics 

Period All Ordinaries Index Equally weighted portfolio 

 Growth Volatility Growth Volatility 

1977-82 8.70% 19.79% 13.25% 18.45% 

1982-87 12.48% 19.76% 14.06% 18.04% 

1987-92 -1.31% 29.38% 4.50% 27.76% 

1992-97 8.51% 12.91% 8.59% 12.32% 

1997-02 7.55% 12.93% 6.61% 13.42% 

Table 3 sets out estimates of the average growth and volatility of growth, for the two bench-
mark series, for the five equal sub-periods that make up the overall data set period. Casual analysis of 
the range of sub-period estimates suggests parameter instability. However, the result of applying formal 
tests for instability of the mean of growth for the individual stocks does not lead to the conclusion that 
these are unstable. Analysis of variances indicates instability in only 4 out of the 25 stocks. The Kruk-
sal-Wallis test, which is the more suitable test given the non normality of the data, rejects the hypothesis 
of constancy of growth rates in all five sub-periods for only 2 out of the 25 stocks. 

The proposition that variance of growth rates is identical in each of the 5 sub-periods, was 
checked by using Hartley’s test for homogeneity of variance. The ratio of the largest sub-period 
variance to the smallest sub-period variance, which is the key statistics in Hartley’s test, is dis-



Investment Management and Financial Innovations, 1/200514

played in Table 21. Hartley’s test indicates that the presence of serial instability of variance of 
growth rates exists in many of the sample stocks. The null hypothesis of equality of sub-period 
was rejected, at the 5% level at least, for 17out of the 25 companies.  

The variance for each stock is an input into the formation of growth optimal portfolios. 
However, it is the full covariance matrix that is the essential input item and the variances represent 
only a small proportion of the larger covariance matrix2. However, the preceding evidence of vari-
ance instability justified further research to ascertain whether the variance instability was also mir-
rored in covariance instability.  

A test of the hypothesis of equality of sub-period covariance matrices employs the Box’s 
M statistic, where 

m

i

is

m

i

nnM
11

lnln , (8) 

where m is the number of sub-periods, n = m ns is the number of observations in the full 

sample, ns is the number of observations in each sub-period, | | is the determinant of the overall, p

dimensioned, covariance matrices and | i| is the determinant of the ith sub-period covariance ma-
trix. Pearson (1969) shows that for large p, M is distributed as b Ff1,f2

3.
The sample M/b was computed as 1.75. This is to be compared to the 1% critical F of 

1.09. Hence, it must be concluded that the sample data covariance matrix is not stationary. 
The preceding results do not allow much scope for optimism as to the successful applica-

tion of investment techniques based on growth optimal portfolios, as the techniques rely on an 
assumption of normality of period-by-period growth rates, and an implicit assumption of the sta-
bility of the distributional parameters contained within the expected growth rates and the covari-
ance matrix of growth rates. Contrary to these assumptions, the analysis has shown that long run 
Australian equity data are leptokurtic and somewhat skewed and are characterised by a non-
stationary covariance matrix. However, despite the facts of the situation, we proceeded to test effi-
cacy of growth optimal portfolio investment techniques using the historical Australian data. 

Application of Growth Optimal Portfolio Investment Techniques 

This paper attempts to test a simple, practical investment strategy based on portfolios se-
lected to have maximum expected growth rate. Testing any proposed investment strategy on the 
historical data involved stepping through each of the 300 monthly observations on the return of 25 
Australian companies. At any period, k, the following steps are undertaken: 

1. The data on the previous n periods are employed to provide estimates of the expected 
growth rate for each stock in the sample and to estimate each element of the 25 x 25 
growth rate covariance matrix.  

2. The expected growth and covariance matrix estimates are used to produce growth op-
timal portfolio weights, wk.

3. The return on this portfolio in the next, i.e. k+1, period is computed. 
4. The time-frame is moved forward one observation. 
Steps 1 to 4 are repeated until the data set is exhausted. 

                                                          
1 The ratio of the highest to the lowest sub-period variance is theoretically distributed as Fn1,n2, where n1 is the number of 
sub-samples and n2 is the number of observations in each sub-sample, ie F5,60 in our case. For more fulsome explanation of 
Hartley’s test see Berenson and Levine (1992, pp. 506-507). 
2 A covariance matrix contains n variance terms and n (n-1) covariance terms. n = 25 in this study. Thus, for this study the 
variances represent only 25/600=4% of the terms in the covariance matrix.  
3 The calculation of M/b is rather daunting with f1, f2 and b having more terms than a Mettalica tour contract. See Pearson 
(1969, p. 219). An example of the use of M to test equality of covariance matrices can be found in Morrison (1976, pp. 252-
253) (note, however, the error in Morrison’s equation (2)).  
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Short-sales Allowed Portfolios 

Growth optimal portfolios lie on a minimum variance frontier formed when portfolio 
variance is minimised for a range of expected portfolio drift (Figure 2). The short-sales allowed, 
growth optimal portfolio, w*, vector has the following structure1:

bAw* µ , (9) 

where: 

IA
1

1
1

T

T

 , b
1

1

T
 and  is the unit vector. 

It is our aim to proceed through the historical data set, estimating  and , using these es-
timates to calculate the growth optimal weights, w*, and to use these weights to produce a set of 
one-step-ahead returns for each of the 300 observations in the data set. The success or failure of 
the growth optimal investment techniques will be judged on the nature of the one-step-ahead re-
turns produced by the strategy. The returns on three alternative investment strategies will provide a 
base against which to measure the growth optimal techniques.  

These benchmark portfolios are as follows: 
1) the equally weighted portfolio, 
2) the minimum variance portfolio, and  
3) the portfolio with an expected drift of 15% p.a. 
The equally weighted portfolio is a simple passive investment strategy and represents the 

absolute minimum “bar” against which alternatives ought to be measured. The minimum variance 
point (MVP) strategy aims to minimise portfolio variance regardless of the expected level of port-
folio drift. Weights for the minimum variance portfolio (MVP), wMVP are given by: 

bw
1

1

TMVP . (10) 

The final benchmark portfolio is one with an expected drift rate of 15% pa. The figure of 
15%, while being arbitrary, is consistent with the historical record and is in general accord with 
Australian investors’ expectations of reasonable share market returns. 

Fig. 2. Growth Portfolio and the Benchmark Portfolios 

                                                          
1 The structure of short-sales allowed growth optimal portfolios is extensively explored in Hunt (2002).  
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A stylised representation of the relative positions of the growth portfolio and the three 
benchmark portfolios is depicted in Figure 21.

The inverse of the covariance matrix, -1, is necessary for the determination of the 
weights of the growth optimal portfolio, the MVP and the 15% drift portfolio. Unfortunately, a 

problem arises in the computation of -1 due to the multi-collinear nature of the periodic stock 

growth rates. The empirical estimate of the 25-stock covariance,  is at times close to being sin-

gular. The near singularity of results in a loss of numerical precision which in turn results in 
estimates of individual stock weights, w*i, that gyrate wildly from observation to observation.  

The replacement of  with an amended covariance matrix, + in the estimation process 
provides a solution to the multi-collinearity problem, where: 

Id , (11) 

where d is a scalar and I is the identity matrix.  
The approach embodied in (11) is analogous to the ridge solution to multi-colinearity in 

regression analysis2. The use of a non-zero d in (11) produces “biased” estimates of the growth 
optimal portfolio and the benchmark portfolios. As the pivot d increases, the ridge estimate of 
growth optimal portfolio weights, w+*, is biased away from the classic growth optimal portfolio 
weights towards the equally weighted portfolio. That is, in the limit: 

nd

w 1lim *

, (12) 

where n, the number of assets in the set, is 25 in our case. In other words, the ridge esti-
mator produces weights that are a combination of the classic estimator weights and those of the 
equally weighted portfolio.  

A decision to use a ridge estimator necessarily requires a particular value for d. A com-
mon approach in ridge regression analysis is to choose a value for d that provides “stabilised” es-
timates of the system parameters. We have taken a similar approach in choosing a suitable d on the 
basis of its influence on portfolio length defined by3:

w)w( Tnlength . (13) 
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Fig. 3. Portfolio Length Versus the Size of the Ridge Constant 

                                                          
1 Hunt (2002) shows that the growth optimal portfolio lies on the minimum variance frontier drawn in expected drift-
variance space. 
2 Judge (1985, pp. 474-486) provides an exhaustive review of ridge estimators. An alternative form of ridge estimator, 

+= +d D where d is a diagonal matrix of individual stock variances, was also considered. The weights produced by this 

ridge estimator are inversely proportional to the stock variances in the limit as d .
3 Under this definition the minimum length portfolio, i.e. the equally weighted portfolio, has unit length. 
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Figure 3 plots the growth portfolio length (estimated over the entire sample) against d. It 
was decided, on the basis of this plot, that setting d equal to 0.35 (35%) represented a reasonable 
compromise between portfolio length and the portfolio weight bias1.

The results of applying the MVP, the 15% drift and the growth optimal strategy, with the 
ridge constant set to both zero and 0.35, for parameter estimation period lengths of 3, 4 and 5 
years, are set out in Table 4. These results need to be measured against the equally weighted port-
folio, which is shown in Table 1 to have an average growth of 11.55% p.a. (and thus an aggregate 
growth of 288.7%) with a volatility of 18.9% p.a. 

Table 4 

Short-sales Allowed Portfolio Strategy Returns 

Ridge constant = 0.00 Ridge constant = 0.35 

 MVP 15% drift Growth MVP 15% drift Growth 

Estimation period = 3 years 

Aggregate 213.8% 282.0% 12018.2% 292.2% 284.1% 359.0% 

Average 8.6% 11.3% 480.7% 11.7% 11.4% 14.4% 

Volatility 25.0% 23.7% 2549.9% 18.7% 17.7% 22.4% 

Estimation period = 4 years 

Aggregate 195.2% 225.9% 12420.5% 290.1% 281.0% 344.4% 

Average 7.8% 9.0% 496.8% 11.6% 11.2% 13.8% 

Volatility 20.4% 20.4% 1057.2% 18.7% 18.2% 21.8% 

Estimation period = 5 years 

Aggregate 169.0% 254.9% 11305.1% 289.1% 291.4% 337.9% 

Average 6.8% 10.2% 452.2% 11.6% 11.7% 13.5% 

Volatility 19.8% 20.0% 699.9% 18.7% 18.1% 21.5% 
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Fig. 4. Short -sales Allowed Portfolio Growth in Value 

The first notable result is the volatility associated with the non-ridge (i.e. d=0.00) growth 
portfolios2. While the results in Table 4 show that the non-ridge portfolios were numerically at-
tainable, they do not provide evidence that a growth oriented, short-sales allowed, investment 

                                                          
1 The growth portfolio estimated with d=0.35 has a length that is less than 2% of that of the classic, d=0.0, growth portfolio. 
2 With 25 assets in the portfolio, the maximum rank of the covariance matrices is n-26, where n is the number of months in 
the estimation period. The portfolio weights estimated over the 3-year period are thus particularly susceptible to the prob-
lem of multicollinearity. 
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strategy was realistic or feasible. The short-sales allowed, zero ridge constant, growth portfolios 
had gearing ratios that any investor would find impractically high. For example, the average length 
of the 4-year estimation period, zero ridge constant, growth portfolio exceeded a value of 300. The 
strategy routinely required an asset to be short-sold more than 1000%. The highly geared portfo-
lios were naturally characterised by high volatility of investment returns. 

The short-sales allowed growth portfolios, whose weights were estimated with a ridge 
factor of 0.35, were much better behaved than their zero ridge factor counterparts. The growth 
strategy portfolios outperformed the other bench marks by more or less than 3% p.a. depending on 
the length of the estimation period. It is worth noting similarity in performance of each of the three 
benchmark portfolios for d=0.35. The equally weighted portfolio, the MVP portfolio and the 15% 
drift portfolio each produced a rate of growth of a little under 12% p.a., with an associated volatil-
ity of about 18% regardless of the length of the estimation period1. In fact the performance of all 
four strategies, including the growth strategy, appears to be relatively independent of the length of 
the estimation period for both the classic, and the ridge non-ridge portfolios 

Figure 4 shows the dollar extent of the superior performance by the short-sales allowed, 
ridge constant=0.35, 4-year estimation period, portfolio over the 25 years of the data set. As previ-
ously stated, the presence of short-sold shares in the portfolios of either professional or retail in-
vestors is not typical. An analysis of the results of growth portfolios where short-selling is not al-
lowed will provide a more practical test of the growth investment strategy.  

Short-selling not allowed growth portfolios  

While the short-selling of stock in most equity markets, including Australian, is allowed, 
it is not typical. Trialling growth optimal portfolios where a no short-sales restriction is imposed 
on portfolio weights, is a more realistic test of the strategy. The results from testing no short-sales 
growth portfolios are set out in Table 5. 

The no short-sales growth portfolio performances are impressive. The statistics recorded in 
Table 5 shows that the classic no short-sales, non-ridge ( i.e. d=0), estimator produces portfolio growth 
rates in excess of 20% p.a. and up to 31% p.a., depending on the length of the input estimation period.  

 Table 5  

No Short-sales Allowed Portfolio Strategy Returns 

Ridge constant = 0.00 Ridge constant = 0.35 

  MVP 15% drift Growth MVP 15% drift Growth 

Estimation period = 3 years 

Aggregate 260.6% 289.2% 792.5% 292.2% 295.7% 358.1% 

Average 10.4% 11.6% 31.7% 11.7% 11.8% 14.3% 

Volatility 16.2% 15.4% 45.7% 18.7% 17.8% 22.2% 

Estimation period = 4 years 

Aggregate 258.7% 278.3% 563.0% 290.1% 284.8% 345.2% 

Average 10.3% 11.1% 22.5% 11.6% 11.4% 13.8% 

Volatility 16.5% 16.3% 37.7% 18.7% 18.5% 21.8% 

Estimation period = 5 years 

Aggregate 262.8% 276.8% 569.0% 289.1% 264.6% 337.8% 

Average 10.5% 11.1% 22.8% 11.6% 10.6% 13.5% 

Volatility 16.7% 18.1% 36.2% 18.7% 19.0% 21.5% 

                                                          
1 The equally weighted portfolio performance is of course independent of the estimation period. 
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The aggregate growth for the 2-year, 3-year and 4-year estimation period growth portfo-
lios is depicted in Figure 51. The extent to which the growth portfolios outpaced the benchmark 
portfolios is clearly evident. The growth portfolios’ performance is even more impressive when 
stated in dollar terms. One dollar invested in the no short-sales, 3-year, 3-year and 5-year estima-
tion period, growth optimal portfolio strategy in March 1977 would have returned $2,764, $278 
and $295 respectively at the end of March 2002. These figures grossly exceed the return on the All 
Ordinaries Index and the equally weighted portfolio, of $11.24 and $18.61 respectively. 
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Fig. 5. Short-sales Not allowed Aggregate Growth Rates 

The impressive performance of the no short-sales growth strategy begs further analysis. A 
couple of points about the performance of the growth portfolios can be made with reference to 
Figure 5. First the growth strategy accumulation of value is slower in the second half of the period 
than it is in the first half. Moreover, the performance in the last couple of years has been notably 
negative2.

Table 6 sets out growth and volatility statistics for the classic and ridge short-sales not 
permitted portfolios and for each of the benchmarks, for the 4-year estimation periods. It is clear 
from Table 6 that the growth oriented strategies, while having considerably higher growth rates 
than the benchmark strategies, also have much higher volatility than the benchmark MVP and 15% 
growth and equally weighted strategies. The direct relationship between growth and volatility is 
also evident in the 3-year and 5-year estimation period as Table 5 shows. The evidence shows that 
no single investment strategy clearly dominates any other strategy. Indeed, the results of this study 
provide strong support for what Luenberger (1998) calls the log mean-variance model3.

Low growth portfolios are associated with low volatility and high growth portfolios are 
associated with high volatility. The point is, however, that regardless of the cost in terms of vola-
tility, the portfolios designed for maximal growth did produce quite remarkable rates of growth. It 
is worth investigating the source of this growth. 

It is insightful to examine the average portfolio length and average number of included 
assets in the no short-sales growth optimal portfolios. The length of a no short-sales allowed port-
folio is inversely indicative of its “diversity”4. The length of a no short-sales, 25-stock portfolio, 
can take values between one and five. The maximum portfolio length of 5 is achieved, for any 25-
stock portfolio, when 100% of portfolio value is held in a single stock. At the other end of the 
spectrum is the maximally diversified, equally weighted portfolio with unit length.  

                                                          
1 From here on, the analysis of results is restricted, for the sake of brevity, to the 2-year and the 3-year estimation period. 
The choice of these two estimation periods is justified as they yield both the highest and lowest growth rates respectively. 
2 Perhaps the poor recent performance of the growth portfolios may be summarised in the old adage, “if one lives by the 
sword (in this case an instrument finely crafted by Messes Murdoch and Lowey) one dies by the sword”.  
3 Luenburger (1998, pp. 425-427). 
4 The use of vector length to measure diversity is related to Fernholz’s measure of diversity Dp=( wi

p)1/p . See Fernholz, 
Garvy and Hannon (1998). 
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Table 6 

No Short-sales, 4-year Estimation Period, Portfolio Properties 

Input estimation period 
Portfolio type Average

growth rate
Volatility of 
growth rate

Average
portfolio
length

Average no. 
of included 

assets

Average
turnover of 

assets

 Equal weights  11.55% 18.94% 1.00 25.00 0.00% 

MVP 10.35% 16.49% 2.60 8.53 6.94% 

15% drift 11.13% 16.32% 2.39 8.56 11.33% 
Classic no short-sales 

growth portfolios (d=0.00) 

Growth 22.52% 37.65% 4.36 1.71 11.83% 

MVP 11.61% 18.70% 1.00 25.00 0.25% 

15% drift 11.39% 18.53% 1.19 22.46 7.40% 
Ridge no short-sales 

growth portfolios (d=0.35) 

Growth 13.81% 21.75% 1.26 23.18 4.97% 

Table 6 shows that the “classic” no short-sales allowed, growth optimal portfolio with an 
average length of 4.36, is at the lower end of the diversity spectrum. Moreover, Table 6 shows that 
this portfolio contains on average only 1.71 assets in each period. Further, Figure 7, which shows 
the distribution of the number of assets held in each period, reveals that for the majority of the 300 
monthly periods, the no short-sales growth optimal portfolio consisted of a single asset.  

Table 7 

Growth Portfolio Included Companies* 

Company 
No. of appear-

ances
First appears Last appears 

Growth while included 
(% p.a.) 

Overall growth (% p.a.)

AGL 4 Jul-92 Dec-98  13.28% 

AMC 4 Jul-92 Aug-92  8.62% 

ANZ 1 Nov-92    

BHP 10 Dec-91 Mar-02  12.61% 

BIL 18 Mar-90 Dec-99 -0.35% 14.74% 

CSR 1 Mar-02   3.95% 

FGL 11 Sep-82 Sep-83  11.10% 

MAY 4 Jun-78 Jul-90  9.04% 

MIM 1 Mar-02    

NAB 1 Jun-99    

NCP 118 Apr-77 Feb-02 18.05% 23.49% 

ORI 3 Dec-94 Jan-95     

QBE 39 Jan-83 Sep-01 0.33% 18.60% 

RIO 9 Apr-90 Sep-01   10.57% 

SRP 2 Feb-84 Aug-91   14.35% 

STO 74 May-77 Jun-83 51.27% 15.33% 

WMC 23 Dec-88 Jan-02 0.95% 9.86% 

WPL 26 Feb-89 Sep-01 -4.18% 11.68% 

WSF 155 Feb-79 Mar-02 23.44% 38.82% 

The statistics in the table is for stocks included in a no short-sales, classic growth optimal portfolio 
strategy, employing a 3 year estimation period.  

The low number of assets held in each period results in an overall low rate of inclusion of 
individual companies over the 25 years. Table 7 sets out statistics relating to included stocks in a 
growth optimal strategy over 25 years. Only seven out of the 25 stocks are included in the strategy 
for 12 months or more. Table 7 shows that the 25-year strategy is dominated by three stocks: STO, 



Investment Management and Financial Innovations, 1/2005 21

NCP and WSF. NCP and WSF are Australian share market stellar performers producing fairly 
steady growth over 25 years of 23.49% p.a. and 38.82% respectively. In contrast, STO was a 
patchy performer. However, STO was well-performed stock over the period of its inclusion in the 
growth portfolio in the first five years of the 25-year trial period. STO contributed to the strategy 
55% p.a. while it was included, compared to a more modest 15% p.a. over the whole period. 

The success of the no short-sales allowed, growth optimal strategy appears to lie in its 
ability to identify companies during their periods of high growth for portfolio inclusion. 
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Fig. 7. Distribution of the Number of Assets Held in Growth Portfolios 

Increased transaction costs are a practical consideration for any strategy that results in the 
placement of portfolio value in a few assets. Transaction costs will be significant if a strategy requires 
the flip-flopping of large asset weights from one asset to another. One can see that this is the case to a 
degree with the no short-sales allowed growth portfolios. Table 6 shows that the maintenance of this 
growth optimal portfolio strategy would have required on average a turnover of stock of about 12% per 
month. The transaction costs associated with any strategy that turns over 12% of a portfolio per month 
are considerable, and will significantly lower the effective rate of portfolio growth1.

The ridge estimator was employed to produce short-sales allowed portfolio weights that were 
numerically stable and produced acceptable gearing levels. The justification for this use of a ridge esti-
mator does not have the same force for short-sales not allowed portfolios. The no short-sales restriction 
considerably reduces the dimension of the covariance matrix that is inverted to produce portfolio 
weights. Classic short-sales not allowed portfolio weights are numerically stable and are by definition 
not geared. There is, however, an argument for the use of a ridge growth estimator in the short-sales not 
allowed context, on the grounds that it produces more diversified, less risky portfolios.  

The ridge growth portfolio estimator is a combination of the classic growth optimal port-
folio estimator and the maximally diversified, equally weighted portfolio. The size of the ridge 
constant, d, determines the extent to which a ridge growth estimator is biased away from the clas-
sic estimator towards the equally weighted estimator.  

We have computed no short-sales, ridge, growth optimal portfolios using a ridge constant 
of 0.35 to facilitate comparison with the short-sales allowed results. Predictably, Table 6 reveals 
that the no short-sales allowed, ridge, growth portfolio performance lies somewhere between the 
performance of the classic growth optimal portfolio and the equally weighted portfolio. The no 
short-sales allowed, ridge, growth portfolio contains more assets (see Figure 6), is less risky and 
has a lower growth rate than the classic growth portfolio.  

Conclusion

Growth optimal portfolio investment strategies were applied to a 25-year data set of 25 Aus-
tralian companies. Initial statistical investigation of data provided no reason to be optimistic about the 
successful application of the growth techniques. The growth optimal technique assumptions of nor-

                                                          
1 For example, the cost of portfolio adjustment would be 2.9% p.a. if a round transaction cost was 2% of traded value. 
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mality and stability were violated by the nature of the Australian data. Returns on the 25 stocks were 
found to be skewed and leptokurtic and to have time varying variances and covariances. However, 
the growth optimal techniques perform well, despite the assumptions not being met.  

The growth optimal portfolios, both short-sales allowed and short-sales not allowed, pro-
duced rates of growth that exceeded those of the benchmark portfolios. The classic no short-sales 
allowed, growth optimal portfolios produced impressive rates of growth that were more than double 
those of the benchmark portfolios. Analysis of the structure of these portfolios showed that, at any 
point in time, they consisted of a very small number of included stocks. The secret of the success of 
these portfolios appears to lie in their ability to select a few stocks during their high growth periods. 

This study details the successful inclusion of a variant of ridge regression as the basis of a 
growth optimal strategy. The ridge growth optimal technique facilitated production of numerically 
stable weights for short-sales allowed portfolios. When short-sales were not allowed, the use of the 
ridge estimator produced more diversified growth portfolios.  

There are two possible answers to the question of why the growth optimal techniques per-
formed well in the face of non-normality and instability in the data. The first reason, which cannot 
be dismissed, is that the techniques work well on this particular data set by pure chance alone. The 
second explanation is that the assumptions of normality and stability are not necessary to the suc-
cess of the technique. While the model used in this paper assumes normality in the Ito process, it 
may be that growth investment strategy is equally efficacious under alternative stochastic proc-
esses that allow kurtosis. Why does the investment strategy cope with distributional instability? 
Perhaps the use of a moving window estimation process may counter the problems arising from 
the instability of mean growth rates and growth rate covariances. 

The study details the successful application of growth optimal techniques. There is, how-
ever, no evidence of the general superiority of growth optimal techniques. Growth portfolio strate-
gies are also high volatility strategies. While the results of an empirical study such as this are nec-
essarily limited to the specific market and to the specific time-frame of the study, the point that 
this study makes is, however, that regardless of their other properties and potential drawbacks, the 
portfolios designed for maximal growth did in fact produce quite remarkable rates of growth.  
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