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Measuring Arbitrage Profits in Imperfect Markets1

Alejandro Balbás, María José Muñoz-Bouzo 

Abstract

In this paper we introduce some optimization problems that provide us with a measure 

testing the degree of efficiency in securities markets with bid-ask spreads. The measure tests rela-

tive arbitrage profits when there are transaction costs on the prices and payoffs of the assets. 

Moreover, we prove that the measure is the minimum of the measures of efficiency in all fric-

tionless markets where the prices and payoffs lie between the bid and the ask prices and payoffs 

respectively. In particular, we find that the model is arbitrage-free if and only if there exist convex 

combinations of the bid and the ask prices and payoffs such that the corresponding frictionless 

model is arbitrage-free. 

Key words: Arbitrage Measurement, Imperfect Market, State Price. 

Introduction 

This paper deals with two topics usual in finance: the arbitrage measurement, and the re-

lationship between markets with transaction costs and some underlying frictionless markets. 

The arbitrage measurement is the key to establish the level of integration of two or more 

financial markets. So, two perfectly integrated markets give the same price to identical payoffs 

and, moreover, no cross-market arbitrage strategies can be implemented. On the contrary, the lack 

of integration causes the existence of arbitrage opportunities. 

Many empirical papers (Kleidon and Whaley (1992), Kamara and Miller (1995), Kempf 

and Korn (1998), etc.) analyze the existence of cross-market arbitrage and frequently conclude that 

the arbitrage seems to occur, although imperfections make it difficult to decide if the arbitrage 

profits may be obtained after discounting the transaction costs. Chen and Knez (1995) develope a 

general measure of cross-market integration, and when they empirically test the measure, it seems 

to demonstrate the existence of arbitrage. However, as pointed out by the authors, this result seems 

to be very sensitive with respect to the frictionless assumptions. 

Balbás and Muñoz (1998) introduce a new measure that computes relative arbitrage gains and 

is able to discount some special kinds of transaction costs. As pointed out by Balbás et al. (2000), the 

measure may be easily computed in many empirical studies and provides useful procedures to test the 

level of integration of several financial markets. Moreover, the measure may also apply to price and 

hedge new derivative securities (see Balbás et al. (1999b) for further details on this point). 

We will follow here the ideas of Balbás and Muñoz (1998) and extend the analysis in order 

to involve general transaction costs. The extension allows empirical and practical applications of the 

measure to increase, and yields new theoretical results concerning imperfect financial markets. 

In order to incorporate general transaction costs, we will consider the approach of Jouini and 

Kallal (1995) and, consequently, it will be assumed the existence of two prices and payoffs per security. 

Obviously, prices (payoffs) will be larger (lower) when traders buy, and lower (larger) if they sell. 

Paper's outline is as follows: the second section introduces the basic notations and concepts. 

The measure of arbitrage is defined in the third section. Following Balbás and Muñoz (1998), the 

measure provides relative arbitrage profits with respect to the price of the sold assets. It is nonnega-

tive and it vanishes if and only if the model is arbitrage free. As it will be proved, this measure also 

enables us to determine the maximum relative arbitrage profit with respect to the total traded value 

(price of the sold and purchased assets). This interpretation allows us to discount some types of 

transaction costs that might be difficult to include in the usual bid-ask spread models. Although the 

                                                          
1 Research supported by the grants ref: BEC2003-09067-C04, from the Spanish Ministry of Science and Education and ref: 

06/HSE/0150/2004, from Comunidad Autónoma de Madrid. We thank Monique Florenzano for her help and interest. The 
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measure maximizes relative arbitrage profits and, consequently, a non linear ratio, it may be easily 

computed in practice since an equivalent linear optimization problem is provided. The linear problem 

also leads to the optimal arbitrage portfolio. The section ends by showing the continuity of the meas-

ure with respect to the initial parameters and data. It is a very important property because the measure 

is not sensitive with respect to several types of assumptions or errors committed when computing the 

data. In particular, the measure may also apply to test the degree of fulfilment in practice of theoreti-

cal asset pricing models, since the procedure proposed by Hansen and Jagannathan (1997) (these 

authors use the Chen and Knez (1995) measure) may be adapted. 

The fourth section presents a dual linear optimization problem that also leads to the 

measure and is useful for several reasons. In fact, it provides new interpretations for the measure, a 

proxy of “state prices” (in the sense of Chamberlain and Rothschild (1983)) even for no arbitrage 

free economies and two characterizations of the arbitrage absence in the imperfect market case. 

So, the measure vanishes (the model is arbitrage free) if and only if there are state prices (probabil-

ity measures) such that the best (maximum) expected return associated to long positions is worse 

(lower) than the best (minimum) expected return associated to short positions. Moreover, it is also 

equivalent to the existence of an arbitrage free frictionless model for which prices and payoffs lie 

within the spreads. This result is in line with the one of Jouini and Kallal (1995). They extend the 

martingale property of Harrison and Kreps (1979) to a market with bid-ask price processes. They 

found that the no existence of free-lunch in their model corresponds to the no existence of a free-

lunch in a frictionless price process lying between the bid and the ask processes. 

This is also related to some results of Pham and Touzi (1999) since they proved that for a 

model where transaction costs are linear the no existence of free lunch is equivalent to the absence 

of arbitrage. Then, applying the results of Jouini and Kallal (1995), they obtain a similar property 

to the absence of arbitrage in a market with linear transaction costs. 

When the measure is strictly positive, the dual problem yields a proxy for the state prices 

that leads to a new interpretation for the measure. It represents minimum relative (per dollar) er-

rors committed by agents when they give bid and ask prices for the available securities. 

The developed theory may also be adapted so that it can apply to bond markets, in the line 

of Jaschke (1998). In such a case, our results will yield new characterizations of the arbitrage ab-

sence in a bond market such that coupons associated to long positions are lower than coupons as-

sociated to short positions (due to taxes, for instance). Moreover, a term structure of interest rates 

(or its proxy) may be introduced for this bond market, even if it is not arbitrage free. 

It should be first pointed out that we have modeled the underlying uncertainty (the states 

of the world) by compact spaces (rather than L2-spaces). For an empirical implementation this may 

be more convenient since we do not require any initial probability measure in the set of states of 

the world. Second, we have only considered arbitrage portfolios of the second type (in the sense of 

Ingersoll (1987)). However, most of our results (but not all of them) hold in a L2-space and also 

concerning the arbitrage in the usual sense. 

Preliminaries

Consider an economy endowed with a Hausdorff compact topological space K, on which 

the linear space C(K) of all continuous functions over the real line R is defined. When equipped 

with the norm  

= Sup { (k) : k K}

for any C(K), the space M(K) of Radon measures over K is known to be the dual space 

of C(K) (Riesz representation Theorem). Here we are assuming that K is the set of outcome states 

and for some C(K), (k) represents the payoff of a portfolio in the state of nature k for every k K.

This restriction to continuous contingent claims is made for expositional and mathematical ease. 

Let the number of assets be finite and indexed by {1,2,…,n}. Each security i with 

i=1,2,…,n, can be bought for its ask price ai, and can be sold for its bid price bi at the initial date. 

The payoff on the i-th asset in the second period is given by Bi C(K) for a bought security and by 
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Ai C(K) for a sold security. We assume that ai  bi> 0, Ai(k)  Bi(k), and A1(k)  B1(k) > 0, for 

every k K. For a portfolio x = (x1,x2,…,xn)  R
n, the sum  

P(x)(k) = x+
1B1+x+

2B2 …+x+
nBn – x-

1A1 – x-
2A2 -…- x-

nAn

is its total payoff and 

p(x) = x+
1a1+x+

2a2 …+x+
nan – x-

1b1 – x-
2b2 -…- x-

nbn

is its current price1.

Definition 1. The portfolio x R
n is said to be an arbitrage opportunity (strong form) if 

P(x)(k) 0 for every k K and p(x)<0.               

Thus, an arbitrage opportunity allows an agent to increase consumption in the initial pe-

riod and at least not to decrease consumption in the second period. We do not consider here arbi-

trage opportunities of first type. Consequently, it is not true that absence of arbitrage opportunities 

in our model implies the absence of arbitrage of both types or the absence of free lunch. The 

measure defined below captures only the existence of arbitrage opportunities as in Definition 12.

Arbitrage Measurement 

In order to measure arbitrage profits we can do it in relative terms. We look for a portfolio 

minimizing the initial investment needed to get a nonnegative payoff in every state of nature and 

with total sold assets price at most one unity, i.e.,

Maximize –p(x)

P(x)(k)  0, for every k  K 

x-
1b1 + x-

2b2 +…+ x-
nbn  1. 

The latter non linear optimization problem can be easily transformed in a linear one by 

considering a strategy as a pair (x,y) R
n of long and short non negative components, i.e., xi de-

notes the quantity of the i-th security bought and yi denotes the quantity of the i-th security sold. 

Then, we obtain the following problem:  

Maximize –x1a1-x2a2 …-xnan +y1b1 + y2b2 +…+ ynbn

 x1B1(k)+x2B2 (k)+…+xnBn (k) - y1A1 (k) - y2A2 (k)-…-ynAn(k)  0, k  K (1) 

y1b1 + y2b2 +…+ ynbn  1 

xi  0, yi  0.

Some remarks are in order to ensure that latter problem is solvable, i.e., that the maximum 

arbitrage profit is available. 

First, we do not impose the constraints xiyi =0 since for every feasible (x,y) the pair ((x-

y)+,(x-y)-) is also feasible and with a current price at most the one of (x,y).
Second, the problem is consistent since (x,y) = (0,0) is feasible. Consequently, the opti-

mum value of Problem (1) is nonnegative. Moreover, the value of Problem (1) is bounded by y1b1

+ y2b2 +…+ ynbn  1 and hence finite. 

The whole feasible set of Problem (1) is not a bounded one, but adding the constraint 

x1a1+x2a2 …+xnan – y1b1 – y2b2 -…- ynbn  0 we obtain a bounded subset of the feasible set con-

taining the optimal solution. We then get a problem whose feasible set is a compact one and with 

the same optimal solution. Since the objective function is continuous, we derive that the optimal 

value m of Problem (1) is attained by a feasible (x,y) and it verifies the inequalities 0 m  1.

Definition 2. We define the measure m of arbitrage opportunities as the optimum value 

achieved in Problem (1).  

One can easily check that the definition of m is consistent in the following sense: 

Theorem 1. No arbitrage opportunity exists on the market if and only if m = 0.      

                                                          
1 As usual, x+= Max {x,0} and x-= Max {-x,0} for every x R.
2 It is possible to incorporate some modifications in order to measure arbitrage of the first type. However, the procedure is 

not straightforward and is beyond the scope of this paper. 
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In the particular case when there are no transaction costs, Bi = Ai and bi = ai, the measure 

m is just an extension of the measure of the degree of the fulfilment of the Law of One Price of 

Balbás and Muñoz (1998). Here we test some arbitrage profits (in the strong form) even when the 

Law of One Price holds. Denoting by mp,  the frictionless measure of arbitrage opportunities 

where p R
n and  C(K)n are such that bi  pi  ai and Bi i  Ai, we show in the following 

section how the measures m and mp,  are related. 

It is possible to show (as in Balbás and Muñoz (1998) for the frictionless case) that the 

measure m has different and interesting interpretations. If we define the relative profit functions f

and g in R
2n by  

f(x,y)= (–x1a1-x2a2 …-xnan +y1b1 + y2b2 +…+ ynbn)/(y1b1 + y2b2 +…+ ynbn)

and

g(x,y) = (–x1a1-x2a2 …-xnan +y1b1 + y2b2 +…+ ynbn)/(x1a1+x2a2 …+xnan +y1b1 + y2b2

+…+ ynbn)

with the convention that f(0,0) = g(0,0) = 0, it is easily proved that g(x,y) = f(x,y)/(2 – 

f(x,y)) whenever y  0 and the following theorem: 

Theorem 2. Let (x*,y*) be feasible in (1) and such that  

m = –x*
1a1-x

*
2a2 …-x*

nan +y*
1b1 + y*

2b2 +…+ y*
nbn

1. (x*,y*) solves the problem 

Maximize f(x,y) 

x1B1(k)+x2B2 (k)+…+xnBn (k) - y1A1 (k) - y2A2 (k)-…-ynAn(k)  0, k  K 

and the equality m = f(x*,y*) holds. 

2. (x*,y*) solves the problem 

Maximize g(x,y) 

x1B1(k)+x2B2 (k)+…+xnBn (k) - y1A1 (k) - y2A2 (k)-…-ynAn(k)  0, k  K 

and the equality m/(2-m) = g(x*,y*) holds.              

The first statement establishes that m can be seen as the maximum arbitrage profit in rela-

tion to the price of all the sold assets while ii) states that the same portfolio leading to the measure 

m also maximizes the arbitrage profit l in relation to the price of all interchanged assets. This is 

significant since, once computing this maximum profit, it allows us to incorporate other transac-

tion costs than bid-ask spreads. In particular, those frictions that are determined by the price of the 

exchanged assets. 

The theorem above is also useful to prove in an easy way that the arbitrage measure m is 

a continuous function with respect to the bid and ask prices of traded securities. This is important 

in computing m in empirical applications. More precisely, let and  be the following sets: 

 = {(b,a) R
2n  0 < bi  ai, i=1,2,…,n} 

 ={(B,A)  C(K)2n  B1(k) > 0, Bi(k)  Ai(k), k  K, i=1,2,…,n }.

Considering the function m(b,a,B,A) defined from x  to R and equipping x  with the 

product topology (C(K) is endowed with the supremum norm) we get: 

Theorem 3. The measure m is continuous on x .

Proof. Let (bj,aj,Bj,Aj)j N be a sequence in x  converging to (b*,a*,B*,A*) x . Set mj

= m(bj,aj,Bj,Aj) and m = m(b*,a*,B*,A*). We denote by Problem (1j) and Problem (1) the corre-

sponding problems with prices (bj,aj,Bj,Aj) and (b*,a*,B*,A*) respectively. Take (xj,yj) feasible in 
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(1j) and such that  

mj = –xj
1a

j
1-x

j
2a

j
2 …-xj

na
j
n +yj

1b
j
1 + yj

2b
j
2 +…+ yj

nb
j
n

for every natural j. From mj  0 and y j
1b

j
1 + y j

2b
j
2 +…+ y j

nb
j
n  1 it can be deduced 

that 0  x ji  (1/a ji) and 0  y ji  (1/b ji). Thus (xj,yj)j N is a bounded sequence in R2n since  

Limj N (a ji) = a*
i > 0 

and

Limj N (b*
i) = b*

i > 0. 

Now, it is easy to compute that any agglomeration point (x,y) of the sequence (xj,yj) veri-

fies that (x,y) is feasible in (1) and 

Limj N (m j) = = –x*
1a

*
1-x

*
2a

*
2 …-x*

na
*
n +y*

1b
*

1 + y*
2b

*
2 +…+ y*

nb
*

n.

Consequently,  

Limj N (m j) m.

Let us prove the reverse inequality. If m = 0 there is nothing to prove. So, we assume that 

m > 0. As in the first part of the proof, we denote by fj and f the corresponding functions f with 

prices (bj,aj,Bj,Aj) and (b*,a*,B*,A*) respectively. Theorem 2 proves that there exists (x*,y*) verify-

ing 

x1B
*

1(k)+x2B
*

2 (k)+…+xnB
*

n (k) - y1A
*

1 (k) - y2A
*

2 (k)-…-ynA
*

n(k)  0, k  K

 such that f(x*,y*) = m. Since m > 0 we get that y*  0 and thus f is continuous in (x*,y*).

Consequently, for a given  > 0 there exists  > 0 such that f(x’,y’) > m -  (>0) and

x’1B
*

1(k)+x’2B
*

2 (k)+…+x’nB
*
n (k) - y’1A

*
1 (k) – y’2A

*
2 (k)-…-y’nA

*
n(k) > 0,

for every k K, where (x’,y’) = ( +x*
1, x

*
2,… x*

n,y
*). We now introduce for such an (x’,y’)

the functions h: R and G: C(K) by  

h(b,a)= (–x’1a1-x’2a2 …-x’nan +y’1b1 + y’2b2 +…+ y’nbn)/(y’1b1 + y’2b2 +…+ y’nbn)
G(B,A) = x’1B1+x’2B2 +…+x’nBn (k) - y’1A1 – y’2A2 -…-y’nAn.

Since h is continuous in (b*,a*) and G is continuous in (B*,A*) then there exists j0 such that 

h(bj,aj) > m -  (>0) and G(Bj,Aj) > 0 for j  j0. Thus,  

m
j  f(x’,y’) =h(bj,aj) > m - 

for every j  j0, and the inequality Limj N m
j

m is proved.          

The Dual Approach 

In this section we turn our attention to the dual problem of Problem (1). The first interest 

of such an approach is that it allows us to interpret the measure m as the maximum relative error in 

pricing each asset for a determined “state” measure. Second it provides a way to relate the measure 

m with the frictionless measures mp,  where the securities prices p,  lie between the bid and the 

ask prices b and a, B and A respectively. As a consequence dual problems provide a characteriza-

tion of no arbitrage in presence of frictions by means of the existence of non negative linear pric-

ing rules for an adequate frictionless model. 

Denoting the dual variables by R and  M(K) respectively, the dual problem of 

Problem (1) is1

                                                          
1 See, for instance, Anderson and Nash (1987), Balbás and Guerra (1996) or Balbás et al. (1999). 
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 Minimize (2) 

KBid  ai, for every i=1,2,…,n, 

KAid  + bi  bi, for every i=1,2,…,n 

 M+(K),  0.

Although the variable in Problem (1) takes values in R2n, there is an inequality constraint 

taking values in an infinite dimensional space C(K). Thus we must prove that there is no duality 

gap for (1) and (2). 

Lemma 4. There is strong duality for (1) (i.e.,(1) and (2) are both solvable and there is no 

duality gap for (1) and (2)). 

Proof. Recall that the positive cone of C(K) has non empty interior and that according to 

our assumptions B1 and A1 are interior points of C+(K). Thus, the conditions of Lagrange duality 

theorem (see Luenberger (1969) pp. 224) hold for (1) and (2). Consequently, there is no duality 

gap for (1) and (2) and (2) is solvable.                     

In the latter theorem, the fact that C(K) has a positive cone with non empty interior has 

been used to prove the absence of duality gap and the solvability of Problem (2). However the ab-

sence of duality gap can be proved in other topological frameworks. For instance, if we assume 

that Ai and Bi  Lp( , ,P) with 1  p , one can prove that there is no duality gap for the corre-

sponding problems (1) and (2). Unfortunately, if no additional assumptions are imposed, the solv-

ability of Problem (2) cannot be stated except for p= .
The lemma above is the key to prove a first characterization of the absence of arbitrage. 

Lemma 5. The bid-ask prices model admits no arbitrage if and only if there exists a 

measure  M+(K),  0, such that 

Max {( KBid )/ai, i=1,2,…,n}  Min {( KAid )/bi, i=1,2,…,n}.

Furthermore, in the affirmative case, latter inequality holds for any  M+(K),such that  

( ,,0)  M+(K)× R,  0,

solves the dual problem1.

Proof. Assume that the model is arbitrage free. Then, Theorem 1 and the latter lemma 

guarantee the existence of  M+(K) such that ( ,0)  M+(K)× R solves the dual problem. Conse-

quently ( ,0) must be dual feasible, from where  0 and the required condition trivially follows.

Conversely, the inequality above implies the existence of R lying between both terms. 

Clearly

 ( KB1d )/a1 > 0. 

Therefore, it may be assumed that = 1 since  may be replaced by /  otherwise. Thus, 

( ,,0)  M+(K)×R is feasible for Problem (2) and m=0.             

We define the functions , 1 and 2 from M+(K) to R by  

1( ) = Min {( KAid )/bi, i=1,2,…,n},

2( ) = Max {( KBid )/ai, i=1,2,…,n}

and

( ) = Max {0, 1 - 1( )/ 2( )}

                                                          
1 Assume that the model is arbitrage free and consider that  verifies the required inequality. Substituting  by / (K) it 

may be assumed that  (K)=1 and  is a probability measure. Hence, the lemma allows us a simple interpretation. When 

the model is arbitrage free there exists a probability measure such that the best expected return provided by long positions 

is worse than the best expected return provided by short positions. 
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with the convention  (0) = 1.

Lemma 6. Consider the following optimization problem:  

       Minimize ( )         (3) 

 M+(K). 

Then, Problem (3) is solvable and m is its optimal value1.

Proof. We first prove that ( ) m for any  M+(K). The inequality obviously holds 

for = 0 since (0) = 1. Assume that  0 and set = 2( ) and  = -1 . Then ( ) = ( ) since 

the function  is homogeneous, and ( , ( )))  M+(K)×R is feasible in (2). Consequently m ( )

= ( ).

Finally, let ( ,,m)  M+(K)×R be a solution in (2). In particular from the feasibility of 

( ,,m) in (2) we get that 2( )  1 and m  Max {0, 1- 1( )}. Combining both inequalities we ob-

tain that m ( ) and using the first part of the proof we conclude that m = ( ) .           

We are now in a position to prove our main result concerning the relation of measuring 

with bid-ask prices and measuring with frictionless prices. We find that for the measure m there 

exist prices p and , lying between the bid and the ask prices, such that m is the maximum relative 

profit available in the frictionless market with prices p and . Moreover, each (pi, i) can be chosen 

to be a point in the line segment joining (bi,Ai) and (ai,Bi).This property significantly simplifies the 

computation of (p, ) in practical situations. 

Theorem 7. The following conditions hold: 

i) m =Min { mp, : bi  pi  ai, Bi i  Ai, i=1,2,…,n}.

ii) Moreover, for every i=1,2,…,n there exists ri in [0,1] such that m = mp’, ’ with  

p’i = (1-ri)ai + ribi and ’i = (1-ri)Bi + riAi . 

Proof. We first prove that m mp, . Let (p, ) be such that b  p  a and B  A and 

denote by (3p, ) the corresponding frictionless Problem (3) with prices (p, ), i.e.,

Minimize p, ( )

 M+(K),

where p, (0) = 1 and for  0 we define 1
p, ( ) = Min { K id )/pi: i=1,2,…,n}, 

2
p, ( ) = Max { K id )/pi: i=1,2,…,n} and p, ( )= 1-( 1

p, ( )/ 2
p, ( )). By Lemma 6, Prob-

lems (3) and (3p, ) achieve their respectively optimal value m and mp, . If mp,  = 1 then m mp, .

Otherwise, there exists  M+(K) such that mp,  = 1 - p, ( ) . Thus,  

0 < 1p, ( ) 1( )

and
2

p, ( ) 2( ).

Consequently m ( ) mp, .

Let us prove that condition ii) holds (thus condition i) also holds). Assume first that m > 0

and let  M+(K) such that m = ( ). From Lemma 5 we know that 1( ) < 2( ). Let I and J be 

two indexes with 1( )=( KAId )/bI and 2( )=( KBJd )/aJ . Now we proceed to set p’ and ’.

If i=I take ’I = AI and p’I = bI..

If i=J take ’I = BI and p’I = aI..

Whenever i I and i J, set vi=( KAid )/bi and ui=( KBid )/ai.

                                                          
1 This lemma yields new interpretations. So, a probability measure  solving (3) may be considered as a proxy of state 

prices when the model is not arbitrage free, and m = ( ) may be understood as the error of the investors when they price 

the securities and compare returns corresponding to long and short positions. 
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If ui 1( )  vi 2( ) take ’i = Ai and p’i = bi.

If 1( )  ui 2( )  vi take ’i = Bi and p’i = ai.

If 1 )  ui  vi 2( ) then any choice of ’i and p’i as in the statement ii) is adequate. 

Finally, if ui 1( )< 2( )  vi define the function Li from [0,1]to R

Li (r) = [ K(rAi+(1-r)Bi)d ]/(rbi+(1-r)ai). 

Since Li (r) = ui, Li (1) = vi and Li is continuous, it follows that there exists ri  (0,1) such 

that 1( ) < Li(ri) < 2( ). Take ’i = (1-ri)Bi + riAi and p’i = (1-ri)ai + ribi. It is straightforward to 

verify that m = mp’, ’.

It only remains to prove ii) whenever m = 0. From Lemma 5 there exists  M+(K), 

0, such that 1( ) 2( ), with the same notations as above. Fix a point s  [ 2( ) , 1( )]. Since for 

every i we have that ui 2( ) 1( ) vi, proceeding as above we get ri in [0,1] such that Li (r) = 

s, i=1,2,…,n. Thus, if ’i = (1-ri)Bi + riAi and p’i = (1-ri)ai + ribi we have that mp’, ’ = 0.        

As a consequence we get a characterization of the no arbitrage condition in a model with 

transaction costs by means of linear pricing rules. 

Corollary 8. The bid-ask prices model admits no arbitrage if and only if there exist at 

least a measure M+(K) and p R
n, C(K)n satisfying b  p  a, B  A such that K id =

pi for every i=1,2,…,n. Furthermore, in the affirmative case, p and  may be chosen in such a way 

that for every i=1,2,…,n there exists ri in [0,1] with  

pi = (1-ri)ai + ribi and ’i = (1-ri)Bi + riAi . 

Proof. The bid-ask prices model is arbitrage free if and only if there exist p R
n and

C(K)n such that b  p  a, B  A and mp, = 0, and therefore, Lemma 5 (applied for the fric-

tionless case) guarantees that mp, = 0 if and only if there exists  M+(K) such that K id = pi

for every i=1,2,…,n.

Conclusions

A measurement of the arbitrage opportunities has been developed for a model with transaction 

costs. This is important since previous literature usually focuses on the perfect market case to analyze 

the level of cross-market arbitrage and integration of several financial markets, and this makes it diffi-

cult to precise if the arbitrage existence still holds after discounting market imperfections. 

The measure allows us to discount several sorts of imperfections. For instance, imperfec-

tions due to the bid-ask spread and imperfections that depend on the total traded value. 

The measure may be easily computed in empirical studies and seems to be a practical tool 

when testing the level of integration between financial markets, analyzing the existence of arbi-

trage portfolios in real markets or pricing and hedging some derivative securities, amongst other 

possibilities. 

The measure is continuous with respect to the initial parameters and data, and may be in-

troduced by a primal and a dual optimization problem. The primal problem permits us to interpret 

the measure in terms of relative arbitrage gains, while the dual one indicates the error committed 

by the investors when they price the securities. Besides, the dual problem yields a proxy of state 

prices in the imperfect case and shows that the measure coincides with the minimum measure of 

arbitrage associated to frictionless models for which prices and payoffs are lying within the 

spreads and are given by convex combinations of bid and ask prices and payoffs. As a conse-

quence, the arbitrage absence is also related to the existence of associated arbitrage free fric-

tionless markets. 

Finally, the theory may be adapted so that it can apply in two different problems: the 

measurement of the degree of fulfilment in practice of theoretical asset pricing models, and the 

existence of arbitrage and a term structure of interest rates in imperfect bonds markets. 
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