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OPTIMISATION OF CONDITIONAL-VAR IN AN ACTUARIAL 
MODEL FOR CREDIT RISK ASSUMING A STUDENT 

COPULA DEPENDENCE STRUCTURE 

Giovanni Masala*, Massimiliano Menzietti**, Marco Micocci***

Abstract

In this paper we present a model for the valuation of the risk of credit portfolios. It uses 

both traditional tools of credit risk valuations and more recent ones like copula functions and Con-

ditional VaR theory. The model we propose is based on some key assumptions we here summa-

rise: first of all, the risk of default is modelled using the time-until-default of an exposure; more-

over the hazard rates are random variables whose values follow gamma distributions coherently 

with CreditRisk+ proposed by Credit Suisse and others; recovery rates themselves are supposed to 

be stochastic (following a Beta distribution). 

The main aspect of our proposal is the introduction of credit migration in the context of 

an intensity-based model with copula function dependence structure (we use a Student copula to 

model correlations between the obligors). This permits to quantify the loss distribution of the port-

folio and to calculate some useful indexes of risk for the probability distribution of the values of 

the portfolio: expectation, variance, VaR, and, following Rockafellar & Uryasev, the 

conditional VaR ( CVaR) of the portfolio itself.  

The final aim of the model is to present a more flexible and realistic approach to valuation 

and management of the risk of credit portfolios. Infact, in comparison with the traditional ap-

proaches, we remove some restrictive assumptions and try to generalize the valuation scheme (i.e. 

CreditMetrics considers constant hazard rates while CreditRisk+  takes into account constant re-

covery rates with no credit migrations).  

We conclude the article with a large numerical example in order to test the model. 

Key words: credit risk; copula functions, copula modified Monte Carlo simulation, Con-

ditional VaR. 

JEL Classification: G11, G12, G13, G21, G33. 

1. Introduction 

The aim of the paper is the valuation of the risk of a credit portfolio following an ap-

proach with some elements that are usual in the insurance and actuarial field. 

The model we propose is based on some key assumptions we here summarise; first of all, 

the risk of default, following Li (2000), Mashal & Naldi (2002), Meneguzzo & Vecchiato (2002) 

and Di Clemente & Romano (2003), is modelled using the time-until-default of an exposure; 

moreover the hazard rates are random variables whose values follow gamma distributions coher-

ently with CreditRisk+ proposed by Credit Suisse (1997), Micocci (2000), Burgisser, Kurth & 

Wagner (2001) and Menzietti (2002); recovery rates themselves are supposed to be stochastic as in 

Gupton, Finger & Bathia (1997), and following a Beta distribution. 

The central aspect of our proposal is the introduction of credit migration in the context of 

an intensity-based model with copula function dependence structure. This permits to quantify the 

loss distribution of the portfolio and to calculate some useful indexes of risk for the probability 

distribution of the values of the portfolio: expectation, variance, VaR, and, following 

Rockafellar & Uryasev (2000), the conditional VaR ( CVaR) of the portfolio itself. 
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The paper is structured as follows: section 2 presents the model for default and credit mi-

gration; the section is divided in subsections facing the problems of time-until-default, the hazard 

rate function and the recovery rates, the credit migration, the exposure valuation and the loss dis-

tribution. Moreover we highlight the possibility of mixing our model with the conditional 

VaR to build the efficient return/CVaR frontier of the credit portfolios. 

Section 3 is devoted to present mathematical background of copula functions and to de-

velop some useful algorithms of Monte Carlo simulation. Section 4 shows an example of applica-

tion of the proposed model to a portfolio of credits with all the needed data. Section 5 concludes. 

2. The model for default and credit migration 

2.1. Time-until-default 

The first aspect we treat is the risk of default, which is modelled in all the approaches to 

credit risk in different ways. In our model, following Li and other studies (Li (2000), Mashal & 

Naldi (2002), Meneguzzo & Vecchiato (2002), Di Clemente & Romano (2003)) we define a new 

random variable, the survival time from now to the time of default or the time-until-default for an 

exposure. 

Time-until-default can be modelled as the survival time in life insurance1. We denote this 

random variable as 0T , and we assume some properties: it must take only positive values; it is con-

tinuous and has a density function 0f t  that we suppose continuous. We denote as 0F t  its 

distribution function: 

0 0 0

0

Pr

t

F t T t f u du  with 100 00 FF .

Introducing the hazard rate function h(t) we also have 

0

0 1

t

h u du

F t e .

The conditional survival probability until 2t  conditional on survival until 1t , with 1 2t t ,

will be: 
2

1

2 1 1

0 2

0 2 0 1

0 1

1
Pr

1

t

t

h u du

t t t

F t
T t T t p e

F t

from which we have the conditional default probability in the horizon 1 2,t t , given sur-

vival until 1t :

2

1

2 1 11 0 2 0 1Pr 1

t

t

h u du

t t tt T t T t q e .

We denote with 
1t
q  the one-year default probability given survival until 1t  (

1 11t tq q )

and with sq  the non conditional default probability in the horizon 0, s  ( 0s sq q ).

We have also: 

0

0

t

h u du

f t h t e .

If  is the time horizon and h t h  for 0,t  we have 0

h tf t h e  and the 

time until default follows an exponential distribution with parameter h . In the hypothesis of con-

                                                          
1 See Bowers et al. (1997) and Pitacco (2000). 
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stancy, the hazard rate can be estimated from the one-year default probability (or for a different 

time horizon) as follows: 

ln 1
1 s th s

s t

q
q e h

s
, (1) 

1 ln 1h

t tq e h q . (1-bis) 

2.2. Hazard rate function and recovery rate 

The relationship between the distribution function of survival time and the hazard rate 

function allows representing the default process by modelling the hazard rate function. 

So for our model we need the value of the hazard rate. This can be found in three different 

ways: 

(1) using the expression (1) or (1-bis) and the default frequency from rating agencies we 

can calculate the hazard rate each year; 

(2) from market data in the context of reduced-form models or intensity-based approach. 

Indeed in the market price of defaultable bonds, a credit spread curve is implied. If 

we assume a deterministic value for the recovery rate, a specific credit spread implies 

a value for default probability and so for the hazard rate; 

(3) in the framework of the structural models using the Merton option theoretical ap-

proach (1974) and its following generalizations. In this case the default probability 

equals the probability that the firm asset value goes under the liabilities values. 

Each approach has same drawbacks; to avoid these difficulties the solution proposed (see Li 

(2000), Schönbucher & Schubert (2001), Frey & McNeil (2001), Mashal & Naldi (2002)) is a copula 

function approach. The individual (marginal) survival probabilities of the obligors are taken from an 

intensity-based approach and the dependency is obtained with an appropriate copula function. 

Such a solution is not feasible in the case we don’t have market prices of defaultable finan-

cial instruments for the same obligor. For this kind of exposure the solution we propose is to use the 

rating agencies default probability for single exposure and to use a copula function for the depend-

ence structure. In this case we can model the heterogeneity of default frequencies between obligors of 

the same rating class assuming that the default probability is not deterministic but stochastic. 

In our model we assume that the hazard rate for an obligor in a given rating class is con-

stant each year but the value is not the expectation of historical default frequencies for its class but 

a random variable following a Gamma distribution with parameters specific for the rating class1.

We choose a Gamma distribution for many reasons: 

analysis of historical default frequencies shows that in each rating class the effective 

default propensity of the obligors is not homogeneous and that it follows a skewed 

distribution (see for example Kealhofer, Kwok & Weng (1998)); 

the use of a Gamma distribution to represent the heterogeneity of claim frequencies 

for different risks is typical in risk models for general insurance (Daykin, Pentikäinen 

& Pesonen (1994)); 

a Gamma distribution for default probability has yet been used with good results in 

many models for credit risk (CreditRisk+ developed by Credit Suisse (1997) and its 

numerous generalization as Micocci (2000), Bürgisser, Kurth & Wagner (2001), 

Menzietti (2002)). 

With these hypotheses, denoting 
i

kH  the random variable hazard rate for a given obligor 

i  ranked in rating class k  we have: 

,,Gamma~

1

k
k

ih
ki

kk

i

k

i
i

kk he
huH

                                                          
1 The assumption that the hazard rate is a random variable is made to explain the risk heterogeneity of default frequency for 

rating classes published by rating agencies, but could be used as well if we use hazard rate structure inferred from market 

data to introduce random noise. Indeed, even in reduced-form models, the hypothesis of constant hazard rate for a time 

horizon of one year or more is not realistic. 
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where 
i

ku h  is the density function and k and k  are the parameters of the Gamma distribu-

tion for the rating class k .

We denote with k  and 
2

k  mean and variance of the hazard rate for the rating class k

in which is ranked the obligor i . The parameters for the Gamma distribution can be estimated with 

maximum likelihood or moments method. So the time-until-default for the obligor i , 0

i
T  condi-

tional on a value 
i
h  for hazard rate, is exponentially distributed with parameter

i
h :

0

i

i

i i h t

h
f t h e .

The default will occur if 0

i
T  with  time horizon for the evaluation. So the prob-

ability of default for the obligor i , conditional on a value 
i
h  is: 

0Pr 1
i

i i

i i h

h h
q T e .

In case of default we assume the immediate recovery of the exposure with a random rate 
i

R  on exposure face value, associated to obligor i . The exposure value 
i

V  after default is: 

0 ,
i i i

i i i

T R r
V N r ,

where 
i

N  is the face value of the exposure and 
i
r  is the value assumed by the recovery rate. 

To represent the recovery rate uncertainty we assume (as Gupton, Finger & Bhatia (1997) in 

the framework of CreditMetrics) that it follows a Beta distribution and we choose the parameters so 

that 0 1
i

R  (at this purpose we put 1 ). If expectation and variance of recovery rate distri-

butions are known, the parameters p  and q  can be estimated with the moments method. 

The introduction of random recovery rate, and more in general the recovery risk, is an 

important feature of the model; actually only few models introduce such a risk aspect although it 

represents an important risk factor. 

2.3. Credit migration 

We assume that in 0t  the obligor lies in the k th rating class, and that at the end of the 

time horizon he could end in 1K  different states: in default or, in survival case, in one of the 

otherK  rating classes. If the arrival class is better (worse) than k  we have an upgrading (down-

grading). We note that eventual credit migrations influence the exposure value. 

To model credit migration we assume that information on credit quality can be inferred 

from time-until-default: a high value means that the default is not likely and so that the obligor 

stays in a “good” rating class; a low value means the default is likely and the obligor can be ranked 

in a “bad” rating class. 

As we saw in paragraph 2.1, conditional time-until-default in this model follows an expo-

nential distribution and the value that it assumes is used to evaluate if default is incurred or not. 

After this, if the exposure survives, the same value could be used to estimate down or upgrading. 

In other words we represent default process and credit migrations with the same marginal distribu-

tion for time-until-default. 

We obtain this result fixing K  bounds over the time-until-default distribution1. If 0

i
T

assumes a value within 0 and the first bound (which is equal to time horizon ) the obligor de-

                                                          
1 The idea to model the migrations with bounds on some specific distribution was first proposed by Gupton, Finger & 

Bhatia (1997) in CreditMetrics with bound on asset return distribution (normal distribution) then in Menzietti (2002), in 

CreditRisk+ framework, with bound on risk factor distribution (Gamma distribution). 
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faults. If 0

i
T  assumes a value within the first and the second bound, the obligor ends in the 

“worst” rating class, and so on. If 0

i
T  value crosses the K th bound, we put the obligor in the 

“best” rating class. 

In order to define the K  bounds we need not only the default probability but also the 

probabilities of switching in other rating classes. These probabilities are included in transition ma-

trices that rating agencies publish but can be produced even in a Merton-type model as KMV 

(Kealhofer (2003a)). 

We denote with ,

i

k jp  the probability of staying in class j at the end of the time horizon 

for counterpart i  that initially stays in class k . The final state 1K  corresponds to the default 

state. Obviously this probability depends on the initial rating class, which is information known for 

each obligor so that , , ,

a b

k j k j k jp p p  if both a  and b  initially stay in classk .

We need to find two bounds 
, 1k K js  and 

, 2k K js  such that the unconditional probabil-

ity that 0

i
T  assumes a value within the bounds is 

,k jp  (obviously
,0 0ks ). 

We calculate at first the density probability function 0 ( )
i
f t  of time-until-default 0

i
T .

As we pointed out previously, 0

i
T is the composition of an exponential distribution with a 

Gamma distribution. By abuse of notation we omit the indexes representing the obligor i  and the 

starting classk .

An elementary calculation gives the following result: 

0 1
( )

( )
f t

t
.

So the bound 1s  (the default bound) must satisfy the condition 0 1Pr 0 T s q ,

which leads to  
/1

1

1 q
s  (2) 

In general, using again the initial notation, we have 

, 1 0 , 2 ,Pr
i

k K j k K j k js T s p

so that the bounds can be determined recursively by the following: 
/1

1,

2,
k

kk

k

jKkkkk

jKk

sp
s . (3) 

2.4. Exposure valuation and loss distribution 

The exposure valuation at time t  is obtained as present value of cash flows (the same so-

lution is adopted in CreditMetrics, Gupton, Finger & Bhatia (1997)). We assume that the spot and 

forward zero curves for each rating class are known1 as well as the vectors of cash flows 

1 2, ,...,
i i i i

Tz z zz  and maturities 1 2, ,...,
i i i i

Tt t tt  for each exposure. 

The exposure value in 0t  will be: 

                                                          
1 We assume a given and deterministic forward zero curve for each rating category, so the market risk is not included. 



Investment Management and Financial Innovations, Volume 4, Issue 3, 200744

0 0

0

,

1

k s s

T
t t t ti i

t s

s

V z e  (4) 

with 0( , )k st t  spot rate in the time horizon 0( , )st t  for an exposure with rating k in 0t .

We assume one year time horizon ( 0 10; 1t t ). If the exposure survives, its value de-

pends on forward rate term structure, cash flows and the arrival state j :

, 1 , 20

1 , 1

1

1

j s s

i
k K j k K j

T
t ti i

ss T s
s

V z e . (5) 

If default occurs, as we have already said, the exposure value will be: 

0
1 ,

i i i

i i i

T R r
V N r . (5-bis) 

Let denote with 
mRy  the random vector which represents uncertainties which can af-

fect the value (such as hazard rate, rating and (eventually) recovery rate). We assume besides that 

the distribution of y  in mR  has density ( )p y .

After finding the value of the exposure conditional to y ,
i

V y  it is possible to calcu-

late the loss (or gain): 
*i i i

L V Vy y y

with 
*i

V y  exposure value if the credit characteristics (specifically the rating) don’t change. 

In many applications we are interested in a model for a portfolio of n  exposures. In this 

case each scenario y  is obtained from n  Gamma distributions for the hazard rate (with specific 

characteristics for each rating class), then from a random vector of n  time-until-default (with 

marginal exponentially distributed), finally we evaluate the single exposures and calculate portfo-

lio value and consequent loss for the specific scenario. We denote with 1,..., ,...,i nx x x
T

x

the vector of the quotas held for each exposure (it belongs to the set of available portfolios 

nRX ), with 
1

,..., ,...,
i n

L L LL y y y y  the vector of the loss functions for 

single obligors and we assume that in 0t , 1 1,...,ix i n . The loss function will be: 

1

n
i

i

i

L L xx, y y L y x . (6) 

For each fixed value of x , the loss function ( )L x,y  is a random variable which distribu-

tion in R  is induced by the distribution of y . We can then define the probability that ( )L x,y

does not exceed a threshold  as: 

( )

( , ) ( )
L

p d
x,y

x y y . (7) 

For fixed x , ( , )x  viewed as a function in  represents the cumulative distribution 

function for the loss associated with x . The function ( , )x  is no decreasing in  and we as-

sume for simplicity it is also continuous in .

We are interested in some features of the loss distribution: expectation, variance, 

VaR and Conditional VaR ( CVaR).

The portfolio expected loss is: 

( ) ( ) ( )L p dx x, y y y
Y

, (8) 
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where Y  represents the set of all the possible values for y . The variance of portfolio loss is: 

22 2 2( ) ( ) ( ) ( ) ( ) ( ) ( )L p d L p dx x, y x y y x, y y y x
Y Y

. (9) 

The function (7) will turn out to be fundamental in defining VaR and CVaR, for which we 

use notations as in Rockafellar & Uryasev (2000). 

Let us fix a confidence level (0,1) . The VaR and CVaR values for the loss 

random variable associated with x  at probability level  will be denoted ( )x  and ( )x

respectively and defined as: 

,:min xRx , (10) 

( ) ( )

1
( ) ( ) ( )

1
L

L p d
x,y x

x x,y y y . (11) 

In the first definition, ( )x  turns out to be the left endpoint of the nonempty interval 

consisting of the values  such that ( , )x .

In the second definition we deduce that the probability that ( ) ( )L x,y x

equals1 . Consequently, ( )x  is seen as the conditional expectation of the loss associated 

with x  relative to that loss being ( )x  or greater. 

Remark 

It is a well known fact in financial literature (Pflug (2000)) that CVaR is a coherent risk 

measure in the sense of Artzner (Artzner et al. (1999)). Another important feature about CVaR, 

which was demonstrated by Rockafellar & Uryasev (2000), is the following: optimisation prob-

lems involving CVaR risk measure turn out to be a linear programming problem. Besides, equiva-

lent optimisation problems can be set up by maximizing expected returns under CVaR constraints. 

This property can be thus very useful in determining the efficient frontier.

Unfortunately, the expression of the density function ( )p y  is not generally known, be-

sides closed forms for (10) and (11) are not available. So to determine the shape of the loss distri-

bution and its features like variance, VaR and CVaR we need to resort to Monte Carlo 

simulation. The sampling we obtain generates a set of vectors 1 2, ,..., Jy y y  with probabilities 

1
1,2,...,j j J

J
 and J  simulations number1.

The portfolio loss function in scenario jy  will be: 

1

,
n

i

j j i

i

L L xx y y  (6-bis) 

with 
i

jL y  loss function in scenario jy  for the obligor i . The discretized version of the main 

characteristics of portfolio loss distribution is the following. 

The portfolio expected loss is: 

1

,
J

j

j

L

J

x y

x . (8-bis) 

The variance of portfolio loss is: 

                                                          
1 See section 3 for a description of the simulation procedure. 
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2

12

,
J

j

j

L

J

x y x

x . (9-bis) 

The VaR is defined as: 

QLx x  (10-bis) 

with QL x quantile of the loss distribution. 

The CVaR is defined as: 

1 1

,

1 1
, ,

1 1
j

J J

j j

j j

L

L L
J J

x y x

x x y x x y x
, (11-bis) 

where: 

, ,j jL Lx y x x y x if , 0jL x y x ,

, 0jL x y x  if , 0jL x y x .

2.5. Correlation measures and copula function 

The implication of such a model for a portfolio of n  obligors is that we must generate 

scenarios for time-until-default from a multivariate distribution function1. So we have: 
1

0 1 0 1 0 0,..., ,..., Pr ,..., ,...,
i n

i n i nF t t t T t T t T t . (12) 

Useful tools for generating scenarios from this multivariate distribution are copula func-

tions. We saw that many models use a copula functions approach to represent the dependence 

structure of a credit portfolio. We wish to ensure that the copula we use captures two features of 

dependence relationship in the joint distribution: correlation level and tail dependence. 

Some specifications are needed for correlation level. If we have two obligors A  and B ,

the individual default probability in a fixed time horizon (respectively Aq , Bq ) and the joint de-

fault probability ,A Bq  in the same time horizon, the linear default correlation coefficient is by 

definition (Lucas, 1995): 

,

,

1 1

D A B A B

A B

A A B B

q q q

q q q q
.

If we have more than two obligors, we can construct a correlation matrix A  whose ele-

ments 
i,j

a  are the linear default correlation between obligors i  and j .2

Starting from this result Merton-Type models as CreditMetrics and KMV link the default 

correlation between each pair of obligors with the correlation of obligors’ asset returns ,

R

A B

(included in the correlation matrix R ) (Gupton, Finger & Bhatia (1997), Kealhofer (2003a, 

2003b)). Li (2000) proposed a more general definition of correlation: the survival time correlation. 

It can be calculated as follows: 

                                                          
1 Instead the hazard rates are generated from n  independent Gamma marginal distributions, because these express risk 

heterogeneity in each rating class for which we assume no reciprocal influence. 
2 In the case of two obligors, we can reach the probabilities of all elementary events by using the linear correlation coeffi-

cient. If we had more than two obligors this would not be possible. With n  obligors we have 2n  joint default events and 

only 1 / 2n n  correlations plus n  individual default probabilities and the constrain that these probabilities must sum 

up to one. So the correlation matrix gives us the bivariate marginal distributions but not the full distribution (Schönbucher, 

2003 chap. 10). 
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0 0 0 0 0 0

,

0 0 0 0

,
A B A B A B

T

A B
A B A B

Cov T T E T T E T E T

Var T Var T Var T Var T

.

He demonstrated that if we use this concept of correlation and a bivariate normal copula 

function for dependence structure the correlation parameter ,

T

A B  is equal to the asset correla-

tion between the two obligors ,

R

A B .

This result has been extended to t -copula by Mashal & Naldi (2002) and Meneguzzo & 

Vecchiato (2002). 

In the next section we show basic concepts and principal results of copula theory. 

3. Copula functions: main definitions and properties 

Definition 

An n-dimensional copula is a multivariate distribution function C, with margins uni-

formly distributed in [0,1] that satisfies the following properties: 

(i) :[0,1] [0,1]nC ;

(ii) C is grounded and n-increasing; 

(iii) C have margins iC  satisfying ( ) (1, ,1, ,1, ,1) [0,1] ( 1, , )iC u C u u u i n .

The most important result is the following, due to Sklar: 

Theorem 

Let F  be an n-dimensional distribution, with marginals iF . Then there exists an n-

copula C  such that 1 1 1( , , ) ( ( ), , ( )).i i iF x x C F x F x

If the marginals iF  are continuous, then the copula C  is unique. 

The previous representation is called canonical representation of the distribution. Sklar’s 

theorem is then a powerful tool to build n-dimensional distributions by using one-dimensional 

ones, which represent the marginals of the given distribution. Dependence between marginals is 

then characterized by the copulaC .

An important multivariate copula is the Student’s t-copula, the copula of the multivariate Stu-

dent’s t-distribution. Its parameters are the correlation matrix R and the degree of freedom . Besides, a 

well known algorithm permits to generate pseudo casual numbers from the Student copula. 

The results in this section can be found in Embrechts et al. (2001, 2002), Frees & Valdez 

(1998), Genest et al. (1986, 1993), Kimberling (1974), Meneguzzo & Vecchiato (2002), Nelsen 

(1998), Roncalli (2000), Sklar (1959). 

The copula approach for modelling the portfolio loss distribution follows these steps: 

at first, we have to determine the marginal distributions; 

secondly, we generate pseudo random n tuples  from a Student copula with correla-

tion matrix R. Each random n tuple  represents a simulated time-until-default for 

each obligor; 

for each simulation and for each obligor, we examine the simulated time-until-

default. 

If it is less than one this obligor has defaulted. In this case, we extract a ran-

dom recovery rate and then hence we determine the value of this credit at 

the end of our time horizon. 

Otherwise, no default has occurred. The simulated value is compared with 

migration bounds so that we can determine the new rating class. We then 

evaluate the value of this credit at the end of our time horizon: 
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for each simulation, we calculate the portfolio value at the end of the time horizon by 

summing the values of each credit; 

at last, we deduce the portfolio loss for each simulation and we estimate finally VaR 

and CVaR.  

4. Application of the model to a credit portfolio 

In this section we apply the model presented in the previous sections to a portfolio of 

twenty exposures ( 20n ). We assume that for each exposure we know rating on Standard & 

Poor’s scale1, face value, coupon rate, time to maturity. The value in 0t  is calculated by expression 

(4) using a common term structure of spot rates. 

The exposure characteristics are reported in Table 1, all the amounts are expressed in Euro. 

Table 1 

Exposure characteristics 

Obligor Rating Face Value Coupon rate Maturity V0(i) 

1 AAA      7 000 000  6,75% 3      7 587 181  

2 AA      1 000 000  8,25% 4      1 144 159  

3 A      1 000 000  7,25% 3      1 093 892  

4 BBB      1 000 000  9,00% 4      1 152 020  

5 BB      1 000 000  9,25% 3      1 097 229  

6 B      1 000 000  13,00% 4      1 196 561  

7 CCC      1 000 000  13,75% 2         977 605  

8 A    10 000 000  10,75% 8    13 796 527  

9 BB      5 000 000  6,75% 2      5 137 472  

10 A      3 000 000  5,25% 2      3 105 183  

11 A      1 000 000  8,50% 4      1 148 480  

12 A      2 000 000  9,50% 5      2 416 986  

13 B         600 000  11,00% 3         672 728  

14 B      1 000 000  8,00% 2      1 041 126  

15 B      3 000 000  7,75% 2      3 109 564  

16 B      2 000 000  13,00% 4      2 393 122  

17 BBB      1 000 000  10,75% 6      1 283 421  

18 BBB      8 000 000  10,00% 5      9 704 110  

19 BBB      1 000 000  7,25% 3      1 082 121  

20 AA      5 000 000  9,25% 5      6 018 039  

The portfolio value in 0t  is 65,157,524 Euro with a face value of 55,600,000 Euro. The 

time horizon is one year (
1 1t ). The term structure of forward rates used for exposure valuation 

in 1t  is extrapolated from the term structure of spot rate. 

The recovery rates are extrapolated from a Beta distribution with p = 1.4612 and  

q = 1.3966, these values ensure a recovery rate expectation equal to 0.5113 and a standard devia-

tion equal to 0.25452. Obviously is it possible to assume that each exposure has different beta dis-

tributions. For simplicity we assume here the same distribution for each one. 

                                                          
1 The basic rating scale of Standard & Poor’s has 7 rating classes decreasing from AAA to CCC. 
2 These values are reported in a statistics for senior unsecured bond by Carty & Lieberman (1996). 
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The previous data for rates and recoveries allow us to calculate, by expression (5), the 

single exposure values conditional on rating state in 1t . If default occurs, we calculate the ex-

pected value for expression (5-bis). 

The portfolio value in 1t , if there are no rating migration, 
*

1V
x

y  amounts to 

67,673,167 Euro. 

The expected hazard rates are extrapolated from one-year default probabilities included in 

an S&P-style transition matrix by through formula (1-bis). Such a matrix is used also for migration 

probabilities over one year. 

Despite the criticisms on rating agencies transition matrices, we use these data from rating 

agencies for the following reasons: 

we assume that market data are not complete; 

it is very difficult to use market data to find implicit migration frequency, so in the re-

duced form approach it is difficult to implement a multinomial1 model for credit risk2;

in the context of Merton-Type model it is possible to model the credit migration but 

with the hypothesis of a normal copula dependence structure; 

we model the heterogeneity of default frequency between obligors of the same rating 

classes assuming that the default probability is not deterministic but stochastic. 

On the other hand it is possible to use default probabilities inferred from intensity-based 

model but in this case the transition matrix should be specially constructed. This could be a future 

model implementation. 

The transition matrix M  we use and the expected hazard rates can be easily recovered 

from specialized web pages. We made same settlement to the original S&P matrix to guarantee 

some coherence features3.

To simulate hazard rate values we have found the gamma parameters with moments 

method. The standard deviation for each rating class has been assumed to be equal to a quota of 

expected value with different quotas for each class. The value of such quotas is coherent with sta-

tistical Gordy analysis (Gordy (2000)) but the trend from a class to the next one has been a little 

smoothed to have more regular shape. The expectation, standard deviation and parameters for the 

hazard rate of each rating class are reported in Table 2. 

Table 2 

Hazard rate data 

Rating k k k k k/ k

AAA 0,0001 0,00014 0,51020 5101,79 1,40 

AA 0,0002 0,00026 0,59172 2958,28 1,30 

A 0,0006 0,00072 0,69444 1157,06 1,20 

BBB 0,0018 0,00180 1,00000 555,06 1,00 

BB 0,0107 0,00853 1,56250 146,62 0,80 

B 0,0534 0,03204 2,77778 52,02 0,60 

CCC 0,2205 0,11026 4,00000 18,14 0,50 

The bounds which determine state transitions have been calculated by expression (3) with 

the probabilities included in the transition matrix M  and the vector of expected hazard rates for 

each rating class
1 7,..., .

Finally we need data about the correlation between each pair of exposures. We remind 

that the linear correlation between the time-until-default of two different obligors is equal to the 

                                                          
1 We call multinomial model the model that includes rating migrations and binomial model the model with only default risk. 
2 See Jarrow, Lando & Turnbull (1997) and Bielecki & Rutkowski (2003) as example of intensity-based multinomial models. 
3 For more details see Gupton, Finger & Bhatia (1997) and Gordy (2000). 
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linear correlation between the asset return of the two counterparts1. This information is usually not 

easy to extrapolate, so the solution that has been proposed in literature2 is to use linear correlation 

between the equity of each obligor as proxy variable. We do not exhibit the correlation matrix R
for sake of brevity. 

The first analysis we perform is a simulation with 20,000 draws assuming 10 degrees of 

freedom. We find a vector of portfolio values whose mean,
1V
x

 is 67,332,482 Euro, so the 

expected return is: 

1

0

67,332,482
ln ln 0.0328

65,157,524

V
r

V

x

x
.

Considering that 
*

1V
x

y  is equal to 67,673,167, the expected loss is: 

*

1 1 67,673,167 67,332,482 340,684V Vx x
x y .

We calculate also standard deviation of loss distribution, VaR and CVaR with 

different values of  which are reported in Table 3. 

Table 3 

Loss distribution characteristics 

mean ( ) 340 685   

stand. dev. ( ) 1 002 911   

Simulated loss distribution (10,000 draw) Normal distribution ( )

-VaR -CVaR -VaR -CVaR

50 (median) 32 537 900 568 50 (median) 340 685 1 140 475 

10 1 516 926 2 680 712 10 1 625 967 2 099 336 

5 2 193 306 3 520 083 5 1 990 327 2 406 885 

2,5 2 930 212 4 516 589 2,5 2 306 355 2 680 891 

1 4 182 184 6 127 243 1 2 673 805 3 004 488 

0,5 5 398 931 7 605 907 0,5 2 924 013 3 225 210 

The strong asymmetry of loss distribution is clear if we compare simulation results with 

the values of a normal distribution with the same mean and standard deviation. It’s interesting to 

note that with this number of degrees of freedom the results we obtained are quite similar to those 

that we can obtain applying CreditMetrics model to the same data. 

We know that with a high level of degrees of freedom the t-Student copula gives results 

similar to normal copula and that Li (Li 2000) demonstrates that CreditMetrics model uses an im-

plicit normal copula dependence structure. 

To study the effects of varying the number of degrees of freedom on tail dependence, we 

repeat the simulation with the same data but assuming different levels for degrees of freedom (3, 

10, and 30). VaR  and CVaR  for  value of 0.95 and 0.99 are shown in Table 4. 

                                                          
1 See § 2 and Li (2000). 
2 First of all Merton (1974), but this is a standard solution, adopted i.e. in CreditMetrics model (see Gupton, Finger & 

Bhatia (1997)) and in KMV model (see Kealhofer (2003a, 2003b)). 
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Table 4 

VaR and CVaR with different degrees of freedom 

(Binomial and Multinomial model) 

Multinomial model Binomial model 

VaR 99 VaR95 VaR 99 VaR 95 Degree of freedom ( )

CVaR 99 CVaR95 CVaR 99 CVaR 95 

3     4 779 466      2 407 446      4 467 971      2 251 271  

      7 116 326      3 997 526      6 540 321      3 719 451  

10     4 182 185      2 193 307      3 763 611      2 110 941  

      6 127 244      3 520 084      5 417 561      3 206 981  

30     3 823 266      2 173 686      3 494 461      2 058 231  

      5 555 126      3 314 516      5 228 641      3 081 401  

We can see that the effect of tail dependency is clear1.

In Table 4 we also reported the values for VaR  and CVaR  if we suppose that 

rating migrations are not possible (binomial model). These results show that the introduction of 

such migrations is a key feature for a credit risk model. 

The third analysis we perform is the valuation of marginal risk contribution of each expo-

sure and the definition of risk reduction actions. We use three different measures of risk: standard 

deviation, VaR and CVaR (with 0.99 ). We measure each risk measure assuming 

that an exposure (each time a different one) is not in the portfolio (only 19 exposures). The varia-

tions in each measure are divided by the value in 1t of the excluded exposure in case of no mi-

grations. Results are reported in Table 5. 

Table 5 

Marginal risk contribution 
Obligor excluded Marginal stand. dev. % Marginal 0.99-VaR % Marginal 0.99-CVaR % 

1 0,35% 0,89% 4,11% 

2 0,06% 0,00% 0,30% 

3 0,08% 0,00% 0,29% 

4 0,29% -0,01% 1,54% 

5 3,74% 14,88% 23,70% 

6 5,28% 25,55% 24,25% 

7 7,37% 33,61% 27,73% 

8 0,45% 0,50% 3,80% 

9 1,14% 6,05% 11,08% 

10 0,03% 0,21% 0,16% 

11 0,65% 4,59% 4,84% 

12 0,32% 1,42% 3,01% 

13 2,31% 8,77% 15,54% 

14 1,62% 6,07% 8,80% 

15 2,55% 16,27% 16,24% 

16 7,04% 25,30% 28,99% 

17 0,50% 3,74% 2,54% 

18 0,37% 1,67% 2,51% 

19 0,32% 0,00% 1,74% 

20 0,03% 0,80% 0,36% 

                                                          
1 We remind that in real applications the right number of degrees of freedom should be estimated with maximum likelihood 

methods as explained in section 3. 
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A risk reduction action can be realized excluding from portfolio exposures with high marginal risk 

contribution and high market value. Such a choice can be graphically represented as in figures below 

adding a curve in the marginal risk-market value space. The bounding curve is a hyperbola branch, 

this means that it is the geometric set of points such that exposure market value multiplied by the 

marginal risk value is an appropriate constant. The choice of the constant value is subjective. 
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We can see that the risk reduction actions suggested under the three different measures 

are not always the same. So the exposures 15 and 16 are always over the line, but the choice about 

the exposures 1, 5, 6 and 8 depends on risk measure. 

The last analysis we perform is the portfolio optimisation under value-at-risk and condi-

tional-value-at-risk constraints. 

We represent in Figure 4 the shape of the efficient frontier with 0.99  ( VaR is 

represented too). The results are reported in Table 6. 
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Fig. 4. Efficient frontier with 0.99 – CVaR optimisation 

From the figure and the data it’s evident the effect of the optimisation which allows a 

high risk reduction (or a high expected return improvement) with respect to initial portfolio. 

We conclude this theoretical overview by confronting with Markowitz mean-variance 

portfolio optimisation. 

It is a well known fact that for normally distributed loss functions these two approaches 

are equivalent and lead so to the same efficient frontier. However, in the case of non-normal and 

especially non symmetric distributions (as often occur in credit risk framework) the two ap-

proaches may lead to significant differences. 

We recall the original optimisation problem set up by Markowitz: 

1 1

min
n n

ik i k
x

i k

x x

subject to the constraints:

1

1

1 budget constraint

[ ] expected return constraint

0 , 1, , bounds on weights

n

i

i

n

i i P

i

i i

x

E r x r

x i n

where ir  is the rate of return of instrument i , cov( , )ik i kr r .

In our application, we found the following two efficient frontiers: 
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From the two figures we observe that for a given return, the Markowitz optimal portfolio 

has a higher CVaR risk level than the efficient return/CVaR portfolio. The difference reduces with 

high risk level. Nevertheless the two efficient frontiers are substantially different, as we expected 

from the previous theoretical considerations. 

Numerical results are contained in the following table. 

Table 6 

Optimisation results 1

Mean - 0.99-CVaR optimisation Mean-Variance Optimisation 

Std. Dev. 99%-VaR 99%-CVaR Exp. Return Std. Dev. 99%-CVaR Exp. Return 

1 002 911 4 182 184 6 127 243 3,28% 1 002 911 6 127 243 3,28%

236 702 758 727 1 115 341 3,03% 103 407 1 246 532 3,06% 

225 662 1 206 880 1 680 170 3,20% 193 903 1 829 451 3,20% 

332 099 1 441 174 2 128 275 3,28% 279 055 2 412 636 3,28% 

481 093 1 813 827 2 869 723 3,40% 406 724 3 318 911 3,40% 

781 290 2 573 326 4 193 968 3,60% 646 520 5 010 463 3,60% 

1 130 058 3 513 499 5 538 568 3,80% 862 259 6 547 801 3,80% 

1 314 882 4 093 889 6 127 304 3,87% 1 002 919 7 764 569 3,90% 

1 714 195 5 360 287 7 449 152 4,00% 1 170 244 9 018 529 4,00% 

2 335 246 7 361 701 9 895 611 4,20% 1 579 508 11 795 311 4,20% 

2 960 823 9 218 887 12 615 263 4,40% 2 030 301 14 973 267 4,40% 

3 661 476 11 421 073 15 504 267 4,60% 2 509 950 18 249 165 4,60% 

4 393 926 13 756 173 18 480 481 4,80% 3 008 233 21 734 893 4,80% 

5 091 946 15 898 348 21 542 825 5,00% 3 772 916 23 172 830 5,00% 

5 858 833 18 335 026 24 682 446 5,20% 5 440 317 24 840 751 5,20% 

7 491 714 24 499 628 28 455 353 5,40% 7 491 714 28 455 353 5,40% 

9 689 757 32 353 840 34 657 391 5,60% 9 689 757 34 657 391 5,60% 

11 956 634 40 173 122 42 510 573 5,80% 11 956 634 42 510 573 5,80% 

14 261 826 48 362 748 50 689 786 6,00% 14 261 826 50 689 786 6,00% 

16 591 500 56 443 219 59 008 027 6,20% 16 591 500 59 008 027 6,20% 

17 842 090 60 789 815 63 558 975 6,31% 17 842 090 63 558 975 6,31% 

                                                          
1 In grey the values of the original portfolio are reported. 
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6. Conclusions 

In the previous sections we presented our proposal for a new model for portfolio credit 

risk. In the framework of intensity-based model with copula function dependence structure we 

propose a solution which takes into consideration credit migration risk. 

We saw with the application in section 4 that such a risk increases risk measures like VaR 

and conditional-VaR respectively of about 5% and 10% in case of strong tail dependence. 

The examples in section 4 show the flexibility of the model as risk management tool in 

problems like measuring marginal risk contribution, defining risk reduction actions, or assessing 

portfolio selection in the context of risk-return efficient frontier. 

As future improvements, we can use our model to evaluate derivatives on credit portfolio 

with spread sensitivity. This kind of pricing is not possible with traditional binomial models. 

Another possible development is the introduction of systematic recovery risk which 

represents an important risk source not yet well represented in intensity based models1.
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