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Abstract

This paper uses a Multiple Attribute Decision Making (MADM) model to improve the 
out-of-sample performance of a naïve asset allocation model. Under certain conditions, 
the naïve model has out-performed other portfolio optimization models, but it also 
has been shown to increase the tail risk. The MADM model uses a set of attributes to 
rank the assets and is flexible with the attributes that can be used in the ranking process. 
The MADM model assigns weights to each attribute and uses these weights to rank as-
sets in terms of their desirability for inclusion in a portfolio. Using the MADM model, 
assets are ranked based on the attributes, and unlike the naïve model, only the top 50 
percent of assets are included in the portfolio at any point in time. This model is tested 
using both developed and emerging market stock indices. In the case of developed 
markets, the MADM model had 24.04 percent higher return and 53.66 percent less 
kurtosis than the naïve model. In the case of emerging markets, the MADM model 
return is 90.16 percent higher than the naïve model, but with almost similar kurtosis.
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Fund managers and individual investors spend considerable time 
looking for asset allocation strategies that will maximize their real-
ized returns. There are several portfolio selection models that use var-
ious optimization techniques to find optimal portfolios. Despite their 
theoretical appeal, these models often fail to outperform the naïve 
strategy of equal investment in all the assets in the portfolio. Yet the 
naïve investment strategy can be unwieldy when there are many as-
sets in a portfolio. This paper uses multiple attribute decision making 
(MADM) to develop a model that refines the naïve investment strategy 
by reducing the number of assets in a portfolio without compromising 
its performance. 

MADM models consider various attributes of individual assets and 
assign weights to each attribute. Using these weights, the model ranks 
each asset in terms of its desirability for inclusion in a portfolio. Using 
the MADM model, assets are ranked based on the attributes, and un-
like the naïve model, only the top 50 percent of assets are included in 
the portfolio at any point in time. Similar to the naïve model, the total 
investment is divided equally among these assets. The advantage of 
this asset allocation method is that it eliminates the least preferable 
assets from a portfolio, and still maintains the simplicity of equal al-
location of the naïve model.

The assets used in this paper are 16 developed and 16 emerging market 
stock indices. A separate motive of this paper is also to study how the 
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benefits of international diversification have changed during the past 10 to 15 years. The data covers a 
period from July 1999 to December 2015 for developed markets, and June 2002 to December 2015 for 
emerging markets. The results indicate that the ex-post returns of portfolios created using the MADM 
model outperformed that of the naïve strategy and had higher Sharpe ratios. In the case of developed 
market portfolios, the MADM model returns had lower skewness and kurtosis than the naïve model. In 
the case of emerging markets, the MADM model has higher average returns and Sharpe ratios, but had 
slightly higher skewness and kurtosis than the naïve model.

1 Ibbotson (1975), Hwang and Satchell (1999), Harvey and Siddique (1999), and Prakash et al. (2003).

1. LITERATURE REVIEW

For an investor, return and risk are the two most 
important factors to consider before choosing 
an investment. In Markowitz’s (1952) classical 
mean-variance framework, risk is measured by 
the standard deviation of expected returns, and 
the optimal allocation of assets in a portfolio is 
obtained by maximizing the expected return and 
minimizing the variance of the expected returns 
of the portfolio. Empirical studies have shown 
that the unconditional asset returns cannot be 
adequately characterized by their mean and var-
iance alone. Standard deviation measures both 
upside and downside deviations from the expecta-
tions, but investors are more concerned about the 
downside deviations from the expected returns. 
One way of measuring downside risk is to use the 
semi-deviation, which Markowitz (1959) advocates 
as a better measure of risk. For investors who are 
more concerned about the downside risk, those as-
sets with high downside risk will have higher risk 
premiums. Using a downside beta estimate, Ang et 
al. (2006) show that the downside risk premium for 
U.S. stocks can be approximately 6 percent.

Several empirical studies have found that stock re-
turns have negative skewness and excess kurtosis1, 
and therefore higher moments are relevant for es-
timating portfolio risk. Negative skewness increas-
es the downside risk of an investment. Negative 
skewness is a risk associated with bear markets, 
and inclusion of an asset that increases the skew-
ness of a portfolio is less desirable for the investor 
and should have a higher risk-premium (Harvey 
& Siddique, 2000). Galagedera and Brooks (2007) 
argue that investors with non-increasing risk aver-
sion will dislike assets with negative co-skewness 
with market returns and will expect higher re-
turns for such assets.

Apart from skewness, stock returns also exhib-
it kurtosis (Mandelbrot & Taylor, 1967). As in 
the case of co-skewness, assets that have higher 
co-kurtosis with market portfolio returns should 
be less desirable for investors, and hence should 
require a higher risk premium. Doan et al. (2010) 
tested the effect of co-skewness and co-kurtosis 
on U.S. and Australian stocks and found that both 
had significant roles in explaining stock returns in 
both markets.

The greatest advantage of a naïve diversifica-
tion model is its simplicity – there are no in-
put parameters to the model other than the set 
of assets. There are several recent papers that 
try to understand the reasons for the superior 
performance of the naïve models over the op-
timization models. Platen and Rendek (2012) 
use Naïve Diversification Theorem to suggest 
that naïve diversification optimizes log utility. 
According to Murtazashvili and Vozlyublennaia 
(2013), the naïve strategy is superior to the op-
timization models, when the data for estimat-
ing the parameters for optimization models are 
limited. Hwang et al. (2018) find that in large 
portfolios the naïve strategy outperforms the 
mean-variance optimization but has higher tail 
risk. This suggests that the outperformance of 
the naïve strategy represents investor compen-
sation for increased tail risk. Comparing a naïve 
model with other diversification strategies, 
Banerjee and Hung (2013) did not find any sta-
tistically significant difference in the economic 
profits between momentum strategies and the 
naïve strategy. 

Reliance on 60- and 120-month trailing returns 
for estimating the input parameters of optimi-
zation models may be the reason for the unfa-
vorable comparison of the optimization models 
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against the naïve model (Kritzman et al., 2010). 
A very long history of returns is required to ac-
curately estimate the expected returns for opti-
mization models (Merton, 1980). According to 
Platanakis et al. (2019) mean-variance models 
are superior to equal weighting for asset alloca-
tion, but less so when it comes to stock selection. 

There are some studies that disagree that the 
naïve model outperforms other optimal mod-
els. Disatnik and Katz (2012) studied the global 
minimum variance portfolio that is construct-
ed using a block structure to create a covariance 
matrix of asset returns and found that it outper-
forms the naïve model. Kirby and Ostdiek (2012) 
suggest that the research design by DeMiguel 
et al. (2009) focusing on mean-variance effi-
cient portfolios created a false conclusion that 
naïve strategies outperform. The focus on the 
Markowitz model as a comparison was subject 
to high estimation risk and high turnover. 

Based on the above discussions, the following hy-
potheses are tested:

H
1
: Portfolios selected using an MADM model 

will yield higher returns than the naïve mod-
el for a given set of investments.

H
2
: Portfolios selected using an MADM model 

will have lower tail risk than the portfolios 
created using a naïve model.

2. EMPIRICAL MODEL

In MADM models, there is a DM who considers 
available information and creates a ranking or 
weighting system to guide the decision making. 
There are three different approaches to selecting 
the weights of attributes: subjective, objective and 
integrated. This paper uses a correlation coefficient 
and a standard deviation (CCSD) integrated ap-
proach by Wang and Luo (2010). The basic CCSD 
model used in this paper assumes that there are n 
individual decision alternatives designated as: A

1
, 

……, A
n
, and these alternatives are evaluated us-

ing m attributes designated as: O
1
, ……, O

m
. Since 

the attributes are of different scale, they need to 
be normalized to eliminate dimensional units as 
follows:

For attributes that are considered benefits:

min

max min
,  1, , .

ij j

ij

j j

x x
z i n

x x

−
= =

−
  (1)

For attributes that are considered costs:

max

max min
,  1, , ,

j ij

ij

j j

x x
z i n

x x

−
= =

−
  (2)

where min

jx  and max

jx  are the minimum and max-
imum values of each set of attributes. The decision 
matrix can be written as follows:

11 1

1

.

m

n nm

z z

Z

z z

 
 =  
  


  


 (3)

To find a ranking system for the decision mak-
ing, a set of weights should be given for each of 
the attributes. Let W = (w

1
, ……, w

m
) be the set 

of non-negative weights, and the sum of these 
weights adds up to 1. Multiplying each of the nor-
malized attribute value with this weight will give 
the overall assessment value of each decision alter-
native as follows:

1

,  1, , .
m

i ij j

j

d z w i n
=

= =∑   (4)

The greater the value of d
i
, the greater the impor-

tance of that attribute in the overall assessment. 
Since the value of the weights are not known be-
forehand, it is necessary to see what happens as a 
specific attribute is removed from the overall deci-
sion matrix. An attribute O

j
 will be removed from 

the decision matrix, and the overall assessment 
value of the remaining decision alternative is cal-
culated as follows:

1,

,  1, , .
m

ij ik k

k k j

d z w i n
= ≠

= =∑   (5)

To assess the impact of removing an attribute from 
the decision matrix, its correlation with the over-
all assessment values can be calculated as follows:

( )( )

( ) ( )
1

22

1 1

1, , ,

n

ij j ij j

i
j

n n

ij j ij j

i i

z z d d

R j m

z z d d

−

= =

− −
= =

− ⋅ −

∑

∑ ∑
  (6)
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where

1

1
,  1, , .

n

j ij

i

z z j m
n =

= = …∑  (7)

1 1,

1
,  1, , .

n m

j ij k k

i k k j

d d z w j m
n = = ≠

= = = …∑ ∑  (8)

If the correlation R
j
 is high and close to one, then 

eliminating that decision alternative O
j
 will have 

a very little impact on the overall assessment and 
can be given a small weight. The other factor that 
should be considered in the weighting scheme is 
the variation of a specific attribute among the de-
cision alternatives. Here again, if the standard de-
viation of the attribute is low, it should be given 
a lower weight than one that has a high standard 
deviation. Based on this, the weights can be de-
fined as:

1

1
1, , ,

1

j j

j m

k k

k

R
w j m

R

σ

σ
=

−
= =

−∑
  (9)

where σ
j
 is the standard deviation of the values of 

O
j
 determined by:

( )2

1

1
1, , .

n

j ij j

i

z z j m
n

σ
=

= − =∑   (10)

The model is solved as follows:

Minimize

 
2

1

1

1
.

1

m
j j

j m
j

k k

k

R
J w

R

σ

σ=

=

 
 −
 = −
 − 
 

∑
∑

 (11)

Subject to 

1

1,  0,  1, , .
m

j j

j

w w j m
=

= ≥ =∑   (12)

The above model can be solved using any optimi-
zation model.

To use the above model in a portfolio context, one 
must pick the attributes for the model. In the clas-
sic mean-variance model, there are two attributes, 
expected return as the benefit attribute and the 
covariance as the cost attribute. Since the MADM 
model has no restriction on the number of attrib-
utes that can be included in the model, there is 

flexibility in choosing the attributes that are in-
cluded. This paper uses the following attributes in 
the MADM model.

a) Mean-returns for the past one year: Momentum 
strategies that involve investing in recent win-
ners and shorting recent losers have been shown 
to be profitable in many studies (Jegadeesh & 
Titman, 1993, 2001). This study uses average 
monthly returns for the past one year to cap-
ture the momentum effect as follows:

12

1

1

1
,

12
i i

t

r r
=

= ∑  (13)

where r
it
 is the return for the index i in month t.

b) Target semi-standard deviation: Risk-averse 
investors generally prefer assets that have low 
volatility for a given level of risk. The most 
commonly used measure of volatility is the 
standard deviation of asset returns. A draw-
back using standard deviation is that it takes 
into consideration both positive and nega-
tive deviation from the expected return. This 
model uses the target semi-standard devia-
tion to measure the downside risk using the 
following equation:

( )21
,

t

n

i it

r Target

SV Target r
n <

= −∑  (14)

where the monthly target return is 0.75 percent 
and the number of months n is sixty.

c) Correlation with S&P 500 index: High corre-
lation in the returns of assets in a portfolio 
reduces the benefits of diversification. In the 
mean-variance model, a full correlation ma-
trix is used. Even though using a full corre-
lation matrix is theoretically more appeal-
ing, initial testing using the MADM mod-
el showed that many of the correlations end 
up with very low weights and hence may not 
contribute much to the model. It can also be 
argued that for a domestic investor, the cor-
relation between the domestic and foreign 
markets is more important, and it should be 
one of the attributes that may be considered 
in the model. Correlation of monthly returns 
of ith country index and the S&P500 index is 
calculated as:
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( )500

, 500

500

,
.

i SP

i SP

i SP

Cov r r
ρ

σ σ
=  (15)

d) Co-skewness with S&P 500 index: There are 
several empirical and theoretical studies that 
show higher moments of the return distri-
bution are important in selecting portfoli-
os (Prakash et al., 2003). An investor with 
non-quadratic utility function and non-in-
creasing absolute risk aversion may prefer as-
sets with returns that have positive skewness 
and low excess kurtosis. Investors may con-
sider assets with returns that have high neg-
ative co-skewness and large co-kurtosis with 
market returns to be less attractive. (Doan et 
al., 2010). This model uses co-skewness be-
tween the monthly returns of ith index and the 
S&P500 index, which is calculated as:

( )2

500

, 500 2

500

,
.

i SP

i SP

i SP

Cov r r
γ

σ σ
=  (16)

e) Co-kurtosis with S&P 500 index: Co-kurtosis 
between the monthly returns of ith index and 
the S&P500 index is calculated as:

( )2 2

500

, 500 2 2

500

,
.

i SP

i SP

i SP

Cov r r
θ

σ σ
=  (17)

The above attributes, except the mean returns, are 
calculated using a rolling window of 60 months. 
For developed markets, the initial estimates of the 
attributes are made using the monthly returns 
from July 1999 to June 2004 and for emerging mar-
kets from June 2002 to May 2007. These estimates 
are used in the MADM model to rank the indi-
ces for that month, and only the top eight indices 
are chosen to be included in the MADM portfolio2 
with equal investment in each of the eight indices. 
For example, if the initial investment is $1, then 
investment in each index will be $1/8. The value of 
each investment i for the month t will be:

( ), , 1 ,
1 ,i t i t i tw w r−= +  (18)

where r
i,t

 is the realized return of ith index for the 
month t. The total value of the MADM portfolio of 
8 indices for the month t will be:

2 Also, portfolios with only top 4 and top 12 indices were tried. In the former case, this led to excessive turnover, and in the latter, the 
difference with the naïve portfolio became insignificant.

( )
8

, 1

, ,

1

1 .
8

M t

M t i t

i

w
w r

−

=

= +∑  (19)

For the first month, the value of the portfolio will 
be 1. The return of the MADM portfolio for the 
month t will be:

. , 1

,

, 1

.
M t M t

M t

M t

w w
r

w

−

−

−
=  (20)

For naïve portfolios equal investment is made in 
all 16 indices and the return for the naïve portfolio 
for the month t will be:

. , 1

,

, 1

.
N t N t

N t

N t

w w
r

w

−

−

−
=  (21)

At the end of each month, the new values of the 
attributes for the MADM model are recalculated 
by dropping the first month and adding the cur-
rent month. Using the new set of attributes, the 
indices are re-ranked using the MADM model. If 
an index that is currently in the top eight drops 
out of it, it is replaced with the one that comes into 
the top eight. The investment in those eight indi-
ces are made equal by selling the ones that gained 
in value and buying the ones that went down in 
value. The same process is used for the naïve mod-
el, except that all 16 indices are kept.

Since the portfolios are rebalanced at the end of 
each month, it is necessary to include the trans-
action costs before evaluating the performance of 
each portfolio. In the naïve strategy, the turnover 
is based on the changes in value of the asset due to 
its return during the period. In the MADM strate-
gy, only the top 8 assets are chosen to be included 
in the portfolio in a month. It is possible that in 
any given month an asset may be dropped com-
pletely from the portfolio and replaced by another 
in its place. In this respect it is possible that the 
turnover in the MADM model may be higher than 
that of the naïve model. To capture the economic 
cost of turnover, the following model is used. The 
weight of an asset j at the beginning of the peri-
od t is w

j,t
 and at the end of the month w

j,t+
. Due 

to difference in returns of each asset during the 
month, weights should be rebalanced to be equal 
for all constituents of the portfolio at the begin-
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ning of the month t+1. Let the new weight of each 
asset at the beginning of month t+1 be w

j,t+1
. The 

trade of each asset at the end of time t will then be 
|w

j,t+1
 – w

k,j,t+
|. Assuming that C is the transaction 

cost of each trade, the overall transaction cost for 
the time period t will be:

, 1 ,

1

.
N

j t j t

j

C w w+ +
=

⋅ −∑  (22)

Following DeMiguel et al. (2009), C is given a 
value of 50 basis points. The overall return of the 
portfolio is then reduced by the transaction cost 
for the month to get the wealth of the strategy as:

( )(1 , 1 ,

1

1 1 .
N

t t t j t j t

j

W W R C w w+ + +
=

= + − ⋅ −∑  (23)

The performance of each portfolio is calculated us-
ing the Sharpe ratio as follows:

,kk

k

SR
µ
σ

=  (24)

where kµ  is the return of the portfolio and kσ  
is its standard deviation. The higher moments of 
the portfolios are compared to see the difference 
between various investment strategies. 

3. DATA

The above MADM model is testing two sets of 
portfolios – one comprising developed market 
country index returns and the other comprising 
emerging market country index returns. Based 
on geographic diversity and data availability, sets 
of sixteen country indices are used as investment 
assets in the portfolios. The monthly dividend ad-
justed return for each country index is obtained 
from Wharton Research Data Services (WRDS). 
WRDS uses Compustat Global data for security 
prices to construct a market capitalization weight-
ed index for each country. To be included in a 
country index, a stock has to trade in one of the 
exchanges listed in that country and should be in 
the top 50 percent of the firms by market capitali-
zation in that country. 

Since the data availability varied across countries, 
the data from July 1999 to December 2015 for the 
developed markets and June 2002 to December 

2015 for the emerging markets is used. To calcu-
late the attributes that are inputs for the model, 
a rolling window of 60 monthly returns is used. 
The out-of-sample period for developed markets is 
from July 2004 to December 2015, and for emerg-
ing markets it is from June 2007 to December 2015. 
Since the time period in this study covers both the 
global financial crisis and the European debt crisis, 
it is of interest to study how the models behave in 
periods of high volatility.

Center for Research in Security Prices (CRSP) da-
ta is used to calculate the monthly returns of the 
S&P 500 index. For the risk-free rate, the 3-month 
T-bill interest rate is used, which is obtained from 
the Federal Reserve Economic Data (FRED). 
Monthly excess returns are calculated by subtract-
ing the risk-free rate from the monthly returns of 
the portfolios. 

4. RESULTS

Normality tests indicate that none of the re-
turns in this study are normally distributed and 
therefore higher moments need to be incorporat-
ed. Averages of the decision criteria used in the 
MADM model are given in Table 1. 

Panel A has average values of decision criteria for de-
veloped markets. The average mean monthly return 
for the past one year is the highest for Denmark at 
1.3 percent and the lowest for Japan at 0.6 percent. 
Average semi-standard deviation for Australia is the 
lowest at 4.52 percent and the highest for Finland at 
7.6 percent. Generally, all developed market returns 
had high correlation with the S&P 500 index returns. 
The correlation ranged from 0.63 for Hong Kong to 
0.86 for United Kingdom. Finland had the lowest 
negative co-skewness of 0.30 with the S&P 500 in-
dex, and Singapore has the highest at 0.64. Except for 
Belgium, Germany, Netherlands, Singapore, Sweden 
and the United Kingdom, all other countries has 
negative co-kurtosis with the S&P 500 index. The 
overall results indicate that mean monthly returns 
for the past one year and co-kurtosis have the largest 
variation among the developed markets.

The averages of decision criteria used in the 
MADM model for the emerging markets are given 
in Panel B. The mean of monthly returns for the 
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past one year has the lowest value of -1.46 percent 
for Greece, and China has the highest at 1.34 per-
cent. Chile has the lowest semi-standard deviation 
of 3.87 percent, while China has the highest at 9.75 
percent. All emerging market returns have posi-
tive correlation with the S&P 500 index, but are 
lower than that of developed markets. China has 
the lowest correlation of 0.37 and at 0.72, Poland 
has the highest correlation with the S&P 500 in-
dex. As in the case of developed markets, emerging 
markets also has negative co-skewness with S&P 
500 index. China has the lowest co-skewness at 

0.29, and Greece has the highest at 0.64. Except for 
Greece, all other emerging markets have positive 
co-kurtosis with the S&P 500 index. Overall, at-
tribute variability is higher for emerging markets.

Out-of-sample period excess returns are given in 
Table 2. 

Average monthly returns, Sharpe ratios, and sec-
ond and higher moments of the naïve and MADM 
portfolio with and without transaction costs are 
compared in Table 2. To understand the interna-

Table 1. Averages of decision criteria for the out-of-sample period

Panel A: Developed markets (July 2004 – December 2015)

Asset
Mean returns for 

the past 1 year

Semi std. 

dev.

Correlation with 
SP500 index

Co-skewness with 
SP500 index

Co-kurtosis with 
SP500 index

AUSTRALIA 0.0082 0.0452 0.7460 –0.5587 –0.5033

BELGIUM 0.0105 0.0585 0.7244 –0.6042 0.2761

DENMARK 0.0130 0.0567 0.7084 –0.6212 –0.0255

FINLAND 0.0071 0.0760 0.7238 –0.2998 –0.6691

FRANCE 0.0072 0.0561 0.8560 –0.5147 –0.0244

GERMANY 0.0082 0.0620 0.8481 –0.6112 0.8967

HONG KONG 0.0119 0.0721 0.6353 –0.4890 –0.7075

IRELAND 0.0062 0.0675 0.7019 –0.4703 –0.6397

ITALY 0.0043 0.0608 0.7763 –0.4749 –0.2766

JAPAN 0.0060 0.0545 0.5489 –0.6192 –0.8123

NETHERLANDS 0.0084 0.0587 0.8155 –0.5758 0.2348

NORWAY 0.0114 0.0673 0.7459 –0.5402 –0.4058

SINGAPORE 0.0086 0.0609 0.6875 –0.6431 0.1373

SWEDEN 0.0111 0.0584 0.7802 –0.4521 0.1654

SWITZERLAND 0.0065 0.0483 0.7998 –0.5319 –0.3547

UNITED KINGDOM 0.0072 0.0482 0.8653 –0.5344 0.1309

Panel B: Emerging markets (June 2007 – December 2015)

Asset
Mean returns for 

the past 1 year

Semi std. 

dev.

Correlation with 
SP500 index

Co-skewness with 
SP500 index

Co-kurtosis with 
SP500 index

BRAZIL 0.0058 0.0609 0.6631 –0.4294 0.0166

CHILE 0.0063 0.0387 0.5107 –0.2886 0.0164

CHINA 0.0134 0.0975 0.3677 –0.3533 0.0138

EGYPT 0.0022 0.0748 0.4478 –0.5032 0.0222

GREECE –0.0146 0.0925 0.6594 –0.6371 –0.0016

HUNGARY 0.0010 0.0794 0.6948 –0.5961 0.0111

INDIA 0.0119 0.0812 0.5938 –0.4716 0.0244

INDONESIA 0.0148 0.0785 0.6040 –0.5082 0.0228

MALAYSIA 0.0088 0.0438 0.5804 –0.4388 0.0105

MEXICO 0.0086 0.0488 0.7170 –0.5596 0.0191

PHILIPPINES 0.0126 0.0612 0.5649 –0.4619 0.0168

POLAND 0.0025 0.0680 0.7192 –0.5772 0.0110

SOUTH AFRICA 0.0108 0.0444 0.6634 –0.5338 0.0154

SOUTH KOREA 0.0065 0.0652 0.6633 –0.4767 0.0129

TAIWAN 0.0063 0.0652 0.6381 –0.3744 0.0085

THAILAND 0.0103 0.0695 0.5582 –0.5913 0.0137
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tional diversification benefits for a U.S. investor, 
the above returns are compared with the S&P 500 
index returns and portfolios created with a 50 per-
cent investment in the S&P 500 index and 50 per-
cent in either the naïve portfolio with transaction 
costs (NTA) or the MADM portfolio with trans-
action costs (MADMTA).

The results for developed markets are given in 
Panel A (Table 2) for the out-of-sample period 
from January 2005 to December 2015. The month-
ly average returns for MADMTA is 15.34 basis 
points higher than that of the naïve portfolio with 
transaction costs and 14.53 basis points higher 
than that of the S&P 500 index. The standard de-
viation of the monthly returns for the MADMTA 
is 7.52 basis points higher than that of the naïve 
portfolios with transaction costs and 6.92 basis 
points higher than the S&P 500 index. 

Sharpe ratios show that the MADMTA is superior 
to both the NTA portfolio and the S&P 500 index. 
Comparing the higher moments of the portfolio 

returns show that the MADMTA portfolio has 
lower skewness and excess kurtosis than the NTA 
portfolio. The skewness and excess kurtosis of 
S&P 500 index returns are lower than that of both 
MADMTA and NTA portfolios. What is interest-
ing is that the excess kurtosis of the NTA portfo-
lio is almost double that of the MADMTA, which 
validates the hypothesis of Brown et al. (2013) that 
the possible higher returns of naïve portfolios also 
increase the tail risk of these portfolios.

A simple diversification strategy of equal invest-
ment in the S&P 500 index and the MADMTA or 
NTA results in higher Sharpe ratios than invest-
ing only in one of these portfolios. This is an indi-
cation that there are diversification benefits to U.S. 
investors for investing in other developed stock 
markets.

The value of investing $100 in January 2005 in any 
one of these portfolios and continuing to reinvest 
at the monthly rate of return shows the advantage 
of MADM portfolios over the naïve and S&P 500 

Table 2. Properties of the out-of-sample period excess returns for various portfolio strategies
Panel A: Developed markets (July 2004 – December 2015)

Strategy Mean Std. dev.
Sharpe 

ratio Skewness Kurtosis
Investment 

value3

S&P 500 index 0.6588% 4.2985% 0.1533 –0.5438 0.5790 $257.21

MADM without transaction cost 0.8419% 4.3628% 0.1930 –0.9630 1.4971 $328.41

Naïve (1/N) without transaction cost 0.6672% 4.2898% 0.1555 –1.0256 3.2701 $260.08

MADM with transaction cost 0.8041% 4.3677% 0.1841 –0.9773 1.5329 $311.84

Naïve (1/N) with transaction cost 0.6507% 4.2925% 0.1516 –1.0438 3.3079 $254.27

S&P500 and MADM with transaction cost1 0.7314% 2.9522% 0.2478 –0.5164 0.8487 $303.70

S&P500 and Naïve with transaction cost2 0.6547% 2.9035% 0.2255 –0.5231 1.9889 $274.22

Note: 1 Portfolio with 50 percent in S&P 500 index and 50 percent in the MADM portfolio. 2 Portfolio with 50 percent in the 
S&P 500 index and 50 percent in the naïve portfolio. 3 Value of $100 investment in January 2005, which is reinvested each 
month at the out-of-sample return for each portfolio.

Panel B: Emerging markets (June 2007 – December 2015)

Strategy Mean Std. dev.
Sharpe 

ratio Skewness Kurtosis
Investment 

value3

S&P 500 index 0.3546% 4.6736% 0.0759 –0.6873 1.3061 $135.96

MADM without transaction cost 0.5622% 4.2716% 0.1316 –1.2887 5.3903 $170.73

Naïve (1/N) without transaction cost 0.2899% 4.6654% 0.0621 –1.0657 5.2574 $127.08

MADM with transaction cost 0.5201% 4.2753% 0.1217 –1.3082 5.4705 $163.54

Naïve (1/N) with transaction cost 0.2735% 4.6683% 0.0586 –1.0887 5.3320 $124.96

S&P500 and MADM with transaction cost1 0.4373% 4.2251% 0.1035 –1.0374 3.7327 $150.83

S&P500 and Naïve with transaction cost2 0.3141% 4.4469% 0.0706 –0.9726 3.5737 $131.72

Note: 1 Portfolio with 50 percent in the S&P 500 index and 50 percent in the MADM portfolio. 2 Portfolio with 50 percent in 
the S&P 500 index and 50 percent in the naive portfolio. 3 Value of $100 investment in August 2004, which is reinvested each 
month at the out-of-sample return for each portfolio.
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index. By December 2015, the investment value 
of the MADMTA portfolio increased to $311.84, 
while the S&P 500 index and NTA portfolios in-
creased to $257.21 and $254.27, respectively. The 
equally weighted portfolio of the S&P 500 index 
and the MADMTA portfolio increased to $303.70. 
Overall results indicate that a combination of the 
S&P 500 index and the MADMTA portfolio of de-
veloped market indices gives the best risk return 
combination for U.S. investors during the time pe-
riod studied.

Comparing the effect of transaction costs of the 
MADM and naïve portfolio shows that transaction 
costs reduced the monthly returns of the MADM 
portfolio by an average of 3.78 basis points and 
by 1.65 basis points for the naïve portfolio. The 
MADM portfolio had higher transaction cost, but 
it was compensated by higher overall returns.

The results of investing in emerging market indi-
ces using various investment strategies are given 
in Panel B (Table 2). Average monthly returns of 
MADMTA portfolios clearly outperform that of 
NTA and the S&P 500 index by 25 and 17 basis 
points during the out-of-sample period from July 
2007 through December 2015. Average monthly 
returns of the equally weighted portfolio of the 
S&P 500 index and MADMTA outperformed the 
S&P 500 index returns by an average of 8 basis 
points.

Risk as measured by the standard deviation of 
monthly returns for MADMTA was lower than 
both the S&P 500 index and NTA portfolios by 40 
and 39 basis points, respectively. Investing in an 
equally weighted portfolio of the S&P 500 index 
and MADMTA reduced the standard deviation by 
a further 4 basis points than the MADMTA port-
folio alone. As in the case of developed markets, 
the Sharpe ratios indicate the clear superiority of 
MADMTA portfolios over both S&P 500 index and 
NTA portfolios. The Sharpe ratio of MADMTA 
was almost double that of NTA portfolios. 

Unlike the developed markets, MADMTA port-
folios had higher skewness and kurtosis than that 
of the S&P 500 index. The difference in skewness 
and kurtosis between MADMTA and NTA is 
statistically insignificant. The value of $100 in-
vested in July 2007 increased to $163.54 for the 
MADMTA portfolios, $135.96 for S&P 500 index 
and $124.96 for NTA portfolios. The conclusion 
that can be drawn from this analysis is that in the 
case of emerging markets, the out-of-sample per-
formance of MADMTA portfolios is significant-
ly higher than that of NTA, albeit with slightly 
higher risk. From a diversification standpoint, an 
equally weighted portfolio of the S&P 500 index 
and MADMTA produced significantly higher re-
turns than the S&P 500 index alone, but with sig-
nificantly higher tail risk. These results support 
both hypotheses laid out in this paper.

CONCLUSION

The quest for the best portfolio optimization model is unending, and there are several models that stake 
claim for the top spot. The naïve model that allocates the investment equally in a given number of assets 
is favored as an asset allocation method for its simplicity, and under certain conditions it gives high-
er out-of-sample returns than the other more complex allocation models. This paper uses the MADM 
model to rank assets for inclusion in the portfolio and find that this method can improve the out-of-
sample performance of the naïve models.

A side-by-side comparison of MADM and naïve models using developed and emerging market indices 
clearly shows the better out-of-sample performance of the MADM model, especially in reducing the tail 
risk. The results also indicate that combining the international market indices with the domestic index 
can produce higher returns for U.S. investors.

MADM models are flexible in terms of the attributes that can be used in ranking the assets. This paper 
used only the moments of the return distribution and the correlation with the domestic market index 
as the attributes. Further research can be done with other attributes that can help refine the asset allo-
cation for more specific purposes.
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