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OPTIONS ON PENSION ANNUITY 

Shulamith T. Gross*, Rami Yosef**, Uri Benzion***

Abstract

We introduce a European (exotic) call option on a pension annuity. The option gives its 
owner the right to buy, for a specified lump sum, an ordinary annuity (pension) that starts at a 
specified future date  (“retirement age”).  Thus, instead of contributing monthly to a pension fund, 
one could buy this option and insure the terms of their retirement.  

We price the options under stochastic interest rates in both discrete and continuous time 
regimes. In the discrete time case, we use an order 2 autoregressive process (AR(2)). In the con-
tinuous time case, we use simulations of the short interest rate according to various models, such 
as CIR, and simulations of GARCH process estimated from real data.  

Key words: Autoregressive Process AR(2); GARCH Autoregressive Process; European 
call option; Stochastic Interest Rates.  

JEL Classification: G22.

1. Introduction 

We propose (exotic) call options on pension annuities, which are, in fact, pension insur-
ance. We price them under stochastic interest rates discrete and continuous time regimes, using 
real market data. Options on pension annuities provide pension insurance, and have recently been 
discussed by Milevsky and Promislow (Milevsky and Promislow, 2001) and Yosef, Benzion, and 
Gross (Yosef, Benzion, and Gross, 2003). Others, including Lee (Lee, 2001), Cairns (Cairns, 
2002), Ballotta and Haberman (Ballotta, and Haberman, 2003), Pelsser (Pelsser, 2003), Wilkie, 
Waters, and Yang (Wilkie, Waters, and Yang, 2003), and Boyle and Hardy (Boyle and Hardy, 
2003) investigated similar options, called guaranteed annuity options (GAO’s).  

The GAO option gives the option holder the right to receive at retirement the greater of a 
cash payment equal to the current value of the investment in the equity fund and the expected pre-
sent value of the life annuity obtained by converting this investment at the guaranteed rate.  The 
GAO option differs from the option that we propose in that it further gives the policyholder the 
right to choose either the annuity based on current market rates, or an annual payment using the 
guaranteed annuity interest rate.  

A call option on a pension annuity replaces in effect the traditional pension insurance 
model. Under the traditional model a person pays monthly premia into his pension fund through-

out his working life, and receives a monthly benefit of B  starting at a predefined age of retire-

ment rA .  Under the plan that we propose, a person aged x , rAx , buys a European call option 

on his pension annuity. This call option allows the option holder to buy his pension annuity at a 

specified strike price, at or prior to the age of retirement rA . The option holder is entitled to re-

ceive the pension benefits only if the insured is still alive at retirement age, and then throughout 
the insured’s life in retirement. Thus instead of contributing monthly payments to their pension 
fund throughout their working lives, individuals could buy our proposed option as insurance, re-
placing the monthly premia by a two-installment system:  one at age x  when the option is bought, 

and one at exercise time at or prior to retirement age, when the option is exercised at the pre-
specified strike price.  

Yosef, Benzion, and Gross, (Yosef, Benzion, and Gross, 2003) used a constant interest 
rate to simplify the pricing of options on traditional pension contracts in discrete time.  In this pa-
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per we propose to extend their work in two directions: we replace the constant interest rate by sto-
chastic interest rates and we do this, both in discrete and continuous time regimes. Milevsky and 
Promislow, (Milevsky and Promislow, 2003) considered both stochastic discrete and the continu-
ous interest rates, but treated primarily options on pure endowments.  

Existing treatments, including those of GAO’s, evaluate pension annuity options using a 
theoretical Martingale measure that is hard to estimate from observed data.  Their formulae depend 
directly on the special properties of the Martingale measure and do not hold for the empirical 
measure associated with real world interest rates.  We provide a valuation of annuity options that is 
computable from the empirically estimable short rate process and its associated term structure of 
interest rates. Our formulae are general and do not depend on any particular model used to fit em-
pirically observed interest rates or the term structures of interest rates. They provide a model-
independent computational vehicle rather than an explicit formula. The convergence of infinite 
sums involved in the discrete time case, and the integrals in the continuous time case, depends 
only on the finite lifetime of the insured, and requires no extra assumptions.  

We first present discrete (Section 2) and continuous time (Section 3) formulae for com-
puting the value of a traditional pension insurance in which the insured pays a single premium at 

age x  to receive a monthly pension benefit B  from the age of retirement rA  through death, un-

der any stochastic structure for the short and term structure of interest rates. We then use the for-
mulae to price options on pension annuity plans.  

We apply these formulae to simulated data from discrete and continuous time models. 
The data on which we base our simulations is the monthly Bank of Israel nominal bank rate series 
from 1/1985 to 12/2002 for the discrete time simulations.  For the continuous time we use the 
monthly Eurodollar annualized deposit interest rates for 4/1953 through 5/2003 published by the 
Federal Reserve in its H.15 database. The choice of data is quite arbitrary, except that it serves to 
fit a stochastic model for the short rates from two different sources, providing estimated parameter 
values for the simulations that follow.  We then present tables for the pension annuity option mean 
values and standard deviations as a function of insured age, strike price, strike time, mean short 
interest rate, and interest rate process volatility. 

A constant volatility discrete autoregressive process [See (Panjer and Bellhouse, 1980) 
and (Parker, 1994)] of order two adequately fits the Israeli data. For the Eurodollar data we tried 
various term structure models based on stochastic volatility short rate models found elsewhere in 
the literature [e.g., CIR model, )Cox, Ingersoll, and Ross, 1985)], but found that none of these 

models fit our empirical data very well. Chan, Karolyi, Longsta  and Sanders (Chan, Karolyi, 

Longsta  and Sanders, 1992) have obtained similar results for different empirical data. We there-

fore resorted to the stochastic volatility ARCH-GARCH discrete approximations to the continuous 
models. The parameters we estimated for the ARCH-GARCH models were then used for generat-
ing data in the continuous time simulation.  

 We assumed that real world investors have observed the short rate structure for a long 
time and have learnt the laws of motion and the parameters of the dynamics of the short rate.  
These laws induce expectations about future short rates that in turn induce a term structure with 
implied forward rates, which we use in pricing or discounting cash flows.  In other words, we 
use empirical data to estimate the real-world short rate process, and use these expectations to de-
termine the term structure and its associated forward rates. Because the Eurodollar deposit rate (or 
Bank of Israel interest rate) process embodies the same risk levels as the cash flows we priced, we 

can now use the implied forward rates ,..., 12 rr  to price our cash flows.  

We emphasize that premia and annuity option prices depend on two stochastic phenom-
ena: the interest rate process and the insured lifetime, which itself may be modeled as a stochastic 
process because lifetime distributions may vary in time.  In our simulations we simulated stochastic 
rate processes using estimated parameters from empirical data.  However, rather than model the 
survival distribution, we used published Israeli and US life-tables for computing conditional sur-
vival probabilities in the time-independent, non-dynamic survival case.  Life tables used by the Is-
raeli insurance industry until approximately ten years ago were in fact British tables. The most 
commonly used table has been the A (1967-1970) table, which we use in our simulations in the discrete 
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time case. In the continuous time simulations we used both American life tables, and American inter-
est rate data.  American life data were obtained from the US Decennial life tables for 1989-1991,
table for the total population, for computing conditional survival probabilities in the time-
independent, stochastic survival case. 

The choice of life-tables over specific probability distributions, or specific dynamic survival 
processes, as was done by Milevsky and Promislow (Milevsky and Promislow, 2001), was indi-
cated by the fact that insurance companies traditionally use life-tables rather than fitted survival 
distributions.  Also, the presentation of our formulae in terms of life-table, time-invariant, and con-
ditional probabilities, permits a simple computational adjustment to incorporate time dependent 
life-table conditional probabilities. We shall indicate the changes required in the presentation that 
follows. 

Finally, we note that other contexts in which two or more stochastic phenomena govern the 
life of a call option have been studied in the literature. Two important ones are options on default-

able bonds [see e.g., Du y and Singleton (Du y and Singleton, 1997)], and options on Asian exchange 

rates in a two-currency economy [see e.g., (Nielsen and Sandmann, 2002)]. In the first, the default haz-
ard is used to adjust the instantaneous interest rate. In the second, both the foreign and domestic 
currency zero-coupon bond prices are used to model the exchange rates.  In both cases the two sto-

chastic phenomena are assumed to be independent, even though the assumption is questionable in both 
cases. It is far more reasonable in our case.  

Our presentation is divided into discrete and continuous time modeling of forward rates, with 
corresponding formulae and simulations. The models actually employed in the discrete case are 
fixed volatility autoregressive processes, whereas the discrete approximations used in the continuous time 
forward rate processes are stochastic volatility models. Nonetheless, a quick comparison of results 
presented in Tables 2 and 7 for the two cases, for identical ages at annuity option purchase, identical 
strike prices and average forward rates, are rather similar. This is true despite the fact that the sources of 
empirical data from which volatility parameters were estimated are different, and the first is based on 
a constant volatility autoregressive process of order two, and the second is based on a stochastic 
volatility, autoregressive model of order two. The life tables used in the two cases belong of course 
to the different countries of origin of the data. 

Our simulation results display mean and standard deviations for annuity option prices as 
functions of age at annuity option purchase, strike price, and average forward rate. We emphasize 
that the standard deviations reported are the standard deviations of the (stochastic) option price as 
estimated from the simulation. We found it to be very stable as the number of simulations in-
creased. It is an inherent property of the option price that depends on the two stochastic phenomena 
of age at death and forward interest rates. This is the case because we used parameter values that were 
estimated from real data in two very different countries and economies. No amount of extra simula-
tions will reduce these standard deviations. These relatively large standard deviations are an inherent 
property of options on annuities in a stochastic interest rate economy. 

 2. Pricing Traditional Pension Annuity Plans: The Stochastic Discrete 

Force of Interest Case  

Consider a traditional pension insurance in which an insured person, age x , buys pension 

insurance with a single premium, guaranteeing a B  annuity from the age of retirement, rA ,

through death. Assume that interest rates change at discrete time points, and let the series 

trrrrrr ,...,,,,,... 21012  denote the stochastic series of forward interest rates, where 0t  at 

age x of the insured. The risk embodied in these rates is the risk of cash flows we price. It is convenient 

at this point, foreseeing the need to model the stochastic forward interest rate, to introduce instead 
the force of interest series  

,1log tt r  (1)

and the cumulative force of interest 



Investment Management and Financial Innovations, Volume 4, Issue 3, 2007 109

,
1

t

i

it (2)

which are not necessarily positive quantities bounded between zero and one,  and thus easier to 
model. See Panjer and Bellhouse (Panjer and Bellhouse, 1980) and Parker (Parker, 1994). 

2.1. Pricing Pension Plans Under Discrete Stochastic Interest Rates  

Given the series of cumulative force of interest, the single premium paid by an insured aged x ,

to retire at age rA , rA  > x, and receive B monthly thereafter until the age at deathT , denoted by

xxA S
r

, is given by  

Ttr

r

A

xtxxA BS ,exp

    (3) 

where ,...,,...,,, 21210 denote the stochastic series of forces of forward interest rates, 

which we shall now denote simply by .  Notice that xxA S
r

 is random and its expected 

value is, by the chain rule of conditional expectations, and the independence assumed between 

andT ,

)],|([][ xxATxxA SEESE
rr  (4)

where E  refers to the expectation with respect to the stochastic force of interest, and TE refers 

to the expectation with respect to the age at death whose conditional probability, given the person 

had already survived till age x , that he will survive beyond rA  is denoted, as usual, by xxA p
r

.

We emphasize that xxA S
r

 is a complicated (not multiplicatively separable) function of T and

of . Therefore, even though we assume that T  and  are independent, we cannot use the 
product rule for expectations, and we resort instead to the use of the chain rule. We then obtain 

,1][
00 t

AtxxA

t

AtAxxAxxA txrArr

txrA

rrrr
MppBeppBESE  (5)

where )(uM
t

denotes the moment generating function of t at u . Furthermore, 

,|| xxATxxATxxA SVARESEVARSVAR
rrr

 (6) 

see Ross (2001). From (3) we compute  

),1(|
0 0

222

txrAtxrArrrr
MpppBSEE

t t

AtAtxxAxxAT

 (7) 

),1()1(|
0 0

222

txrAtxrArrrr
MMpppBSEE

t t

AtAtxxAxxAT
 (8) 

and
22 ||| xxATxxATxxA SESESVAR

rrr

,)(

2

0 0

222

t t

AtAtxxA
txrA

r

txrA

rr
epeppB  (9) 

so that |xxA SVAR
r

is given by the sum in (8) and (10) below 
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 (10) 

So far we have not assumed any specific probabilistic structure for the interest rate, and 
no form for the survival distribution which we shall compute using life tables.  We now special-
ize our results to the case of autoregressive series of order 2, AR(2) for the force of interest se-

ries . As we discovered both in the cases of Israeli short-rate data, and US short rate data, 
AR(1) processes fit to the force of interest data led to fitted process parameters that upon simu-
lation yielded a large fraction of negative interest rates.  However, AR(2) processes led to very 
few negative rates that could be turned into zero without substantially altering the process. Spe-
cifically, we fit the process

,2211 tttt  (11) 

where the innovations t are independent normal 
2,0  variables,  is the fixed mean of the 

process, and 1  and 2  are the auto regression parameters of orders 1 and 2 respectively that 

satisfy the requirements 11 1 , 121 , 121 , insuring that the series is sta-

tionary. For this process, the moment generating function is t , at any fixed time t , is given by 

)(22

)( uGuuteuM
t

,  (12) 

with

),()1()()( 21 xGxGxG        

,
1

1

1

1

2
)(

2

2

i

i
i

i

i
i

x
xG

where 1  and 2  are reciprocals of the roots of the autoregressive process characteristic equa-

tion

,0)1()( 2

21 rrr  (13) 

(See Panjer and Bellhouse (Panjer and Bellhouse, 1980) and Parker (Parker, 1994) and  

2121

2

21

1

)1(
,  (14) 

where 1  and 2  are the auto regression parameters. Since we can also write  

,)(
))(()()(2 2222 stGutGsGuuts

euM
ts

 (15) 

we have an explicit formula for ][ xxA SE
r

 and ][ xxA SVAR
r

 in the normal autoregressive 

AR(2) case as well. We emphasize again that in these models volatility is assumed to be fixed.  

2.2. Options on Traditional Pensions – The Stochastic Discrete-Time Case 

The price of a European call option on a discounted pension annuity for a particular re-

alization, or sample path of is

xrA

r
KeSC xxA ,   (16) 

where T  denotes the random time of death, which is known to exceed x , xAr , K  is the 

strike price of the option, and ),0max( aa . Recall that xT  at the time of purchase of 
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the call option, and rAT  at retirement, the exercise date of the option. Also t  when xT .

Using the usual conditional expectation  

,|,|
1 0r

r

xrAkxrA

r

At

At

k

rxxA KBeATtTPpxTCE  (17) 

and

.||
1 0r

r

xrAkxrA

At

At

k

KeBeExTtTPxTCE  (18) 

We do not further specialize this formula to the AR(2) Gaussian case because the 
heavyside (plus) function prevents us from writing this expression for the conditional expecta-

tion of C , in terms of known quantities like Gaussian moment generating functions.  This for-

mula is however easily amenable to simulation.

2.3. Simulation Studies: The Discrete Constant Variance Case 

Consider the case of insured individuals whose ages are as specified in the table below 
and who are interested in buying a European call option on their pension annuity of $2000 per 
month which will be paid from their retirement to their death.  Assume that age of retirement 

is 65rA , and the force of interest follows a constant variance AR(2) autoregressive model 

with parameters 43586.11  and 47069.02  and  007.0  per year.  These pa-

rameters were obtained upon fitting an AR(2) model to the force of interest to the monthly Is-
raeli nominal bank-rate interest series from 1/1985 to 12/2002. This rate incorporates the appro-
priate market risk premium relevant to the cash flows we price. The observed origin of this 
parameterization helped insure that few negative interest rates were produced in the simulation, 

and few interest rates larger than 1 were obtained in the simulation. The parameter  from (11) 

was chosen to correspond to 3%, 5%, and 10% annual rate respectively.  The single mean pre-
mium for the pension plan, for the three average rates, and the three ages at purchase time, are 
given in Table 1. The results reported in Table 1 may be compared with the corresponding val-
ues under fixed interest rate of 3%, 5%, and 10% annual rate, respectively.  

For example, the mean price of the pension plan, at 10% interest rate, for an insured 
aged 40, is $11,421($3,323), whereas the price of the same plan for that individual at a fixed 
rate of 10% is $13,552; Similarly, at age 50, with the same mean rate, the mean price was 
$31,511($8,172), and the fixed rate price was $33,880. The values in parentheses refer to the 
simulation standard deviations, moderating some of the discrepancy observed in the mean sto-
chastic price and the fixed rate price.  

In this simulation study we actually simulated the force of interest series only, as we 
used actual life tables that gave us the conditional expectation of the single premium given the 
force of interest series explicitly.  The simulation standard deviations we report in parentheses 
under the mean premia in Table 1, are in fact estimates of the conditional standard deviation of 
the premium given the force of interest series. All simulation results reported in this paper rep-
resent the outcome of 10,000 simulation runs from the sample path of the interest rates series.  

In the same simulation we also computed the mean price of the European option as a 
function of the mean force of interest, the age of the insured at the time of purchase of the op-
tion and the strike price, when the option is exercised at retirement time. The results are then 
compared to the corresponding values under non-stochastic interest rates. Again, the expected 
prices under the time-invariant interest rate and the stochastic AR(2) force of interest series with 
fixed variance are strikingly similar. The simulation standard deviations reported are again esti-
mates of the conditional standard deviations of the option price given the interest rate series.  
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Table 1 

The mean single premium by age at purchase, and by annual interest rate with an AR(2) con-
stant volatility model for the interest rate* 

Age x \ Mean r 10% 5% 3% 

30 $4,312 ($1,415) $34,048 ($11,644) $79,821 ($27,833)

40 $11,421 ($3,323) $54,870.9 ($16,811) $105,390 ($33,052)

50 $31,511 ($8,172) $92,091 ($25,294) $144,889 ($40,795)

* The number in parentheses represents the simulation standard deviation for the corresponding 

parameter. The autoregression parameters are 43586.11
 , 47069.02

 and 007.0 .

Table 2 

Mean cost and standard deviation of a European call option by strike prices,  
age at purchase, and mean interest rates** 

Age x K E(C) E(C) E(C) 

mean rate  %10r %5r %3r

30 $30,000 

$40,000 

$50,000 

$3,506 ($1,028) 

$3,258 ($966) 

$3,013 ($906) 

$29,455 ($8,754) 

$28,041 ($8,404) 

$26,643 ($8,062) 

$70,564 ($21,125) 

$67,720 ($20,427) 

$64,910 ($19,742) 

     

40 $30,000 

$40,000 

$50,000 

$9,325 ($2,291) 

$8,668 ($2,161) 

$8,020 ($2,034) 

$47,691  ($11,921) 

$45,411  ($11,477) 

$43,160  ($11,043) 

$93,636 ($23,617) 

$89,882 ($22,892) 

$86,172 ($22,183) 

     

50 $30,000 

$40,000 

$50,000 

$25,442 ($4,967) 

$23,630 ($4,683) 

$21,842 ($4,409) 

$79,044 ($15,742) 

$75,218 ($15,158) 

$71,439 ($14,590) 

$127,066 ($25,588) 

$121,903 ($24,810) 

$116,801 ($24,054) 

** The number in parentheses represents the simulation standard deviation for the corresponding 

parameter. The autoregression parameters are 43586.11
 , 47069.02

 and 0005.0 .

The results reported in Table 2 may again be compared to the corresponding values un-
der fixed interest rate of 3%, 5%, and 10% annual rate, respectively.  

For example, the mean price of the pension plan, at 5% interest rate, for an insured age 
30, with a strike price of $30,000 and $40,000 are $29,455($8,754) and $28,041($8,404) re-
spectively. The corresponding values for fixed interest rate were $29,995 and $28,455.  
Whereas the price of the same plan for that individual at a fixed rate of 10% is $13,552. Simi-
larly, at age 50, with the same mean rate, the mean price was $31,511($8,172), and the fixed 
rate price was $33,880. Again we note that these results may be partially explained by price 
volatility in the stochastic case, and the upward trend due to interest rate volatility is again no-
ticeable.

We remark that the formulae we presented for the expected value of a single premium, 
and the expected cost of a single option on the pension benefit, can be extended to the dynamic 
survival case where the survival distribution depends on time.  To visualize the situation, con-

sider the discrete-time stochastic process of survival that starts at time 0t  at state 0 (alive), 

and transitions into state 1 (dead), at some timeT . State 1 is absorbing for this survival process.  
We assume the process to be Markovian. The n-step transition probability for this process 

]0)(|1)([ tXntXP  may depend on calendar time t , making the process a non-

homogeneous Markov process. Written differently,  
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]0)(|1)([ tXntXPt
][

][

tTP

ntTP

t

t . Thus in formulae (5) and (18) we need to replace 

xxA p
r )(  by 

][

][

xTP

ATP

x

rx  and 
rAt p by

][

][

rA

rA

ATP

tATP

r

r .

2.4. Simulation Studies: The Discrete Constant Variance Case -AR(2) 

In order to study the effect of larger volatility on the single premium of a pension annu-
ity plan, and the price of a European option on it, we simulated homoscedastic series with the 
same autoregressive parameters as before, but with different standard deviations. We were seri-
ously limited in varying  because the simulated series tended to explode when the standard 

deviation was substantially larger than the empirical one fitted to real data. Because the stan-
dard deviations thus remained in a fairly short interval, we report only the results for the small-

est and largest  we used 0012.01  and 006.02 .

Table 3 

The mean single premium by age at purchase, and mean annual interest rate for an AR(2) con-
stant volatility rate model for two values of 

 Age x \ Mean rate r 10% 5% 3% 

30

2

1 $4,096  ($265) 

$4,140  ($1,364) 

$32,234  ($2,174) 

$32,698  ($11,241) 

$75,435   ($5,186) 

$76,663  ($26,896) 

40

2

1 $11,199  ($659) 

$11,288  ($3,428) 

$53,615  ($3,312) 

$54,241  ($17,328) 

$102,795  ($6,496) 

$104,190  ($34,095) 

50

2

1 $31,208  ($1,519) 

$31,468  ($7,713) 

$90,900  ($4,686) 

$91,922  ($23,893) 

$142,781  ($7,548) 

$144,585  ($38,575) 

The mean premium was only slightly raised due to an increased standard deviation. 
Note the almost linear effect of the rate process standard deviation on the premium simulation 
standard deviation.  When the former was multiplied by 5, the latter was also approximately 
multiplied by 5. This linear relationship is not exact, but held in our simulations for the inter-
mediate standard deviations as well.  

Using the same parameters, and the same simulation runs, we also estimated the mean 
price of a European option on the pension contracts priced in Table 3.  Again we may compare 
the results with constant interest rate, and under two volatility values, under the same set of 
conditions on age at purchase, mean interest rate, exercise time, and strike price.  Remarkably, 
the mean price of the option increased slightly with a higher rate process standard deviation, 
and its standard deviation was approximately proportional to the process standard deviation.  
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Table 4 

Mean price and standard deviation of a European call option by strike price and mean 

Age x 
K, 1 , 2

E(C) E(C) E(C) 

%10r %5r %3r

30 $30,000

2

1 $3,304 ($194) 

$3,321 ($984) 

$27,675 ($1,650) 

$27,858 ($8,350) 

  $66,207 ($3,971) 

  $66,701 ($20,122) 

$40,000

2

1 $3,067 ($182) 

$3,082 ($921) 

$26,321 ($1,580) 

$26,498 ($7,997) 

$63,485 ($3,832) 

$63,966 ($19,418) 

$50,000

2

1 $2,833 ($170) 

$2,847 ($860) 

$24,984 ($1,512) 

$25,154 ($7,652) 

$60,795 ($3,695) 

$61,264 ($18,727) 

40 $30,000

2

1 $9,034 ($468) 

$9,050($2,376) 

$46,024 ($2,408) 

$46,131 ($12,186) 

$90,194 ($4,742) 

$90,430 ($23,987) 

$40,000

2

1 $8,385 ($439) 

$8,400 ($2,228) 

$43,772 ($2,309) 

$43,876 ($11,680) 

$86,485 ($4,581) 

$86,716 ($23,162) 

$50,000

2

1 $7,745 ($411) 

$7,759 ($2,083) 

$41,548 ($2,212) 

$41,649 ($11,186) 

$82,820 ($4,423) 

$83,046 ($22,352) 

50 $30,000

2

1 $25,168 ($1,049) 

$25,236 ($5,343) 

$77,991 ($3,329) 

$78,196 ($16,949) 

$125,204 ($5,407) 

$125,531 ($27,524) 

$40,000

2

1 $23,359 ($996) 

$23,425 ($5,077) 

$74,173 ($3,220) 

$74,373 ($16,402) 

$120,052 ($5,262) 

$120,372 ($26,794) 

$50,000

2

1 $21,575 ($945) 

$21,639 ($4,821) 

$70,402 ($3,114) 

$70,598 ($15,869) 

$114,961 ($5,120) 

$115,275 ($26,083) 

* The number in parentheses represents the simulation standard deviation for the corresponding 
parameter.  

2.5. Pension Option Prices as Function of Strike Price and Arbitrary Exercise 

Date

We now allow purchasers of annuity pension options to exercise their options contract 
before retirement. Thus exercise time for pension options may be anywhere between purchase 

time and rA , the age of retirement. The mean option price for strike time sT , rs ATx , is 

then

1 0

]|[)|(
r

r

xsTrAkxrA

At

At

k

KeBeExTtTPxTCE  (19) 
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Again, this formula is completely general, and does not depend on any particular model 
for interest rates.  It is strictly a computational formula, and is not particularly useful for theo-
retical evaluations. We present our simulation results for various exercise times in Table 5.  A 
quick perusal through the table reveals that as expected, as the exercise age decreases from the 
age of retirement to the age at purchase, the mean price and its standard deviation also decrease. 
Other table results require few comments. Obviously, when exercise age is smaller than age at 
purchase, the premium and the option price are null. As expected both the mean premium and 
the mean price and the corresponding standard deviations are highly affected by the exercise 
date, in the predictable direction.  

Table 5 

Mean price and standard deviation of the price, mean interest rate and exercise date for an 
AR(2) interest rate*  

Age x K, Exercise Age E(C) E(C) E(C) 

%10r %5r %3r

30 $30,000

55

45 $230 ($372) 

$2,290 ($891) 

$22,422 ($8,696) 

$26,588 ($8,687)

$63,320 ($21,804) 

$67,091 ($21,398)

$40,000

55

45 $21 ($102) 

$1,703 ($789) 

$19,025 ($8,252) 

$24,368 ($8,261)

$58,462 ($21,196) 

$63,378 ($20,670)

$50,000

55

45 $1.6 ($16) 

$1,172 ($688) 

$15,834 ($7,786) 

$22,202 ($7,854)

$53,739 ($20,594) 

$59,730 ($19,965)

40 $30,000

55

45 $676 ($1,263)

$6,165 ($2,394)

$36,778 ($14,263) 

$43,681 ($13,552)

$85,210 ($28,318) 

$90,351 ($27,063)

$40,000

55

45 $98 ($461) 

$4,579 ($2,174)

$31,184 ($13,850) 

$40,021 ($13,046)

$78,642 ($27,952) 

$85,337 ($26,362)

$50,000

55

45 $12.5 ($107) 

$3,147 ($1,935)

$25,940 ($13,332) 

$36,455 ($12,555)

$72,259 ($27,550) 

$80,412 ($25,677)

50 $30,000

55

45 $0 ($0)

$16,664 ($6,176)

$0 ($0) 

$72,394 ($19,930)

$0 ($0)

$122,866 ($32,245)

$40,000

55

45 $0 ($0)

$12,299 ($5,842)

$0 ($0) 

$66,243 ($19,599)

$0 ($0)

$115,958 ($31,885)

$50,000

55

45 $0 ($0)

$8,382 ($5,390)

$0 ($0) 

$60,252 ($19,253)

$0 ($0)

$109,176 ($31,518)

* The number in parentheses represents simulation standard deviation, e.g.  means, exercise date.  
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3. Stochastic Interest Rates: The Case of Continuous Time

3.1. Continuous Models: Some History 

Financial contracts that depend on levels of interest rates, with zero-coupon discount 
bonds being the prime example, but also including options on pension annuity contracts, have 
attracted much attention in the financial literature in recent years. Pricing these contracts re-
quired the formulation of adequate stochastic models for short-term interest rates in continuous 
time. Recent models for the short rate process, or the forward-rate process, may be divided into 
two groups that are distinguished primarily by the way their volatility is modeled. Their basic 
structure is that of a continuous autoregression, usually of order 1, [see, e.g., Koedijk, Nissen, 

Schotman, and Wol  (Koedijk, Nissen, Schotman, and Wol  , 1997), and the many references 

therein]. Older models, such as Merton’s (Merton , 1973) and Vasicek’s (Vasicek, 1977), de-
rived via an argument of a simple economic equilibrium, feature a fixed volatility.  Cox, Inger-
soll, and Ross (CIR, 1985), derived the first stochastic volatility model from first economic 
principles. Their is a continuous time autoregressive model with conditional volatility, given the 

‘past’ of the process up to time t  , just prior to time t , that is the square root of the short rate 

at time t . Chan, Karolyie et al. (op. cit.) have generalized the CIR model into a family of con-

tinuous autoregressive models with stochastic volatility, that include many of the important 
models in use up to that time. The family is specified by the stochastic differential equation  

,)( ttttt dBrdtrdr   (20) 

where , , and 0 , and tB  is a standard Brownian Motion. The stochastic volatility t

is adapted to the tB  process (essentially determined at time t  by its history up to time t ),

where the conditional volatility is
ttt rV * .  The  parameter in this model has been 

dubbed the elasticity parameter because it controls the distance the process reaches in the posi-

tive half-space, and the frequency of its ‘waves’. The CIR process features 5.0 .  Chan, 

Karolyie et al. (op.  cit.)  have found the value 5.1 to best fit their data of empirical 

monthly interest-rates of US T-bills. Subsequent studies have disputed this finding, suggesting 
that the high value of the elasticity parameter gamma was in fact a result of model misspecifica-
tion that did not take into account the new regime imposed by the Federal Reserve on interest 
rates [see Koutmos (Koutmos, 1998) and references therein], and in fact the CIR model, featur-

ing 5.0  fits the data locally far better.  In forward rate simulation of these continuous 

models, the Euler approximating discrete model  

11111 )( tttttt Zrrrr  for ,...,2,1,0,1,2...,t   (21) 

where tZ  represents an independent, identically distributed sequence of Normal (0, 1) deviates, 

is used.  More recent empirical studies of short-term interest rates (See Koutmos (Koutmos, 
1998, 2000) and Bali (Bali, 2003)) suggest that discrete time approximations to such continuous 
processes by AR(1) or AR(2) models with ARCH or GARCH terms for the conditional volatility 
given the past of the interest rate process, fit much empirical data far better. The latter processes 
are reported to account for prolonged walks observed in empirical interest rate series in the 
positive half-space, without causing frequent negative rates. The simplest instance of a linear 
ARCH-GARCH (discrete time) model is an autoregressive model AR(k)  

k

j

tjtjt rr
1

0 ,)(  (22) 
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where the errors ttt ZV 5.0
 and the tZ  are independent identically distributed standard  

normal variates and the volatility process tV , in the GARCH (p, q) specification, is given by the 

autoregression

,
1 1

2

0 jt

p

j

q

j

jjtjt VV  (23) 

with fixed parameter vectors and .

More recent volatility models that are linear combinations of elasticity terms, and 
ARCH-GARCH terms, have also been proposed by Bali (op. cit.). He also proposed two-factor 
models which describe the interest rate process using a continuous autoregression with errors 
given by one Brownian Motion, and a conditional volatility model, also an autoregression, with 
another Brownian Motion, independent of the first.  Although these two-factor models seem 
promising, we do not pursue them in this work.  

3.2. Pricing Traditional Pension Annuity Plans and European Options  on An-

nuity Pension Plans 

In our modeling of the dynamic forward interest rate, or interest force, in continuous 
time, and fitting it to empirical data, we have, of course, used the discrete Euler approximation 
described in equation (21).  The empirical data we used for fitting a continuous model, via its 
discrete approximation, are the monthly Eurodollar annualized deposit interest rate series, from 
6/1953 to 6/2003, published by Federal Reserve in its H.15 database. We then followed the 
forward interest rate model fitting by a simulation using the parameters we have estimated, and 
eventually computed the single premium for a pension plan, and the price of a European option 
on this pension plan.  

Because we used discrete approximations to the continuous process, the main differ-
ence in the continuous time case from the discrete case is that in the latter we used stochastic 
volatility models, whereas in the former we used fixed volatility models.  As we saw earlier the 
fixed volatility models permitted the study of the dependence of option prices on important pa-
rameters such as variance size, strike time, and age at purchase of option. The stochastic volatil-
ity models produce chaotic volatility that prohibits the study of these parameters, because small 
changes in parameter values lead to the explosion of the series of rates.  

We have tried to fit combination models to all of these possible models, and found, us-
ing maximum likelihood, the ARCH-GARCH volatility models to fit our empirical data best, 
and then lead to more successful simulations that produce reasonable series of force of interest, 
and then of interest, that do not hit below zero, or above one too often.  

The formulae we obtained in the discrete stochastic case can easily be modified to fit 
the continuous stochastic forward interest rate case.  We use the same notation for the continu-
ous force of interest, and cumulative force of interest, and allow them to follow an unspecified 

stochastic model. We assume that the continuous stochastic survival (time of death) variableT ,
which follows an unspecified continuous distribution, is independent of the stochastic force of 

interest process t . The single premium paid by an insured aged x to purchase an annuity insur-

ance that would pay B from age 65rA , say, till his death, provided he is alive at age rA , is 

random and is given by the integral:  

,)](exp[
T

A
xxA

r
r

dtxtBS   (24) 

where )(t denotes the cumulative stochastic force of interest at time t , and xAr . The 

complete continuous time series will again be denoted by . Here

)),(1log()( trt
 (25) 
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where )(tr is the stochastic forward interest rate, and the cumulative force of interest is given 

by
t

duut
0

.)()(    (26) 

B  is the fixed benefit paid per unit time from retirement rA  time onward, till the 

death time T of the insured. By the independence between T and )(t  we can write the expec-

tation of xxA S
r

as

)]|([][ xxATxxA SEESE
rr

 (27) 

0 0
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t

u
T

uxA

TrT dttdufeExFAFB r

where TF  denotes the cumulative distribution function of T .  This expectation may also be 

expressed in terms of the moment generation function )()( uM t  of )(t at u . For Gaussian 

processes the inner expectations, being the moment generating function of a Gaussian variable, 

take on a simple exponential form, and depending on the density )(Tf  the integral may be 

computed explicitly. In any case Monte Carlo simulation is straight forward. Furthermore, we 
can write again

|| xxATxxATxxA SVARESEVARSVAR
rrr

 (28) 

and express it in terms of joint and marginal moment generating functions, as in the discrete 
case.

The pricing formula for the continuous time case remains formula (16) but its expecta-
tion becomes  

r

r xrAuxrA

A

At

T dtKeduBeExTPtfxTCE .|)(|
0

 (29) 

Note that
][

)(

xTP

tfT  for xt  is not a hazard rate, in contrast to Milevsky and Promis-

low’s (op. cit.) formula, and is also non-stochastic. However, if we assume that the distribution 

of  T  is stochastic, that is survival changes dynamically with time, the only change we would 
have to make in the last formula is to add an expectation with respect to the distribution 

of
][

)(

xTP

tfT . We also note that unlike Milevsky and Promislow (op. cit.), we have not carried 

out our computations under the Martingale measure. The computation under the Martingale 
measure simplifies the formula substantially, by moving the expectation under the inner integral 
sign.  The formula as it stands serves however very well for simulation purposes. Once we 

choose a model for the force of interest )( via a stochastic differential equation, we replace 

the latter by its discrete approximation, which we then use with identical time intervals (e.g., 
months) in both the life tables and the force of interest discrete process.  

3.3. Simulations in the Continuous Time Case 

We first fit several models to the Federal Reserve monthly interest data. The best fit 
was obtained by an ARCH-GARCH AR(2) model of order (p = 1, q = 1), with ARCH parameter

4014.0 , GARCH parameter 4998.0 ,
7

0 1010537.0 , mean 

3101927.0 , 426.11 , ,470.02  and 
310406.0 . These estimated 

parameters were then used in a simulation to compute the mean single premium of a plan (Table 
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6) and the price of the plan (Table 7) as a function of age at purchase, and mean rate.  To reduce 
the size of these tables, we assume that the option is exercised at retirement time, and included 
only three strike amounts. 

Although the results reported in the two tables below cannot be directly compared to 
the corresponding tables for time-invariant volatility, one can nonetheless note the remarkably 
small standard deviation relative to the mean amount, for both the premium and the option price 
in the stochastic volatility case.  

  Table 6 

The mean single premium by age at purchase and mean annual interest rate for  
ARCH – GARCH (1,1), AR(2) interest rate model* 

Age x \ Rate r 10% 5% 3% 

30 $4,550 ($433) $37,320 ($3,732) $89,390 ($9,148) 

40 $12,502 ($1,097) $62,383 ($5,808) $122,419 ($11,718) 

50 $35,001 ($2,564) $106,250 ($8,339) $170,813 ($13,823) 

* The number in parentheses represents the simulation standard deviation for the corresponding 
parameter. 

Table 7

Mean cost and standard deviation of a European call option by strike prices and mean interest 
rates for ARCH-GARCH (1,1), AR(2) interest rate model* 

Age x K E(C) E(C) E(C) 

Mean rate  %10r %5r %3r

30 $30,000 

$40,000 

$50,000 

$3,723 ($291) 

$3,478 ($273) 

$3,236 ($256) 

$32,484 (2,519) 

$31,091 ($2,420) 

$29,711 ($2,322) 

$79,501 ($6,141) 

$76,702 ($5,944) 

$73,927 ($5,750) 

40 $30,000 

$40,000 

$50,000 

$10,258 ($723) 

$9,587 ($681) 

$8,923 ($641) 

$54,469 ($3,871) 

$52,142 ($3,731) 

$49,835 ($3,593) 

$109,223 ($7,793) 

$105,389 ($7,565) 

$101,589 ($7,341) 

50 $30,000 

$40,000 

$50,000 

$28,645 ($1,773) 

$26,765 ($1,689) 

$24,905 ($1,607) 

$92,543 ($5,793) 

$88,578 ($5,620) 

$84,648 ($5,451) 

$152,042 ($9,583) 

$146,692 ($9,353) 

$141,389 ($9,127) 

* The number in parentheses represents the simulation standard deviation for the corresponding 
parameter.  

4. Conclusions

In this paper we analyzed the behavior of a recently introduced pension insurance in-
strument, a European call option defined on pension annuity.  Under this plan, insured parties 
can buy an option on their pension annuity benefit, granting them the opportunity to buy their 
discounted annual pension annuity benefit prior to or at the age of retirement from the options 
writers, at a defined strike price.  The analysis was carried out under stochastic interest rates. 
We considered a variety of different stochastic models for interest rate, and in all models we 
found that as the standard.  The use of this European call option for pensions is a new method 
which enables individuals to subscribe to a pension annuity at a later age, fixing the terms of 
payment in advance, while the current value paid by the individual is somewhat higher than 
standard pension annuity.  
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Because Milevsky & Promislow’s (Milevsky & Promislow, 2001) work treated the re-
lated problem of valuing European-style options on the mortality-contingent claim that pays one 
lump sum upon surviving a pre-specified period, we review our contribution relative to their 
study.  The insurance product they treated is also known as an endowment policy, in contrast to 
traditional life annuity, and is quite similar to a zero-coupon bond. Milevsky and Promislow go 
on to regard, under certain ordering conditions, an option on a traditional pension plan as a bas-
ket of such endowment plans of different maturities. In the discrete time case only a one year 
horizon is actually worked out. Their argument for replacing the pension annuity by a basket of 
options appears to suggest that the state space of interest rates must also be discrete.  In the con-

tinuous time case, Milevsky and Promislow  adopt Du e and Singleton’s (Du e and Single-

ton, 1997) approach to the valuing of European options on defaultable bonds. Here Milevsky 
and Promislow   replace the default hazard by the insured mortality hazard. For the single en-
dowment plan they posit a Cox, Ingersoll, and Ross (op. cit.) model for the stochastic interest 
rate, and an independent Brownian motion with a linear trend, for the logarithm of the stochas-
tic hazard rate.  No extension is actually given for an option on a pension plan in continuous 
time. A small simulation study computes the price of a basket of options on endowment policies 
as a function of their fixed volatility of their interest rate process.  Although a formula is devel-
oped for the value of an endowment option in terms of the Matingale measure that turns the 
interest rate process into a martingale, the simulation appears to simply use the CIR model un-
der the usual measure, without making use of the formula.   

The main difference between our approach and that of Milevsky and Promislow (op. 
cit.)  is in the fact that we give general formulae for the valuation of European options  on pen-
sion plans directly, without assuming any particular form for either the survival distribution or 
the interest rate process.  Both approaches assume independence between survival and interest 
rate.  In the discrete case we also provide variance formulae for the (stochastic) price actually 
paid by the insured who buys an option at some time before retirement. Similar formulae are 
also possible in the continuous time case. 
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