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RISK PROFILES OF LIFE INSURANCE PARTICIPATING 

POLICIES: MEASUREMENT AND APPLICATION 

PERSPECTIVES

Albina Orlando*, Massimiliano Politano**

Abstract

The paper deals with the calculation of suitable risk indicators for Life Insurance policies 

in a Fair Value context. In particular, aim of this work is to determine the quantile reserve for Life 

insurance Participating Policies. This goal poses both methodological and numerical problems: for 

this reason the paper discusses both the choice of the mathematical models and the calculation 

tecnique. Numerical application illustrates the results. 

Key words: Participating policies, Fair Value, Quantile Reserve, Mathematical Reserve.  

JEL classification: G22, G28, G13.  

1. Introduction 

At the end of March 2004, The International Accounting Standard Boards (IASB) issued 

the International Financial Reporting Standard 4 Insurance Contracts (IFRS 4) (e.g. [8]), provid-

ing, for the first time, guidance on accounting for insurance contracts, and marking the first step in 

the IASB’s project to achieve the convergence of widely varying insurance accounting practices 

around the world. In particular, on the one hand, the IFRS 4 “permits an insurer to change its ac-

counting policies for insurance contracts only if, as a result, its financial statements present infor-

mation that is more relevant and no less reliable, or more reliable and no less relevant”; on the 

other hand “it permits the introduction of an accounting policy that involves remeasuring desig-

nated insurance liabilities consistently to reflect current interest rates and, if insurer so elects, other 

current estimates and assumptions”. Thus IFRS 4 give rise to a potential reclassification of some 

or all financial assets “at fair value through profit and loss” when an insurer changes accounting 

policies for insurance liabilities. 

The IASB defines the Fair Value “an estimate of the price an entity have realized if it had 

sold an asset or paid if it had been relieved a liability on the reporting date in an arm’s length ex-

change motivated by normal business considerations”. In particular, the IASB allows for using 

stochastic models in order to estimate future cash flows. 

In the actuarial perspective, the introduction of an accounting policy and of a fair valua-

tion system implies that the Fair Value of the mathematical reserve could be defined as the net 

present value of the debt towards the policyholders evaluated at current interest rates and, eventu-

ally, at current mortality rates. 

In actuarial literature, many papers deal with models for the Fair valuation of insurance 

liabilities; in particular Milevsky and Promislow (e.g. [10]) propose a stochastic approach to 

model the future mortality hazard rate in insurance contract with option to annuitise, Bacinello 

(e.g. [1]) deals with the problem of pricing a guaranteed life insurance participating policy, Bal-

lotta and Haberman (e.g. [2]) give a thoretical model for evaluating guaranteed annuity conversion 

option. In this field, our paper aims at giving a contribution to the question of calculation of suit-

able risk indicators for the mathematical reserve of a guaranteed life insurance participating policy 

in a fair value context. 

The paper is organised as follows: section 2 gives a survey about the application of the 

quantile reserve to actuarial liabilities. In section 3 the mathematical formalization is introduced. 

Finally, in section 4, a numerical evidence is offered. 
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2. The quantile reserve and the actuarial liabilities 

The quantification of a liability fair value can be approached introducing the replicating 

portfolio, that is a portfolio of financial instruments giving origin to a cash flow matching that one 

underlying the liability itself. Of course, in the case of liability traded in an existing market, the 

fair value coincide with the market value itself. The fair valuation of insurance liabilities, since 

considering cash flows depending on the human life, and so not trading in an existing market, can 

be considered existing in the economic reality, as stated in Buhlmann (e.g. [6]), and can be meas-

ured by means of a financial instruments portfolio. 

Within this scenario, it is possible to introduce quantitative tools, such as the quantile re-

serve. Indicating by W(t) the financial position at time t, that is the stochastic mathematical reserve 

of a life insurance contract, or a portfolio of contracts, the quantile reserve at confidence level ,

10 , is expressed by the value tW1  in the following equation 

tWtWP 1 .

As one can see, the quantile reserve is a threshold value in the sense that in (1 - )100%, 

W(t) is smaller or equal to the quantile reserve. This representation gives rise to a market consis-

tent value of the insurance liability. 

3. The mathematical model 

Let us consider an endowment policy issued at time 0 and maturing at time , with ini-

tial sum insured C0. Moreover, let us define ,...,1; trt  and  ,...,1; ttx  the random 

spot rate process and the mortality process respectively, both of them measurable with respect to 

the filtrations 
rF and F . The above mentioned processes are defined on an unique probability 

space PF r ,, ,
 such that  FFF rr ,

 (e.g. [10] and [2]). For the participating  pol-

icy, we assume that, in case of single premium, at the end of the t-th year, if the contract is still in 

force, the mathematical reserve is adjusted at a rate t defined as follows (e.g. [1]) 

0,
1

max
i

iSt
t

            ,...,1t . (1) 

The parameter , 10 , denotes the constant participating level, and tS  indicates 

the annual return of the reference portfolio. The relation (1) explains the fact that the total interest 

rate credited to the mathematical reserve during the t-th year, is the maximum between tS  and i, 

where i is the minimum rate guaranteed to the policyholder. Since we are dealing with a single 

premium contract, the bonus credited to the mathematical reserve implies a proportional adjust-

ment at the rate t  also of the sum insured. According to Bacinello (e.g. [1]), it is assumed that if 

the insured dies within the term of the contract, the benefit increase of an additional last adjust-

ment at the end of the year of death.  

Denoting by Ct, ,...,1t , the benefit paid at time t if the insured dies between ages 

x+t-1, x+t or, in case of survival, for t , the following recursive relation holds for benefits of 

successive years 

ttt CC 11 ,...,1t .

The iterative expression for them is instead 

t

j
tt CC

1
0 1 ,...,1t ,

where we have indicated by t  the readjustment factor 
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t

j
jt

1

1                        ,...,1t .

In this context, as the elimination of the policyholder can happen in case of death in the 

year ,0t  or in case of survival t , the liability borne out by the insurance company can 

be expressed in this manner 

0
110

t
xxtt

L JCYCW ,  (2) 

where 

0
11

t

xt

e
Y

otherwise

tTx1- tif
 ,        

e
J x

0

xT

Tx0if
.

In the previous expression xT is a random variable which represents the remaining life-

time of an insured aged x, 
t

udurt
0

is the accumulation function of the spot rate. 

3.1. Financial and mortality scenario 

The valuation of the financial instruments involving the policy will be made by assuming 

a two factor diffusion process obtained by joining Cox-Ingersoll-Ross (CIR) model for the interest 

rate risk and a Black-Scholes (BS) model for the stock market risk; the two sources of uncertainty 

are correlated. 

The interest rate dynamics ,...2,1; trt
 is described by means of the diffusion process 

r
tt

r
t

r
t dZtrldttrfdr ,, , (3) 

where trf t
r ,  is the drift of the process, trl t

r ,  is the diffusion coefficient 
r

tZ is a Standard 

Brownian Motion; in particular, in the CIR model, the drift function and the diffusion coefficient 

are defined respectively as (e.g.[7]) 

tt
r rktrf , ,                     trt

r rtrl , ,

where k is the mean reverting coefficient, is the long term period “normal” rate, r is the spot 

rate volatility. It must be pointed out that for pricing interest rate derivatives, the Vasicek model is 

widely used. Nevertheless, this model assigns positive probability to negative values of the spot 

rate; for long maturities this can have a relevant effect and therefore the Vasicek (e.g. [12]) model 

appears to be inadequate to value life insurance policies. 

Clearly, on the fair pricing of our policy, the specification of the reference portfolio dy-

namics is very important. The diffusion process for this dynamics is given by the stochastic differ-

ential equation 
S

tt
S

t
S

t dZtSgdttSfdS ,, ,  (4) 

where St denotes the price at time t of the reference portfolio, 
S

tZ is a Standard Brownian Motion 

with the property 

dtdZdZCov
S

t
r

t ,               R .

Since we assume a BS type model (e.g.[3]), we have 

tSt
S StSf , ,                       tSt

S StSg , ,

where S  is the continously compounded market rate, assumed to be deterministic and constant 

and S is the constant volatility parameter. 
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For the dynamics of the process ,...2,1;: tttx , we propose to choose a model 

based on the Lee Carter methodology. 

A widely used actuarial model for projecting mortality rates is the reduction factor model 

for which 

tyRFyty ,0::                                                                 

subject to 1)0,(yRF y , where 0:y is the mortality intensity of a person aged y in the base 

year 0, ty: is the mortality intensity for a person attaining age y in the future year t, and the reduc-

tion factor is the ratio of the mortality intensity. It is possible to target RF, in a Lee Carter ap-

proach, 0:y being completely specified (e.g.[11]). Thus, 0:y is estimated as 

t
ty

t
ty ed ::0:yˆ ,

where tyd : denotes the number of deaths at age y and time t, and tye : indicates the matching per-

son years of exposure to the risk of death. Taking the logarithm of equation (3) we have 

tyRFyty ,logloglog 0::

s.c. 00,log yRF . Defining 

0:log yy                                tyktyRF ,log

the Lee Carter structure is reproduced (e.g.[9]). 

In fact the Lee Carter model for death rates is given by 

yttyyyt kmln ,

where ytm denotes the central mortality rates for age y at time t, y describes the shape of the age 

profile averaged over time, tk is an index of the general level of mortality while y describes the 

tendency of mortality at age y to change when the general level of mortality tk changes. yt de-

notes the error. In this framework, for our purposes, with y=x+t, one can use the following model 

for the time evolution of the hazard rate 

tktx
txttx e0:: .

4. Numerical proxies for the quantile reserve via simulation procedures 

4.1. The problem background 

In this section we present a simulation procedure to calculate the quantile reserve,  pro-

viding a practical application of the mathematical and accounting tools presented previously. 

In particular our objective is to quantify the two critical values of the quantile reserve 

W *(t) and W *(t) .
The computation of the quantile reserve values requires the knowledge of the distribution 

of W(t).
To this aim we use a Monte Carlo simulation procedure which, as well known, is tipically 

employed to model random processes that are too complex to be solved by analytical methods. 

Moreover the use of simulation techniques allows to test in an easier way the effects of changes in 

the input variables or in the output function. 

As a first step, as usually done in simulation procedures, we develop the statement of the 

problem giving the mathematical relation between the input and output variables. The mathemati-

cal model should be realistic and practically solvable. On the basis of the model presented in sec-

tion 3, the output is given by the financial position of the insurer at time t, W(t), and the input vari-

ables are given by the time of valuation t, the survival probabilities and the term structure of inter-
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est rates, while the reference portfolio dynamics, as previously stated, is considered deterministic 

and constant. In this order of ideas, we assume that the best prediction for the time evolution of the 

surviving phenomenon is represented by a fixed set of survival probabilities, opportunely esti-

mated taking into account the improving trend of mortality rates. As a consequence, in our applica-

tion the first two inputs are deterministic while the random input is represented by the model de-

scribing interest rates distribution. In our case, the estimation of the risk-adjusted mean reverting 

parameter is not needed, since its value has no effect on the reserve determination. 

The example of application we propose is referred to a life insurance participating con-

tract. In particular we quantify at the beginning of the contract the two critical values W *(t) and 

W *(t) of the reserve distribution.

The output of the simulation procedure is a sample which gives N values for W(t), being 

N the number of simulations.  

In order to perform the simulation procedure it is necessary to get the discrete time equa-

tion for the chosen SDE describing the evolution in time of the interest rates (3). We choose the 

first order Euler’s approximation scheme, obtaining the following sample path simulation equa-

tion:  

ktktktktk trtrrr )1()1()1( )(   k=1,2,..,T , (5)

where 
k

)1,0(N .

This approximation scheme is characterized by an easy implementation and a simple in-

terpretation of the results. 

The discretized process we consider can be represented by the sequence 

tktt rrr ,......,, 2 , where k is the number of time steps, t  is a constant and T is the time 

horizon. 

The following simulation procedure is carried out in order to gain a sample of N values of 

W(t):

a) generation of T pseudo-random values
k

)1,0(N ;

b) computation of one simulated path for the stochastic interest rate tkr  using the T 

values obtained in step (a); 

c) computation of one value of the reserve on the basis of the previous results. The 

simulation procedure will be repeated N times to gain N values for W(t).

At this point our purpose is to quantify the two critical values of the reserve distribution 

W *(t) and W *(t). Since the reserve is a liability, we are interested in the right hand tail of the 

distribution.  

In the following, we propose a numerical application considering two different values of 

N. Being the discretized CIR model composed by a deterministic part and by a stochastic one 

k
)1,0(N , according to the Glivenko-Cantelli theorem, we expect that the empirical distri-

bution of W(t) asymptotically tends to a normal one.  

4.2. Numerical results 

The numerical example we propose refers to a participating contract issued on a person 

aged 40 with time to maturity 20 years.  

We assume for the CIR process = 0.0452, = 0.0053 and the initial value 0r =0.0279, 

estimated on the 3-month T-Bill January 1996-January 2006, 03.0S , 20.0S  for the 

time evolution of the reference fund. For the correlation coefficient   we adopt a slightly negative 

value 06.0  coherently with the literature for the Italian Stock market. For the survival 

probabilities we use the mortality Italian data for the period of 1947-1999 to evaluate the projec-

tion of the mortality factor in a Lee Carter context. 
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We report the results obtained by means of the procedure proposed in section 4.1 consid-

ering N=1000, 10000. 

We show that, increasing the number of simulations N, we obtain a more significant sam-

ple of W(t) values, getting more exact information about its distribution.  

In Table1 the characteristic values of the simulated distribution of the reserve are re-

ported, corresponding to the number of simulation paths  indicated in the column.

Table 1 

Reserve distribution results obtained for N=1000 and N=10000 simulation paths 

N 1000 10000 

Mean 1018.107 1018.120 

Median 1017.070 1017.378 

Maximum 1202.904 1299.42319.64853 

Minimum 832.0687 742.9516 

Kurtosis 2.644382 2.988519 

Skewness -0.030861 0.013978 

Table’s 1 contents confirm the asymptotic behaviour of the empirical distribution of the 

random variable W(t). Now, as already recalled, the Glivenko-Cantelli theorem is verified, in the 

sense that, as we can easily observe, as N increases W(t) approximates a normal distribution. In 

particular, in the case of N=10000, kurtosis takes the value 2.988519  and skewness takes the 

value 0.013978. It is well known that a normal variable has a kurtosis of 3 and a skewness equals 

zero, therefore the obtained values in the case of  N=10000 can be considered acceptable. More-

over, we get the following results: 

Table 2 

Jarque-Bera test for N=10000 

J-B test 0.380561 

Probability 0.826727 

As well known, the J-B (e.g. [3]) is a statistic for testing whether the series is normally 

distributed. The JB test is known to have very good properties in testing for normality; it is easy to 

compute and it is commonly used in the regression context in econometrics (e.g. [5]). The test sta-

tistic measures the difference of the skewness and kurtosis of the series with those from the normal 

distribution. Under the null hypothesis of a normal distribution, the J-B statistic is distributed as a 

chi-square with two degrees of freedom ( )2(2
). The reported probability is the probability that 

the J-B statistic exceeds (in absolute value) the value under the null hypothesis. A small probabil-

ity value leads to the rejection of the null hypothesis of a normal distribution. In our case, being 

the probability equal to 0.826727, we can accept the hypothesis of normal distribution of W(t). 

The asymptotic behaviour of the empirical distribution is shown graphically too,  by 

means of the histograms and the Quantile-Quantile plots shown below for each value of N. As we 

can observe looking at Figure 2. R(t) well approximates a normal distribution  when N=10000. 
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                 Fig.1. Histograms   N=1000, N=10000

          

Fig.2. Quantile Quantile plots  N=1000, N=10000  

 Table 3 

Quantile reserve for N=1000 and N=10000 

N 1000 10000 

W*(99%) 1167.501 1181.696 

W*(95%) 1129.681 1133.742 

Finally Table 3 shows the two critical values of the quantile reserve calculated for 

N=1000 and 10000 taking into account that the mathematical provision is a liability and that the 

critical values lie in the right-hand tail of the distribution. The difference between the W* values 

and the M[W], the mean value of the mathematical reserve, can be interpreted as an absolute index 

of the riskiness borne out by the insurer due to the uncertainty about interest and mortality rates. 

Obviously, the critical values of the quantile reserve obtained by means of 10000 simulation paths 

are more reliable. 
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