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RULES OF THUMB AND REAL OPTION DECISION BIASES 

FOR OPTIMALLY IMPERFECT DECISIONS: 

 A SIMULATION-BASED EXPLORATION 

Burger-Helmchen Thierry*

Abstracts

Investment decisions about an uncertain project are a difficult task. A decision maker can 

use calculation techniques such as net present value or real option. The accuracy of the technique 

employed can provide a significant modification to the final decision. Each of these techniques 

makes the assumption that the decision maker acts in a neutral way without any cognitive bias, 

such as overconfidence in his or her opinion. Much research in behavioural finance show that pes-

simistic or optimistic feelings of the decision maker can potentially lead to wrong decisions. We 

explore the relation of some decision biases and the use of evaluation techniques. By employing 

simulations, we show that the choices of a specific technique can emphasise or reduce decision 

bias and investment errors. 

Key words: decision-making, real options, uncertainty. 

JEL Classification: D81, G3, M20. 

1. Introduction 

“In planning major initiatives, executives routinely exaggerate the  

benefits and discount the costs, setting themselves up to failure.” 

D. Lovallo, D. Kahneman, 2003. 

“Society values risk taking, but not gambling,  

and what is meant by gambling is risk taking that turns out badly.”  

March J.G., Shapira Z., 1987. 

Kahneman and Lovallo pinpoint that decision makers routinely make errors in their deci-

sions. This paper investigates how rules of thumb that are routinely utilised by decision makers can 

influence these errors. We compare different types of rules of thumb, including real options and a 

deflating criterion to show which kind of rules of thumb leads to exaggeration in profit estimation. 

On the one hand, it is easy to jump to the conclusion that the widespread use of rules of 

thumb is good evidence of the sloppy workmanship on the part of business management. On the 

other hand, if the rules of thumb are historically in use and neutral, they can eliminate some deci-

sion bias. In this paper, we argue that rules of thumb can be among the most accurate tools of deci-

sion-making in some cases and in others lead to a critical decision bias. 

A simulation procedure is used to determine the relevant properties of a number of alter-

native pricing rules of thumb and evaluation techniques to compare their performance to help deci-

sion-makers in a monopolistic situation. 

The paper is organized as follows: First, we discuss some biases that can occur when a 

decision maker evaluates a project. Second, we describe our simulation model and explain how we 

incorporate real options reasoning and decision correction into it. We then provide the results of 

our simulation. Finally, we discuss the implications of our study. 

2. Optimally Imperfect Decisions and Decision Biases 

For the rest of this paper we will use as an example a project of technology producing a 

new product in a monopoly situation and the choice to invest in it or not. The errors that can occur 
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in such a choice are twofold. The decision maker can accept a project that turns out to be a bad 

one, which means the project’s ex post is not profitable and should have been rejected. Or, a sec-

ond error includes the decision makers rejecting a project that should have been accepted. 

The standard case in corporate finance textbooks for deciding to invest or not in a project 

presents a decision maker with perfect information. The trick for him or her is to perform a calcu-

lation and decide to choose the project with the highest profit, which is usually calculated with Net 

Present Value (NPV). When we introduce risk or even uncertainty in the form of imperfect infor-

mation or inexistent information, the calculation becomes more difficult and the decision process 

is less straightforward. The more refined the decision making process becomes, the more expen-

sive it is likely to be, notably with the introduction of new information search processes. This later 

example is similar to the real world where it is impossible to perform any perfect estimation of an 

investment opportunity. Whatever the techniques of evaluation a decision maker uses, a calcula-

tion down to the last decimal place is pointless in any event.  

Accepting that it is impossible to collect and compute all information necessary to obtain 

a perfect decision, we can define criteria for a decision to be an optimally imperfect decision: the 

marginal cost of additional information gathering or more refined calculation must be equal to its 

marginal gain in revenue. Unfortunately, this definition is not very useful in practice and there 

must be other “limits” to the search of new information. Simon’s (1979, 1991) opinion with refer-

ence to this question is that people usually act in a way to satisfy themselves with the situation and 

not to maximise it. The satisfaction of a decision maker has an idiosyncratic concept and opens the 

door to numerous biases.  

The importance of analysing the effects of judgmental processes and cognitive biases on 

strategic management has been examined by several authors (Hoskisson et al., 1991; Schwenk, 

1984) including the entrepreneurial specific biases and the role real options can play (Mcgrath, 

1999). While part of the effects stems from the underlying structure and features of the human 

judgmental system (Tversky and Kahneman, 1974), other potential determinants of “biased” deci-

sions are the incentives and penalties associated with the outcomes of decisions. An executive’s 

decision in the situation of uncertainty appears to be affected more by attempts to avoid failure 

rather than by attempts to pursue risky alternatives whose potential success can be described only 

as probabilistic (Shapira, 1994). There is a tendency for decision makers to behave in a risk ad-

verse manner. Pursuing this avenue is manifested by attempts to continue building on alternatives 

that produce small but certain profits rather than pursue new opportunities. As March (1991) 

noted, firms often get caught in a conflict between the need to explore new opportunities and the 

tendency to exploit existing resources. 

To choose between projects several considerations are important. Decision makers need 

an appropriate measure to discriminate between projects that should be accepted from those that 

should not be rejected. Likewise, decision-makers need an appropriate measure to discriminate 

between success and failure. While it may be easier to employ a common measure across time, the 

realities of the technology development process, communication to shareholders, etc., compel de-

cision makers to choose measures that are different across time.  

For example, net present value (NPV) and internal rate of return (IRR) are well-accepted 

selection measures to evaluate projects (Brealey and Myers, 2002; Luenberger, (1997). In contrast, 

return on investment (ROI), profitability, and market share are widely used measures of success. In 

addition to choosing measures, decision makers need to choose an appropriate criterion for each 

measure to discriminate between the accepted and rejected regions as well as between success and 

failure. Since decision makers seek to increase their ability to choose technologies that are likely to 

be successful, they also need to establish the relationship between selection criteria and indicators 

of success. 

Decision makers and project initiators may represent the value of a project differently 

(Williamson, 1975). For instance, project initiators may be overly optimistic and aggressive in 

promoting the benefits of their project and forecasting high demand, while being blind or silent 

about the potential costs involved. Differentiating the standard deviation of the project in two dif-

ferent measures, one for the demand and the other for the cost, is a first step toward differentiating 

different biases (overconfidence, and neglecting).  
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3. Optimal Rules of Thumb: Definitional and Calculation Problems  

3.1. Choosing a Rule of Thumb 

Before doing any calculation, the decision maker has to choose between different rules of 

thumb. This choice is not an easy task and introduces some biases. Conceptually, the ranking of 

rules of thumb is not easy because problems of multidimensionality are inherently involved. At 

first glance it may seem sufficient to say that between two rules that are equally costly to operate, 

the one that yields the closer average approximation to the true maximum is preferred. But some 

measure of this dispersion of the results is, surely, also of comparable relevance. In fact, all the 

characteristics of the frequency distribution of errors are significant. The “best” rule of thumb can 

only be determined by taking all these characteristics into account and assigning appropriate 

weights to them. It appears that there is no cut and dry mechanical way to determine which of two 

rules is the more satisfactory unless one of them is what might be called “Pareto preferable”; that 

is, it is not inferior in any of its relevant characteristics and superior at least in some. 

The decision bias that emerged here can be either voluntary or involuntary. Laverty 

(1996) provides a description of some biases that can emerge in that phase, which insist mostly 

on the short-term. The bias in the choice can be managerial opportunism, if one takes a rule of 

thumb that favours a project that has the preference of the decision maker (here the manager), 

financial market short-term who obligates the decision maker to invest in a project with early 

cash flows, or simply the incompetence of the decision maker. Note that Laverty pinpoints the 

importance of the environment; in this work we partly neglect the environment in choosing a 

non-contestable monopole situation. 

3.2. Determining an Optimal Rule of Thumb 

We follow Baumol and Quandt (1964) who pioneered the use of simulation techniques 

for testing rules of thumb. We justified our approach and use of simulations in the same way. One 

of the crucial steps in the determination of an optimal rule of thumb is the calculation of the ex-

pected consequences. Ideally, this step should produce a frequency function of the errors to be 

expected of any such rule of thumb in its approximation to true maximal solutions. In principle, it 

may be possible to analytically determine these frequency functions if the structure of the system 

and the probability distributions of the structural variables are known. However, in practice such a 

procedure is almost impossible. First, a priori specification for the structural variables usually 

represents most heroic assumption that rarely stands up under comparison with the facts. Sec-

ondly, even under these conditions, analytic methods of determination of the expected effects of a 

rule of thumb are likely to be prohibitively difficult. This means that one must turn to methods of 

testing and calculation. The methods of simulation using artificial data seem well suited to the 

problem. By considering a sufficient high number of simulated cases, the analyst may be able to 

come away with a fair idea of the rule’s likely performance.  

An attempt to use simulation and test the accuracy of real option against standard deci-

sion criteria’s is made by Kumaraswamy et al. (2003). They explore whether the use of evalua-

tion and organizational routines that help a firm to recognize and realize the value of flexibility 

options attached to its R&D opportunities/projects pay off in terms of improved R&D perform-

ance. Specifically, they use a computer-simulation-based approach to compare the baseline (or 

traditional) version of two evaluation techniques – the Net Present Value (NPV) technique used 

in finance and the Multifactor Evaluation Process (MFEP) technique used in decision analysis – 

with their respective options-enhanced versions. Their simulation results indicate that the use of 

the option-enhanced version of either technique resulted in a significantly higher success rate of 

funded projects and overall R&D productivity when compared to that achieved using the base-

line version. An implication is that the consistent application of straightforward evaluation and 

organizational routines can capture the intuition behind complicated real options mathematics 

and yield improved R&D performance. 
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4. Designing a Price-Setting Rule of Thumb and an Evaluation Rule 

Two levels of rules of thumb are used. Firstly, the decision maker must decide the price 

and adequate quantity for a new product. Ignoring the exact demand and cost function, the deci-

sion maker first has to estimate this demand and cost function. Secondly, he has to estimate the 

expected profit and decide if he will continue with this project or prefer a risk-less investment 

with a small profit. 

The detailed discussion of our basic experiments can be conveniently divided into three 

parts: the methods that were used to generate demand and cost functions (3.1), the rules of thumb 

that were employed (3.2), and the method that was used to obtain estimates of the performances of 

various rules of thumb (4). 

4.1. Description of the Experiments: the Cost and Demand Function 

The demand (average revenue) curve facing the decision-maker and his total cost curves 

are generated by a random process. The resulting pair of demand and cost curves is regarded as the 

“true” curves, correctly describing the actual state of affairs. The decision-maker is assumed to 

know only two points of these curves. He uses some rules of thumb to calculate from these two 

pairs of points the price he is to charge in the market. We can determine from the true demand and 

cost curves the profit maximizing price and the maximum amount of profit as well as the decision-

makers actual profit resulting from his rule of thumb price. The comparison of actual and maxi-

mum profit provides an estimate of the efficiency of the rule of thumb. 

4.1.1. The Demand (Average Revenue) Function 

The hypothetical product we deal with is assumed to be such that the quantity de-

manded is zero when the price, p, is greater or equal to 21. The demand function (as well as the 

cost function) is discrete. The quantity demanded is defined only for integral values of p. The 

demand function was obtained by requiring the graph to start off at the point with coordinates p 

= 21, q = 0 and the calculating increments in the quantity demanded corresponding to successive 

unit reduction in the price. The increment was selected in one of two ways1: (i) in the runs 1, 2, 

3, 4 and 5 the increments are uniformly distributed over the integers 1,.., 64; (ii) in Run 6 the tth 

increment is Xt + 2t where Xt is uniformly distributed over the integers 1,.., 64. Note that the 

total revenue function needs not be concave everywhere, and that a finite amount is demanded 

when the price is zero. 

4.1.2. The Total Cost Function 

The demand function was obtained by associating with each price, p, a quantity q = 

f(y). The cost function associates with each of these q’s a total cost figure C = g(q). With zero 

output we associate a cost figure that is chosen from the uniform distribution over the integers 

1, …, 64. Each successive cost figure (associates with a successively higher output level) is 

obtained from the immediately preceding one by the addition of an increment. Depending on 

the run, the tth increment is (i) chosen from the same distribution, (ii) a multiple of an incre-

ment chosen from the same distribution, or (iii) expressible as Yt + 8t where Yt is chosen 

from the same distribution.  

It is obvious that maximum profit and the optimal price are easily determined from 

these functions simply by examining each of the 22 possible price levels (p = 0 to p = 21) and 

calculating, in each case, the associate profit figure. The six experiments are summarized in the 

table below, showing the manner in which the tth increments for the demand and cost functions 

were generated. Letting Xt and Yt be random variables distributed uniformly over the integers 

1,…,64, we have the following: 

                                                          
1 These two methods generate demand function whose expected values are, respectively, linear and quadratic. That is, in 

Runs 1-5, with each unit increase in price the expected (average) decrease in demand is (1+2+…+64)/64= 32,5. Hence, the 

expected dq/dp is constant and the expected demand curve is linear. In Run 6, the expected sales increment when the price 

is p = 21-t is q = 32,5 + 2t, so that we can take q/ p = -32,5-2t (approx.), and hence the expected demand function gen-

erated in Run 6 is quasiquadratic. Similar interpretations hold for the cost functions that were used in the various runs. 
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Table 1 

Demand and cost function increment 

  Demand function increment Cost function increment 

Run 1 Xt Yt 

 2 Xt 4Yt 

 3 Xt 8Yt 

 4 Xt Yt+ 8t 

 5 Xt 4Yt+ 8t 

 6 Xt + 2t Yt 

We considered four possible types of approximating functions: linear, quadratic, loga-

rithmic, and exponential. Of course various combinations are possible; the demand curve can be 

linear, etc. Thus, 16 combinations are possible. In the following we limit to only four of these 

combinations. We feel that four combinations, with the different options simulated and leading to 

60 cases to compare are sufficient for this exploratory work. We also include two other very naïve 

rules as standards of minimal performance. The different rules for defining the price p are the fol-

lowing; the detailed calculation that rules imply are given in the appendix. 

Table 2 

Price in demand and cost function 

  Demand function Cost function 

Rule 1 P is fixed to 11 without any estimation 

 2 P is chosen randomly 

 3 
Linear demand 

p = a – bq 

Linear cost 

c = d + eq 

 4 
Linear demand 

p = a – bq 

Quadratic cost 

c = dq+eq2 

 5 
Linear demand 

p = a – bq 

Logarithmic cost 

c = dq + e log (q+1) 

 6 
Hyperbolic demand 

p = a-b/q 

Quadratic cost 

c = dq+eq2 

We imposed one rather strong condition on the construction of our rules in order to assure 

that they were sufficiently simple to qualify as rules of thumb: in no case was the decision maker 

asked to take account of more than two points on his demand curve and two points on his cost 

curve in his calculation. This can be seen as a very strong limitation. However, we think that major 

prospective studies that a decision maker can have give a “level of expected demand or cost” and 

do not give a perfect shape of the curve. In that respect we think that these two point’s approxima-

tion is a rather realistic one. 

4.2. Description of the Experiments: the Profit Evaluation Rules 

The original work of Baumol and Quandt (1964) use a single period estimation of the 
profit. We notice that major bias in decision occurs in the way decision makers compute the profit, 
not only in the initial period but also the evolution of the profits in the following periods. It is dif-
ficult for a decision maker to be convinced that the profits would be enormous in the first period, 
thus they are more likely to believe that the profit is modest in the first period and will increase in 
time. We chose the simplest multi period possible: two periods. Two periods are necessary for the 
use of the options that we describe. We introduce new information in the following manner. The 
real demand and cost functions do not change, and the decision makers obtain two new points for 
performing their calculation. The points given to the decision maker have the property to be more 
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separate from one another than the points in the first period. This will lead to a more exact estima-
tion of the maximum profit in the majority of simulations. It is important to note that this is not 
always the case; we ensure that decision makers can make the two types of errors in calculating the 
profit in the second period. 

Our proposition is to investigate the effects of including real option as a rule of thumb. If the 
results obtained by using real option will lower the investment errors made by decision makers 
(counter bias) or in opposite, the real options do increase the decision bias. An example of this logic 
can be found in reading real option standard presentations (Trigeorgis 1996; McDonald, 2000). 

The overwhelming majority of examples are built in the same manner. An investment pro-
ject is presented, but unfortunately the NPV of this project is negative and decision makers should 
not invest. The real option rhetoric consists in introducing flexibility in the future employment of the 
project. The capacity a decision maker has to “manipulate” an investment during its lifetime is to 
take advantage of good situations and avoid bad situations when new information is obtained. Of 
course, this option has a value that in addition to the previous NPV will give a positive expected 
value, and so categorize the investment into a profit to be undertaken as an investment. 

This example, widely used, builds on the capacity of decision makers to adequately forecast 
the future options. We can also see in this description the following procedure if one cannot invest 
into a project based on standard NPV criterion, add some “options” and obtain a profitable project. 
This represents a standard moral hazard opportunism case where decision makers can make a project 
more attractive. It is this perspective using real option that magnifies decision-makers bias. 

The growth option can be an expression of bias, like overconfidence in the future. The op-
tion to wait can show reluctance to invest or fear of doing a mistake. This fear can lead to underin-
vestment and the loss of profitable projects. 

Notice that the same option can be used in a contrary example to reduce the same bias. Tak-
ing the growth option into account can annihilate the bias of fear, and in the same manner including 
options to wait in the project can be a good correction to the enthusiastic project leader calculation.  

We compute the growth and wait options in the following manner: 
The growth option. Once the project is undertaken and the decision-maker obtains the 

first period profit, he can legitimately await a growth in the profit for the second period. We adopt 
the following decision rule for the decision maker: if the expected profit in the first period is lower 
than the minimal profit when he invests in a risk-less project, then he expects a growth in future 
projects, and the price for the second period is based on the second period estimation. 

The option to wait. Here we again put into balance a minimal return from a risk-less pro-
ject and the expected profit of the project in evaluation. The decision rule is the following: if the 
expected profit in the first period is lower than the risk-less project, then investing in risk-less pro-
ject for the two periods (wait for the risky project) takes place. If the calculation of expected prof-
its in the second period is above risk-less projects profit, investing in the project occurs. 

The KTL rule. We used a third rule based on work by Lovallo and Kahneman (2003), 
Kahneman and Tversky (1979). These authors present a method for evaluating investments using a 
procedure introducing an outside view. This procedure was built to adjust the optimism of deci-
sion-makers by lowering the expected profit. The procedure uses three variables. The first is the 
expectation of the profit made by the decision-maker; E ( i), we use the expectation of profit in the 
period i. The second variable is the use of a generally admitted profit for an investment project of 
the same reference class. Here we use the same risk-less project for the option computation. One 
can argue that this project is risk-less, so the class is not the same. Here, we interpret the class of 
projects in a more general way, thus all the projects other than the decision maker can be under-
taken in the same periods than the risky project under evaluation. We use the letter r to describe 
this risk-less project profit. The third variable is the correlation between the two projects .

Kahneman-Tversky and Lovallo propose the following formula to correct the profit ex-
pectation:

1 1E r E KTL
  (1) 

We design by KTL the value obtained. If the sum of KTL for the two periods is lower than 

the obtaining profit r in the two periods, decision makers decide to invest in the risk-less project. 
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5. Methods of Testing 

We use two rules (1 and 2) to estimate the price yield results that are independent of the 

particular information assumed to be immediately available to the decision maker. Therefore, only 

one rule of thumb solution is provided by each of these two rules for any randomly given gener-

ated demand function-cost function pair. 

This is not the case with Rules 3, 4, 5, and 6. The particular solution obtained from these 

rules depends on which two out of the possible 22 points on the demand and cost functions are 

used in fitting the demand and cost functions. 

We have assumed that a zero output or an output saleable on a zero price is never used by 

the decision maker in this calculation. Hence, 20 points remain out of which “nature” was taken to 

choose two for the decision maker to observe. In order to evaluate the performance of a rule of 

thumb, we calculated its solution for each possible pair of points chosen out of the total 20. There 

are 190 such pairs; therefore, there are 190 profit figures corresponding to a single “true” demand 

function-cost function combination per period.  

For each particular true demand function-cost function combination, we obtained the 

profit accruing under Rules 1 and 2, and each of these was compared with the average profit figure 

accruing under Rules 3, 4, 5 and 6 and to the different rules to estimate the profit. Further details 

are given in the appendix. 

Baumol and Quandt conducted 24 simulations for each run. Because of a dramatic in-

crease in calculation since the mid sixties, we chose to compute 24.000 simulations for each of the 

six runs. Tables 1 to 6 give the results of this simulation. In the column, the standard deviation of 

each mean profit is given in parentheses. We had the growth, wait option and KTL to measure a 

mean profit realisation that is a simple addition of the profit in the two periods when the price is 

set according to the information available at this point without any actualisation for the second 

period (interest rate = 0), which corresponds to the results ex-post. Also, the expected row corre-

sponds to the sum of the expectation in the two period’s ex-ante. Numerical details of the simula-

tion runs are given in the appendix. 

6. Results of the Calculations 

Three thresholds should be kept in mind while reading Tables 1 to 6. First, the minimum 

and risk-less profit is 2000 per period of simulation, which makes every profit obtained under 4000 

for the two periods of simulation to be considered a very bad choice for the decision maker. The sec-

ond threshold is the naïve Rule 1, who consists in always charging the same price p = 11. Performing 

less than the profit of Rule 1 is also a sign of poor decision. Notice that Rule 1 in some of our simula-

tions performs very well. This corresponds mainly to the restriction imposed to our model (price lim-

ited between 0 and 21). However, Rule number 1 is introduced to help screen the results. The third 

threshold is the first column of result: the maximum profit one can obtain in investing in the risky 

project. Note that it is possible to obtain a higher profit in some simulations by using the risky project 

in one period and deciding to invest in the risk-less project in the other period.  

The results in Tables 1 to 6 suggest that Rules 2 and 6 can be eliminated immediately on 

the basis of their average poor performance in comparison to the other rules. Rule 2 performs well 

in Run 1, but performs badly in the following Runs. This is due to the upward shift in the cost 

function in Runs 2-5, thus the average optimal price is higher in these runs. 

Rules 3, 4 and 5 give globally comparable results, but with a decrease in the ration mean 

profit/maximum profit when we look from Rule 3 to Rule 4. This is because the costs are expected 

to be higher in these rules. 

A comparison between the expected profits and real profits show that the decision maker 

expected more than the real outcomes in the majority of the cases. Only in some runs using Rule 6 

the expectations are smaller than the real results. This is mainly because the demand function of 

Rule 6 is hyperbolic and the price limitation that we employ limits us to a relative flat part of the 

demand. This high expectation can be seen as the sum of the decision-maker’s bias. The difference 

between expected profit and real profit can turn out to be extremely high in some cases. 

The comparison between the growth option case and the mean profit without any option 

calculation shows us that the decision maker using growth option outperforms the standard case. 
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But the standard deviation of growth option is high in comparison to the standard case; it is almost 

double. Also, many results of growth options are under the minimal 400 threshold. What this 

means is that this rule pushes the decision maker to not use the risk-less investment possibility and 

turn to the risky project more easily. 

Comparing the option to wait case and the procedure proposed by Kahneman, Tversky 

and Lovallo, we can notice a high similitude between these two groups of results. This leads us to 

say that using an option to wait is a good way to reduce too enthusiastic expectations from deci-

sion-makers. The option to wait is a counter-bias effect. This effect is desirable when the expecta-

tions are far too high. Unfortunately, this procedure also seems to favour projects instead of invest-

ing in the risk-less projects; thus, the result is that in many cases the option to wait and KTL pro-

cedure gives result under the 4000 minimum. 

It is also noteworthy that the performance of these rules of thumb are in terms of mean 

profit globally high if we take into consideration that the profit calculations were based on demand 

and cost functions fitted only to pairs of points on the two functions.  

Notice also that the real profit obtained in the second period is more than 80 percent of 

the case greater than the profit obtained in the first period. This is because we specify that the 

points taken for the calculation are more separate than in the first period. Since the demand and 

cost functions are linear or quadratic, this phenomenon is normal and we could expect better per-

formances when the points are far one from each other. 

7. Concluding Remarks 

Kogut and Kulatilaka (2003) make us aware that decision bias can come not only from 

individual decision makers, but also from corporate pressure. They remark that the option models 

have been moved from financial markets to corporate decision making only by searching to fit 

different domains together (financial market and corporate decision) without taking into considera-

tion the behavioural decision-making biases introduced. However, they suggest that given the 

negative evolutionary consequences in ignoring options like investments, organizations invent 

heuristic rules to counter these biases. They conclude by proposing the idea of a domain transla-

tion that shows how the basic insight of option pricing can be preserved through evolving com-

plementary organizational rules, such as increasing the frequency of monitoring the value of an 

investment. Again, a simple option-pricing simulation illustrates the joint influence of a status quo 

bias and frequent monitoring. 

We separately test real options, making the strong hypothesis that the decision biases are 

also separable. It is wrong to implicitly assume that behavioural biases do not themselves “duel” 

with each other, as do options, or that competition between decision makers in a firm will not lead 

to increase rather than decrease bias, or that organizations are unable to develop capabilities to 

counteract these pathologies. Folta and O’Brien (2004) examine the tension between the options to 

defer, and the options to grow and uncertainty. They investigate these relations on the decision 

established by firms to enter a new industry. 

Nevertheless, this work shows that there is a link between real option and decision bias. It 

encourages further work to describe more accurately the effects of the decision makers behaviour 

and their choice of rules of thumb including real options.  
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Appendix 1: Decision-maker estimation of the demand and cost function

For the purpose of calculating rule of thumb solutions to the profit maximisation problem, 

we assume that the decision-maker knew exactly two points on his demand function and two points 

(with the same abscissa as the point of the demand function) on his cost function. The decision-

maker was then assumed to calculate his pseudo-optimal price on the basis of the information con-

tained in these four points. It is to be noted that if the pseudo optimal price, p, turned out to be frac-

tional, it was rounded to the smallest integer greater than p. The profit accruing to the decision maker 

under a particular rule of thumb was then calculated from the true demand and cost functions.  

It is clear that the decision-maker estimates of the demand and cost functions will depend, 

in general, upon which two of many possible points on the demand and cost functions the decision 

maker is assumed to know. In order to evaluate the average or expected effectiveness of a rule of 

thumb statistically, the experimenter must present the decision maker, seriatim, with various alter-

native pairs of points and observe his behaviour in each of these possible cases.  

The six rules of thumb that were investigated were essentially chosen on the basis of their 

(relative) simplicity. No attempt was made a priori to choose rules that would in some sense be 

highly reasonable. In particular, the first two rules that are about to be described may be consid-

ered totally arbitrary and unreasonable. These “naïve rules” were designed only to provide a 

minimum standard of performance in that any rule that does not provide results better than those 

offered by our naïve rules should, doubtless, be rejected out of hand.  

(Naïve) Rule 1: Fixed price. Irrespective of the location of the two known points on the 

demand function and the cost function, charge a price p = 11, which is the midpoint of the range of 

relevant positive prices. Strictly speaking, this is not even a rule of thumb under our definition 

because no decision machinery is provided whereby the decision maker can actually select his 

unvarying price on the basis of objectively measurable data. 

(Naïve) Rule 2: Random price. Choose a price from the uniform distribution over the in-

tegers 3, …,17, irrespective of the two known points from the demand and cost functions. 

Rule 3: Linear demand, linear cost. Fit to the two known points on the demand function 

the linear relation p = a – bq, and to the two points on the demand function the linear relation c = d 

+ eq. If the two pairs of points are given by (p1, q1), (p2, q2) and by (c1, q1), (c2, q2), estimates of 

points a, b, d, and e are obtained from the expressions: 

1 2

1 2

ˆ p p
b

q q ,  (2) 

1 1
ˆâ p bq ,  (3) 

1 2

1 2

ˆ
c c

e
q q , (4) 

1 1
ˆ ˆd c eq .  (5) 

For example, here the expressions for b and â are obtained directly by elimination from 

the two equations p1 = â – bq1 and p2 = â – bq2. The decision-maker is then assumed to calculate 

his pseudo-optimal price by maximising profit on the basis of the estimated demand and cost func-

tion. Profit is: 

2aq bq d eq ,  (6) 

and maximising 

2 0
d

a bq e
dq  (7) 

so that: 
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2

a e
q

b  (8) 

and, from our demand equation, 

2 2

a e a e
p a b

b  (9) 

By virtue of the method by which the true demand function is generated, b > 0 and the 

second order condition for a maximum is always satisfied. 

Rule 4: Linear demand, quadratic cost. In Rule 4 the demand function was estimated in 

the same manner as in Rule 3. The cost relationship fitted was the quadratic function c = dq+eq2. 

The coefficient estimates were given by: 

1 2 2 1

1 2 1 2

ˆ
c q c q

e
q q q q

 (10) 

2

1 1

1

1ˆ ˆd c eq
q  (11) 

2 2aq bq dq eq  (12) 

yields the first order condition 

2 0
d

a bq d eq
dq  (13) 

whereby 

,
2 2

a d a d
q p a b

b e b e
 (14) 

The second order condition is: 

2 0b e
 (15) 

We observed the following conventions: 

1) Where the second-order condition failed (which can happen since e may be negative), a 

price p = 21 was charged1.

2) If the calculated optimal quantity was non-positive, a price p =21 was charged. 

3) Marginal cost was constrained to be positive for the entire relevant range of outputs. 

Rule 5: Linear demand, logarithmic cost. In Rule 5 the demand curve was obtained as be-

fore. But this time the cost function was c = dq + e log (q+1). 

From the two given points on the cost function, the coefficients d and e were estimated by: 

1 2 2 1

2 1 1 2

ˆ
log 1 log 1

c q c q
e

q q q q
 (16) 

1 1

1

1ˆ ˆ log 1d c e q
q  (17) 

Maximisation of the profit function 
2 log 1aq bq dq e q

 (18) 

yields the first order condition 

                                                          
1 This convention and the corresponding conventions for Rules 5 and 6 may plausibly be considered to have introduced 

some bias against these rules in our final evaluation. For with p =21 sales are zero and profit negative. 
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2 0
1

d e
a bq d

dq q  (19) 

whence 

2
2 2 8

4

a d b a d b b a d e
q

b  (20) 

The second order condition is 

2
2 0

1

e
b

q
 (21) 

Various problem possibilities arise in this calculation, and they were handled by the con-

ventions indicated below: 

1) Double roots. If the single distinct q was negative, a price of 21 was charge. If the sin-

gle distinct root was positive, but the second order condition was not satisfied, a price of 21 was 

charged, yielding zero sales. 

2) If roots were complex, a price of 21 was charged. 

3) If the roots were real and distinct, a price of 21 was charged either if both roots were 

negative or if the single positive root corresponded to a minimum. 

If a positive q*, corresponding to a maximum of the profit function existed, the decision 

maker charged the price p = a-bq*. 

Rule 6: Hyperbolic demand, quadratic cost. In Rule 6 the demand function is approxi-

mated by p = a-b/q, and its coefficients were estimated from the two observed points by: 

2 1
1 2

2 1

ˆ p p
b q q

q q  (22) 

and

1

1

ˆ
ˆ

b
a p

q  (23) 

The cost function was estimated as under Rule 4. 

The profit function is now: 
2aq b dq eq  (24) 

and, maximizing we obtain 

2 0
d

a d eq
dq  (25) 

yielding 

2

a d
q

e  (26) 

and the second order condition is now e > 0.  

If either the second-order condition was violated or the pseudo-optimal q was non-

positive, the pseudo-optimal price p = 21 was chosen. Otherwise the decision-maker was taken to 

charge:

2e
p a b

a d  (27) 
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Appendix 2: Simulation runs results  

Run 1 
Max. 
Profit

Rule 1 Rule 2 Rule 3 Rule 4 Rule 5 Rule 6 

Mean Profit realised: 

Expected

Growth Option 

Wait Option 

KTL

(Standard Deviation) 

6827
(1210)

6403
(1273)

5233
(1535)

6110 
(1473)

7739
(7046)

7236
(2213)

6047
(1473)

6002
(1500)

2854
(981)

7585
(1988)

3585
(2247)

6044
(1606)

5882
(1516)

2868 (935) 

7674
(11603) 

4574(2245) 

5949 (1411) 

5925 (1426) 

277 (717)

1707
(1298)

96
(13615) 

4006
(167)

3996
(308)

Mean profit/ 
Maximum Profit 

1.000 0.938 0.832 

0.945

1.133

1.065

0.885

0.879

0.418

1.111 

0.525

0.885

0.861

0.420

1.124

0.669

0.873

0.867

0.040

0.250

0.014

0.586

0.585

Run 2 
Max. 
Profit

Rule 1 Rule 2 Rule 3 Rule 4 Rule 5 Rule 6 

Mean Profit realised:

Expected

Growth Option 

Wait Option 

KTL

(Standard Deviation)

4913
(1406)

4113 
(1333) 3053

(1852)

4145
(1539)

5788
(8724)

5144
(1953)

4414
(1172) 

4302
(1174) 

1909
(880)

3266
(7161)

4861
(1994)

4227
(1190) 

4289
(1245)

1566 (1102) 

27083(4733
3)

4438 (2021) 

3946 (1625) 

3914 (1657) 

82 (522) 

746
(11963) 

309
(1886)

3954
(587)

3971
(309)

Mean profit/ 
Maximum Profit 

1.000 0.837 0.624 

0.843

1.178

1.047

0.898

0.875

0.388

0.664

0.989

0.860

0.872

0.318

5.512

0.903

0.803

0.796

0.016

0.151

0.062

0.804

0.808

Run 3 
Max. 
Profit

Rule 1 Rule 2 Rule 3 Rule 4 Rule 5 Rule 6 

Mean Profit realised:

Expected

Growth Option 

Wait Option 

KTL

(Standard Deviation)

2779
(1417)

1047
(1670) 323

(2643)

1850
(1603)

4034
(13499) 

2379
(1856)

3519
(1182) 

3575
(1088)

806
(878)

2419
(11092) 

2257
(1988)

3541
(1210)

3622
(1121) 

557 (1116) 

24745(5477
2)

2012 (1844) 

2828 (1915) 

2858 (1912) 

-189
(632)

9381
(632)

-277
(1149) 

3876
(748)

3832
(2198)

Mean profit/ 
Maximum Profit 

1.000 0.376 0.116 

0.665

1.451

0.856

1.266

1.286

0.290

0.870

0.812

1.274

1.303

0.200

8.904

0.724

1.017

1.028

-

3.375

-

1.394

1.378
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Appendix 2: Simulation runs results (continued) 

Run 4 
Max. 
Profit

Rule 1 Rule 2 Rule 3 Rule 4 Rule 5 Rule 6 

Mean Profit realised:

Expected

Growth Option 

Wait Option 

KTL

(Standard Deviation)

5866
(1244)

5125
(1322) 4041

(1835)

5042
(1410)

6649
(7203)

6064
(1957)

5016
(1416)

5019
(1428)

2449
(921)

6425
(7634)

3873
(2065)

5024
(1476)

5134
(1365)

2248 (1024) 

10134(5600
8)

5885 (2181) 

4756 (1491) 

4736 (1553) 

311 (874)

1023
(7850)

1298
(4368)

3964
(926)

4005
(1728)

Mean profit/ 
Maximum Profit 

1.000 0.873 0.688 

0.859

1.133

1.033

0.855

0.855

0.417

1.095

0.660

0.856

0.875

0.383

1.727

1.003

0.810

0.807

0.053

0.174

0.221

0.675

0.682

Run 5 
Max. 
Profit

Rule 1 Rule 2 Rule 3 Rule 4 Rule 5 Rule 6 

Mean Profit realised:

Expected

Growth Option 

Wait Option 

KTL

(Standard Deviation)

4265
(1340)

2830
(1381)

1867
(2287)

3127
(1403)

5132
(8781)

4006
(1742)

3801
(1163) 

3790
(1096)

1598
(2084)

2052
(16829) 

4161
(2084)

3973
(1135) 

3960
(1096)

1325 (977) 

14350(1266
4)

3630 (2468) 

3144 (1469) 

3459 (1563) 

3 (672) 

1259
(12342) 

162
(2424)

3915
(621)

3875
(677)

Mean profit/ 
Maximum Profit 

1.000 0.663 0.437 

0.733

1.203

0.939

0.891

0.888

0.374

0.481

0.975

0.931

0.927

0.310

3.364

0.851

0.737

0.811 

0.000

0.295

0.037

0.917

0.908

Run 6 
Max. 
Profit

Rule 1 Rule 2 Rule 3 Rule 4 Rule 5 Rule 6 

Mean Profit realised:

Expected

Growth Option 

Wait Option 

KTL

(Standard Deviation)

9246
(1245)

8790
(1294)

7516
(2016)

8828
(1201)

9442
(1300)

9720
(2271)

8793
(1274)

8877
(1251)

4474
(657)

4557
(1026)

9179
(2645)

8755
(1446)

8764
(1294)

4231 (894) 

26168(3679
3)

9134 (2874) 

8677 (1483) 

8745 (1536) 

440 (943)

126
(1342)

1161 
(3873)

4059
(1478)

3994
(145)

Mean profit/ 
Maximum Profit 

1.000 0.950 0.812 

0.954

1.021

1.051

0.951

0.960

0.483

0.492

0.992

0.946

0.947

0.457

2.830

0.987

0.938

0.945

0.047

0.013

0.125

0.439

0.431
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