“Coping emotional discomfort at retail checkout: Potential distractions and implications”

AUTHORS
Vinish P
Prakash Pinto
Iqbal Thonse Hawaldar
M. M. Munshi

ARTICLE INFO

DOI
http://dx.doi.org/10.21511/im.18(3).2022.14

RELEASED ON
Friday, 23 September 2022

RECEIVED ON
Tuesday, 19 April 2022

ACCEPTED ON
Tuesday, 09 August 2022

LICENSE
This work is licensed under a Creative Commons Attribution 4.0 International License

JOURNAL
"Innovative Marketing"

ISSN PRINT
1814-2427

ISSN ONLINE
1816-6326

PUBLISHER
LLC “Consulting Publishing Company “Business Perspectives”

FOUNDER
LLC “Consulting Publishing Company “Business Perspectives”

NUMBER OF REFERENCES
70

NUMBER OF FIGURES
0

NUMBER OF TABLES
5

© The author(s) 2022. This publication is an open access article.
Abstract
Retail customers often wait to complete their purchases during the checkout process. Prior research suggests that long checkout lines and service delays negatively affect customers’ evaluation of store services. The present study investigates the potential customer and in-store distractions and their implication for emotional discomfort due to crowding stress. This study employed a cross-sectional research design and surveyed 385 respondents visiting the target retail outlets in Bengaluru, India. Correlation analysis explored the relationship between self-distraction, in-store distractions, and emotional discomfort. The study found that self-distraction negatively correlates with discomfort while in the queue ($r = -0.119$) and discomfort during the billing ($r = -0.119$). In contrast, in-store distractions ($r = -0.161$) and video displays near the checkout area ($r = 0.116$) effectively reduce emotional discomfort while in the queue. Additionally, point-of-purchase (POP) display ($r = -0.265$) and availability of refreshments near the billing counter ($r = -0.175$) are effective in reducing emotional discomfort during the billing. This study thus offers viable and affordable methods of improving the customer’s waiting experience while contributing to store profits.

Keywords
retail shopping, supermarket, hypermarket, queue, billing, customer engagement, distraction, India

JEL Classification
D91, L81, M31

INTRODUCTION
Waiting in line can be frustrating, even without social injustice, unless managed carefully. Customers who wait at the checkout experience idleness, “the state of low engagement in external tasks or when people do not have anything to do” (Matthew & Daniel, 2010). Intolerable and perceived idle wait in the queue exaggerates the negative response to waiting duration (Houston et al., 1998; Tom & Lucey, 1995). Self-engagement in goal-seeking will subside the adverse service events (Miller et al., 2008). Time fillers should offer a benefit and should be related to the subsequent service encounter (Vinish et al., 2021a). Unrelated time-fillers are useful in a healthcare system that diverts customers’ attention. The length of the wait is affected by several factors that are often difficult to control. In contrast, situational factors such as distraction, background music, information about waiting, and queue information are partly controllable (Durrande-Moreau, 1999).

When considering how to improve store operations, managers should concentrate on high-impact areas such as unoccupied time, unexplained delays, unexplained waiting times, and uncertain waiting times, where they have great control. When they have limited control,
they should get creative. Meanwhile, waiting duration could be eliminated for specific customers by installing express checkout lanes. Pruyn and Smidts (1998) suggested that “the perceived waiting environment, the perceived waiting time, the acceptable waiting time, and the appraisal of the wait should be considered beyond objective waiting time.” Effective queue management stipulates the appraisal of the service system, not merely based on the objective waiting times. Customers continue to prefer in-store shopping because of the unique characteristics of traditional stores, such as the ability to see, touch, and feel the merchandise and its immediate availability (PricewaterhouseCoopers, 2015, p. 18). Retail checkout operations in India have primarily been understudied, even though offline retailing has distinct advantages and significant prospects.

1. LITERATURE REVIEW

In today’s competitive marketplace, there are countless waiting lines at supermarkets, hospitals, parking lots, and banks. A prolonged wait can tarnish the store’s reputation and might cause customers to leave the business. Since a retailer’s business strategy is characterized by its service orientation, it is necessary to explore the implications of the in-store checkout experience on customer satisfaction.

Waiting invades the persistent flow of time and limits individuals’ liberty in doing what they like (Robbins, 1978; Vinish et al., 2021b; Wu et al., 2013). Waiting in a queue is more detrimental to the overall perceptions of store service quality or the store image (Houston et al., 1998; Park et al., 2014). Boredom caused by waiting in line can lead to impatience, tension, and anxiety (Bennett, 1998). Customers’ emotional reactions to waiting are negatively affected by perceived wait times (Van Riel et al., 2012). It also adversely affects service appraisal (Haynes, 1990) and, at times, results in the relinquishment of service (Bielen & Demoulin, 2007). Bagozzi et al. (1999) found that on many occasions, customers in supermarkets are ‘irritated, bored, frustrated, and unhappy’ while they wait for the checkout, which generates a negative mental experience. Crowding stress is determined by the amount of intrusion, one of the many elements underlying the intuitive experience of being crowded (Hui & Bateson, 1991; Levav & Zhu, 2009; Schopler & Stockdale, 1977). Bennett (1998) defined emotional discomfort as “notably feelings of being cramped and crowded and of frustration at not being able to get away.” Miller et al. (2008) emphasized the need to further investigate waiting times during the preprocessing, in-processing, and post-processing phases.

When customers anticipate a stressful service experience, their mood is influenced, as well as their ability to cope with stress (Bagozzi & Pieters, 1998; Nicholls & Cullen, 2004; Triantafillidou et al., 2017). When there is no distraction, ‘empty time’ seems longer than busy time (Hornik, 1984; Vinish et al., 2022). Customers are more likely to differentiate a poor service experience from a great one if they wait longer but are filled despite the delay (Antonides et al., 2002; Taylor, 1995). In a time-driven economy, customers who believe they have more time than money to spend will sacrifice their time to get monetary savings (Park et al., 2014). These customers appear to have more control over the waiting time. The renowned philosopher James (1890, p. 1433) asserted that time shortens whenever the focus is on its content to the point that one neglects to observe the actual passing of time. By engaging in goal-seeking, one can diffuse negative time perception (Yang & Hsee, 2019). Self-distraction refers to “the effort to selectively attend to non-emotional (or emotionally less disturbing) aspects of a situation” (Kalisch et al., 2006). As customers wait, they may occupy their minds or bodies with physical or mental activities to divert their attention away from the wait (Buckner et al., 2008; Kalisch et al., 2006). In light of the arguments described above, it is apparent that self-distraction reduces emotional discomfort.

Customer engagement is essential for service-oriented organizations (Kim & Yi, 2017; Ullal et al., 2020). In-store distractions lead to reduced perceived wait time and heightened mental activity (Hui et al., 1997; Jones & Peppiatt, 1996; Katz et al., 1991; Van Riel et al., 2012; Zakay & Hornik, 1991). Enhancing the customers’ wait experiences is as effective as decreasing the wait times (Katz et al., 1991; Weiss & Tucker, 2018). Time perceptions during the wait are influenced by multiple factors.
or time-fillers, such as frequent announcements or displays about wait duration, length of the queue or position in the queue, and music (Antonides et al., 2002). Efforts have been made to improve the queue environment to boost customer satisfaction (Davis & Heineke, 1994; Liang, 2016; Vinish & Maruthi Ram, 2019).

Time-fillers are helpful in the healthcare system context when fillers divert the customer’s attention (Antonides et al., 2002; Cheng & Tsai, 2014; Mantel & Kellaris, 1994). A retail environment that fosters desire and stimulation can have both positive and negative effects on customers’ emotions (Mohamad, 2015; Shankar et al., 2003). Retail stores generally reduce waiting times by adjusting their service facilities to meet varying demands (Sarel & Marmorstein, 1998). In contrast to operations management techniques, perception management is often highly reasonable. Providing menu information, for example, acts as a waiting distraction and encourages communication with the waiting customers (Baek & Kim, 2014). Additionally, presenting opportunities for customer participation will divert the customers’ attention and increase satisfaction levels (Tom & Lucey, 1995). Houston et al. (1998) suggested further research on filled waiting time and the effect of in-store entertainment on customer acceptance.

Customers perceive the retail environment in an ambient and embracing manner. The overall experience is driven by direct and intermediary effects (Li et al., 2013; Morin et al., 2007; Ullal et al., 2021). Checkout engagement possibly affects the customers’ shopping experience (Athanassopoulos et al., 2001; Mou et al., 2018; Thakur, 2019). Time fillers may be context-related or unrelated depending on their significance to the purchase situation (Baek & Kim, 2014; Taylor, 1994, 1995). Enhancing the perceived value of the service is crucial for effectively managing outlet perception (Jones & Peppiatt, 1996; Lawless, 2014; Torlak et al., 2010).

Most studies have examined the idleness of the server rather than the idleness of the customer (Frenk et al., 1991; Haji & Ross, 2015; Kanet & Sridharan, 2000; Priyangika & Cooray, 2016). However, no prior study has explored how to engage the idleness and boredom of customers at the retail checkout in the Indian context. This paper aims to fill this literature gap by examining whether self- and in-store distractions can reduce customers’ emotional discomfort during the checkout wait. Accordingly, this study hypothesizes:

\[ H_1 \text{: Self-distractions reduce customers' emotional discomfort while waiting in the queue.} \]

\[ H_2 \text{: Self-distractions reduce customers' emotional discomfort during the billing.} \]

\[ H_3 \text{: In-store distractions reduce customers' emotional discomfort while waiting in the queue.} \]

\[ H_4 \text{: In-store distractions reduce customers' emotional discomfort during the billing.} \]

2. METHODOLOGY

The study was conducted in a natural setting to empirically validate the theoretical model. Van Riel et al. (2012) avoided the effects of previous shopping encounters by administering the questionnaire to respondents immediately following their store visits. This way, the waiting perceptions were recorded once the customers finished shopping.

2.1. Sampling

The research population comprises residents and tourists visiting the organized retail chain outlets in Bengaluru Urban. The study adopted confirmatory sampling, in which specific participants were selected since they are critical respondents for testing the hypotheses. The survey consisted of 385 respondents (shoppers) from ten leading supermarkets and hypermarkets in Bengaluru’s major localities. Even though the stores under examination sell similar brands and enjoy high sales turnover daily, their store designs, ambiances, merchandise selections, pricing, and marketing strategies differ significantly.

Table 1 shows the sample descriptions. Survey results showed that most (41.6%) respondents are in the 31 to 40 age range, while the least (8.1%) are in the over 50 range. When collecting responses, both genders were contacted to get a more holistic perspective on the issue. As a result, opinions shared among males (53.8%) and females (46.2%)
do not differ significantly. An almost equal proportion of respondents (49.4%) and hypermarket shoppers (50.6%) visited supermarkets and hypermarkets. For shopping, most respondents (48.6%) choose weekends, followed by those who do not specify a day of the week (20.5%). Most respondents (43.4%) encountered discomfort nearly every time they waited in line, 37.1% experienced discomfort occasionally, 12.7% experienced discomfort always, and the remaining 6.8% just barely experienced discomfort. Thus, emotional discomfort in the queue is high, with a mean and standard deviation of 3.59 ± 0.86. During the billing, 46.8% of respondents reported discomfort occasionally, 28.8% reported discomfort almost every time, 16.1% reported discomfort almost never, and 8.3% reported discomfort every time. Thus, emotional discomfort during the billing is high, with a mean and standard deviation of 3.24 ± 0.94.

2.2. Scale development and validation

The survey followed the reactive study method (Neuman, 2014), where respondents were approached after purchasing. Based on Tsang et al.’s (2017) recommendations, a small sample of 50 respondents from Bengaluru participated in the pilot study. The response scales were revised in response to the long waiting times experienced by the respondents during the pilot study, particularly regarding the waiting time. A large number of shoppers visited the retail outlets considered in this study, so their variability is unknown. Presuming the maximum variability, equal to 50% (i.e., p = 0.5) and at a 95% confidence level with ±5% accuracy, the estimated sample size using Cochran’s (1977) formula is 385. The validity of the constructs was ensured by consulting store managers and executives.

<table>
<thead>
<tr>
<th>Items</th>
<th>n</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Type of the outlet visited</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Supermarket</td>
<td>190</td>
<td>49.4</td>
</tr>
<tr>
<td>Hypermarket</td>
<td>195</td>
<td>50.6</td>
</tr>
<tr>
<td><strong>Day of visit</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Weekend (Saturdays and Sundays)</td>
<td>187</td>
<td>48.6</td>
</tr>
<tr>
<td>Weekday (Mondays to Fridays) except Wednesdays</td>
<td>72</td>
<td>18.7</td>
</tr>
<tr>
<td>On Wednesdays</td>
<td>32</td>
<td>8.3</td>
</tr>
<tr>
<td>During special/seasonal offers</td>
<td>15</td>
<td>3.9</td>
</tr>
<tr>
<td>No preference/any day</td>
<td>79</td>
<td>20.5</td>
</tr>
<tr>
<td><strong>Emotional discomfort while in the queue</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Never</td>
<td>11</td>
<td>2.9</td>
</tr>
<tr>
<td>Almost never</td>
<td>15</td>
<td>3.9</td>
</tr>
<tr>
<td>Occasionally/Sometimes</td>
<td>143</td>
<td>37.1</td>
</tr>
<tr>
<td>Almost every time</td>
<td>167</td>
<td>43.4</td>
</tr>
<tr>
<td>Every time</td>
<td>49</td>
<td>12.7</td>
</tr>
</tbody>
</table>

3. RESULTS

The analysis includes a Pearson correlation analysis performed on two stages of waiting at the checkout: while in the queue and during the billing. The study considered customer approaches (self-distractions) and store approaches (in-store distractions) to analyze the effectiveness of the latter in reducing the emotional discomfort accrued by customers during the checkout process. The results of the data analysis are summarized in Tables 2 to 5.

3.1. Correlations between self-distraction and emotional discomfort while in the queue

<table>
<thead>
<tr>
<th>Self-distraction approaches</th>
<th>Pearson correlation</th>
<th>p</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>The respondent looks around the store, other counters, and queue movement.</td>
<td>0.051</td>
<td>0.32</td>
<td>Not significant</td>
</tr>
<tr>
<td>The respondent browses items near the checkout lane.</td>
<td>–0.037</td>
<td>0.469</td>
<td>Not significant</td>
</tr>
<tr>
<td>The respondent glances through his mobile/surfs the internet/plays games.</td>
<td>–0.126</td>
<td>0.013*</td>
<td>Significant</td>
</tr>
<tr>
<td>The respondent is engaged in conversations with family/friends who accompanied them.</td>
<td>–0.162</td>
<td>0.001**</td>
<td>Highly significant</td>
</tr>
<tr>
<td>Overall self-distraction.</td>
<td>–0.119</td>
<td>0.020*</td>
<td>Significant</td>
</tr>
</tbody>
</table>

*Note: Significant at: *0.05, ** 0.01 levels.*
Table 2 shows the correlation between self-distraction and emotional discomfort experienced while in the queue. The respondent’s behavior “looking around the store, other counters, and queue movement” correlates positively with the “discomfort while in the queue” (where \( r = 0.051, p = 0.32 \)) “browsing the items near the checkout lane” correlates negatively with the “discomfort while in the queue” (where \( r = -0.037, p = 0.469 \)), but they are independent of emotional discomfort. While the respondent’s behavior “glancing through mobile phone” correlates negatively with the “discomfort while in the queue” (where \( r = -0.037, p = 0.32 \)), “browsing the items near the checkout lane” correlates negatively with the “discomfort during the billing” (where \( r = -0.219, p = 0.000 \)) “engage in conversations” correlates negatively with the “discomfort during the billing” (where \( r = -0.199, p = 0.02 \)) and they are highly significant. Therefore, as the respondents spend more time watching mobile and engaging in conversations with accompanying, their discomfort reduces. The overall self-distraction correlates negatively with the “discomfort during the billing” (where \( r = -0.119, p = 0.02 \)) and is significant. It implies that their emotional discomfort reduces as self-distraction increases while in the queue. Hence, \( H_1 \) is accepted.

3.2. Correlations between self-distraction and emotional discomfort during the billing

Table 3. Relationship between self-distraction and emotional discomfort during the billing

<table>
<thead>
<tr>
<th>Self-distraction approaches</th>
<th>Pearson correlation</th>
<th>p</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>The respondent looks around the store, other counters, and queue movement.</td>
<td>0.183</td>
<td>0.000**</td>
<td>Highly significant</td>
</tr>
<tr>
<td>The respondent browses items near the checkout lane.</td>
<td>-0.037</td>
<td>0.465</td>
<td>Not significant</td>
</tr>
<tr>
<td>The respondent glances through his mobile/surf the internet/plays games.</td>
<td>-0.219</td>
<td>0.000**</td>
<td>Highly significant</td>
</tr>
<tr>
<td>The respondent is engaged in conversations with family/friends who accompanied them.</td>
<td>-0.199</td>
<td>0.000**</td>
<td>Highly significant</td>
</tr>
<tr>
<td>Overall self-distraction.</td>
<td>-0.161</td>
<td>0.002**</td>
<td>Highly significant</td>
</tr>
</tbody>
</table>

Note: Significant at: *0.05, ** 0.01 levels.

Table 3 shows the correlation between self-distraction and emotional discomfort experienced during the billing. The respondent’s behavior “browsing the items near the checkout lane” correlates negatively with the “discomfort during the billing” (where \( r = -0.219, p = 0.000 \)) and is independent of emotional discomfort. While the respondent’s behavior “looking around the store, other counters and queue movement” correlates positively with the “discomfort during the billing” (where \( r = -0.037, p = 0.046 \)) “glancing through mobile phone” correlates negatively with the “discomfort during the billing” (where \( r = -0.119, p = 0.02 \)) and they are highly significant. Therefore, as the respondents spend more time watching mobile and engaging in conversations with accompanying, their discomfort reduces. The overall self-distraction correlates negatively with the “discomfort during the billing” (where \( r = -0.119, p = 0.02 \)) and is significant. It implies that their emotional discomfort reduces as self-distraction increases while in the queue. Hence, \( H_1 \) is accepted.

3.3. Correlations between in-store distraction and emotional discomfort while in the queue

Table 4. Relationship between in-store distractions and emotional discomfort while in the queue

<table>
<thead>
<tr>
<th>Approaches to in-store distractions</th>
<th>Pearson Correlation</th>
<th>p</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Store executives’ approach regarding in-store promotions engaged the respondents.</td>
<td>-0.197</td>
<td>0.000**</td>
<td>Highly significant</td>
</tr>
<tr>
<td>Looking at the items near the billing counter kept the respondents engaged until the billing.</td>
<td>-0.161</td>
<td>0.001**</td>
<td>Highly significant</td>
</tr>
<tr>
<td>Availability of beverages/snacks near the billing counter could attract the respondent’s attention.</td>
<td>-0.034</td>
<td>0.506</td>
<td>Not significant</td>
</tr>
<tr>
<td>Respondents feel informed and occupied if the store notifies them regarding the upcoming offers/new product arrivals through a display system (like TV).</td>
<td>-0.011</td>
<td>0.829</td>
<td>Not significant</td>
</tr>
<tr>
<td>Video promotions of non-store brands/events/movie trailers near the billing counter reduce respondents’ boredom.</td>
<td>0.116</td>
<td>0.022*</td>
<td>Significant</td>
</tr>
</tbody>
</table>

Note: Significant at: *0.05, ** 0.01 levels.
Table 4 exhibits the correlations between discomfort while in the queue and the respondent’s engagement. The discomfort while in the queue correlates negatively with the statement “store executives’ approach regarding in-store promotions engaged the respondents.” The association is significant, with $r = -0.197$ and $p = 0.000$. The result suggests that increased sales attempt by the store executives was causing more discomfort to customers while in the queue. The discomfort ‘while in the queue’ correlates negatively with the statement “looking at the items near the billing counter kept the respondents engaged till billing.” The relationship is significant, with $r = -0.161$ and $p = 0.001$. It implies that the higher the involvement in browsing at the billing counter, the lesser the discomfort experienced by the customers, and vice versa.

The discomfort while in the queue correlates negatively with the statement “availability of beverages/snacks near the billing counter could attract respondent’s attention.” However, the relationship is insignificant, with $r = -0.034$ and $p = 0.506$. It infers that the likelihood of spot consumption of beverages and snacks reduces as the discomfort in the queue increases and vice versa. The statement on the store display system that notifies about upcoming offers or new product arrivals correlates negatively with discomfort in the queue, suggesting that engagement approaches, such as an information display system about offers and upcoming products, help divert the customers’ attention and thus reduce the discomfort level. However, the relationship is not significant, with $r = -0.011$ and $p = 0.829$.

The statement on video promotions near the billing counter correlates positively with discomfort while in the queue. The relationship is significant, with $r = 0.116$ and $p = 0.022$. It implies that video promotions of non-store brands, events, and movie trailers effectively divert the customers’ attention and reduce their discomfort. The analysis conveys the practicability of distracting the customers’ attention and engaging them. Thus, $H_3$ is accepted.

### 3.4. Correlations between in-store distraction and emotional discomfort during the billing

Table 5 displays the correlations between discomfort during the billing and respondent engagement. The discomfort during the billing correlates negatively with the statement “store executives’ approach regarding in-store promotions engaged the respondents.” The relationship is significant, with $r = -0.248$ and $p = 0.000$. The correlation indicates that the respondents’ stress level has increased from the previous level ($-0.197$). It results from the respondent’s contact with sales executives in the queue and at the counter. Further, increased sales attempts by the store executives continued to produce more discomfort. The discomfort during the billing correlates negatively with the statement “looking at the items near the billing counter kept the respondents engaged till billing.” The relationship is significant, with $r = -0.265$ and $p = 0.000$. Compared to the previous level, i.e., while in the queue, the relationship between the two variables is stronger. The rise could be attributed to the continued exposure to the merchandise until the cashier attends the respondents. It also infers an inverse relationship between browsing at the billing counter and discomfort level.

### Table 5. Relationship between in-store distractions and emotional discomfort during the billing

<table>
<thead>
<tr>
<th>Approaches to in-store distractions</th>
<th>Pearson Correlation</th>
<th>p</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Store executives’ approach regarding in-store promotions engaged the respondents.</td>
<td>-0.248</td>
<td>0.000**</td>
<td>Highly significant</td>
</tr>
<tr>
<td>Looking at the items near the billing counter kept the respondents engaged till the billing.</td>
<td>-0.265</td>
<td>0.000**</td>
<td>Highly significant</td>
</tr>
<tr>
<td>Availability of beverages/snacks near the billing counter could attract the respondent’s attention</td>
<td>-0.175</td>
<td>0.001**</td>
<td>Highly significant</td>
</tr>
<tr>
<td>Respondents feel informed and occupied if the store notifies them regarding the upcoming offers/new product arrivals through a display system (like TV).</td>
<td>-0.068</td>
<td>0.187</td>
<td>Not significant</td>
</tr>
<tr>
<td>Video promotions of non-store brands/events/movie trailers near the billing counter reduce respondents' boredom.</td>
<td>0.061</td>
<td>0.231</td>
<td>Not significant</td>
</tr>
</tbody>
</table>

Note: Significant at: *0.05, **0.01 levels.
The discomfort during the billing correlates negatively with the statement "availability of beverages/snacks near the billing counter could attract respondent’s attention." The relationship is significant, with $r = -0.175$ and $p = 0.001$. The inverse relationship between the two implies a higher prospect of spot consumption of beverages and snacks as the discomfort decreases. The statement on the store display system that notifies about upcoming offers or new product arrivals correlates negatively with the discomfort during the billing. Nevertheless, the relationship is not significant, with $r = -0.068$ and $p = 0.187$. The statement on video promotions near the billing counter correlates positively with the discomfort during the billing. However, the relationship is not significant, with $r = 0.061$ and $p = 0.231$. The analysis suggests the feasibility of distracting the customers’ attention and engaging them through store approaches. Thus, $H_4$ is accepted.

4. DISCUSSION

This study investigated the usefulness of distraction techniques in reducing the emotional discomfort of shoppers while waiting in the queue and during the billing. Two approaches were explored in this study: self-distraction (engagement) by customers and in-store approaches. While waiting in line, self-engagement strategies were found to be inversely related to emotional discomfort. For instance, shoppers expressed less discomfort when engaged with their mobile phones and accompanied by shopping companions. Similarly, customers experienced less discomfort during the billing process if they occupied themselves with queue observation, mobile phone use, or conversations with companions. The above findings were not surprising as most respondents were relatively young, used mobile phones extensively, and conversed with companions at the checkout.

Contrarily, customer discomfort increases when their attention shifts to in-store matters such as crowding and queueing. The findings are consistent with the prior investigation on queuing behavior by Miranda (2008) and Cui et al. (2018). Customers become more aware of their surroundings as they approach the billing counter. A similar observation was made by Dahm et al. (2018), where customers developed social pressure when the line was building behind them (especially evident at the crowded ATM counter).

The in-store approach showed that customers experienced less discomfort when they browsed the POP displays near the checkout and watched TV screens while in the queue. In contrast, in-store promotions by the sales executives to the customers standing in the queue increased their discomfort. During the billing, customers experienced less discomfort when they browsed the POP displays near the checkout and had access to refreshments at the checkout. It implies that the careful planning of the merchandise displayed at the checkout can divert customer attention and make them less aware of the passage of time. Additionally, it will help the store managers to facilitate a positive evaluation of the wait by the customers and generate ancillary revenues through impulse buying behavior. This argument is supported by Mantel and Kellaris (1994), Seawright and Sampson (2007), and Garaus and Wagner (2019). While waiting in line and during the billing, store executives’ pushy sales tactics made customers uncomfortable and increased their emotional discomfort.

CONCLUSION

While entertainment and experience are a significant part of the retail mix in developed countries, they are less common in India. Presently, customers arriving at the checkout counter confront limited marketing stimuli; hence, they are more aware of the passage of time. Distractions offered by retail stores should present benefits to customers and engage them during the checkout process. The present study demonstrates that self- and in-store distractions positively influence customers’ emotional discomfort and are economically viable approaches. Understanding how customer experiences evolve is key to managing these waiting experiences. When planning or implementing wait management strategies, managers should consider customers’ intrinsic motivation toward distractions and their repercussions
on the business. It is recommended that store managers view the waiting line as a marketing opportunity instead of a threat. Although the current study is restricted to hypermarkets and supermarkets in Bengaluru, the findings apply to any retail outlet offering diversified merchandise and confronting situations with a waiting line at the checkout. The study hints at potential checkout marketing strategies to increase store sales and customer engagement.

The study examined the strategies for engaging the waiting customer at the retail checkout in food and grocery outlets. Accordingly, customers at exclusive apparel and accessory stores were not contacted for their opinions. It was decided to collect customer responses during store rush hours to study the problem comprehensively. Customers who visited the store during non-rush hours were therefore not surveyed.

There has been limited research on customer engagement efforts at the retail checkout. Additional investigations could be conducted to confirm the suitability and efficacy of distractors, such as promoting new product arrivals and product demos for the customers waiting at the checkout. The TV screens are installed near the aisles in the surveyed retail stores. Future studies could also investigate the feasibility of retail stores raising additional revenues by installing additional TVs at their checkout counter to promote products and services offered by partner stores. In addition, qualitative studies on approach and avoidance motivation concerning the choice of distractions in a retail waiting context would strengthen the literature.

**AUTHOR CONTRIBUTIONS**

Conceptualization: Vinish P.
Formal analysis: Vinish P., Prakash Pinto, Iqbal Thonse Hawaldar, M. M. Munshi.
Funding acquisition: Iqbal Thonse Hawaldar.
Investigation: Vinish P., Prakash Pinto.
Methodology: Vinish P., Prakash Pinto, Iqbal Thonse Hawaldar.
Project administration: Iqbal Thonse Hawaldar.
Resources: Iqbal Thonse Hawaldar, M. M. Munshi.
Software: Vinish P., Prakash Pinto, Iqbal Thonse Hawaldar.
Supervision: Prakash Pinto, Iqbal Thonse Hawaldar.
Validation: Prakash Pinto, Iqbal Thonse Hawaldar.
Writing – original draft: Vinish P.
Writing – review & editing: Prakash Pinto, Iqbal Thonse Hawaldar, M. M. Munshi.

**REFERENCES**


Advances in Consumer Research, 21(1), 514-518.


