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Excluding Sum Stable Distributions as an Explanation of 
Second Moment Condition Failure – The Australian Evidence 

Jan Annaert, Marc De Ceuster, Allan Hodgson 

Abstract

This paper examines the issue of stock return moments in the Australian stock market. 

The existence of at least second moments is a fundamental assumption of underlying finance the-

ory. We determine, using characteristic exponent point estimates, that the population variance may 

be infinite but on the same data, we also find that Hill-estimates are above 2 for all stocks, indicat-

ing that second moments do exist. This conflicting result is resolved by setting up a simulation 

experiment in which we show that the empirical combination of the Hill-estimate and the charac-

teristic exponent lies outside the simulated confidence intervals for sum stables. This enhances the 

evidence for the existence of second moments in Australian stock returns. 

Key words: sum stable distributions, Hill-estimator, second moment. 

JEL Classification: C14, C22, G12. 

1. Introduction 

Undertaking empirical financial analysis is the cornerstone of most financial and invest-

ment research. However, when applying econometric procedures a number of assumptions are 

made regarding the existence of certain moments. For example, covariance stationary models re-

quire at least the first two moments to exist. If they do not, then the basis of the capital asset pric-

ing model which undermines tests of market efficiency and event studies, is ruled out as a correct 

form of analysis. 

The appropriate descriptive distribution for the returns of various speculative asset prices 

and the existence of second and higher moments have been debated since the 1960s. Mandelbrot 

(1963) was the first to suggest that observed fat tails could be explained by relying on the general-

ised central limit theorem (Feller, 1971). This generalised central limit theorem states that the 

sums of independent and identical random variables with infinite variance converge to a (non-

normal) sum stable distribution. Mandelbrot’s suggestion of infinite second moments meant that 

volatility, as measured by standard deviation, was a precarious sample dependent risk measure that 

would explode if longer time series were observed. To date, the standard procedure in the finance 

profession has been to ignore Mandelbrot’s hypothesis and assume that his exploding sequential 

standard deviation plots could be generated by other fundamentals, such as time varying volatility. 

However, concern about the possibility of an infinite variance was reawaken when GARCH(1,1) 

models were shown to be borderline to integrated GARCH models (Engle and Bollerslev, 1986).  

More recently, Jansen and de Vries (1991), Loretan and Phillips (1994), Hiemstra and 

Jones (1995), and Pagan (1996) have produced empirical evidence consistent with the existence of 

second moments. This research directly focused on the tail of the empirical distribution, instead of 

fitting a pre-specified density function to the full data set. The underlying logic is that the latter 

method will be unduly influenced by the vast majority of observations lying in the centre of the 

distribution and, therefore, will not carry appropriate information about the tails. In order to allevi-

ate this problem, a distinction was made between distributions with exponentially declining tails 

(like the tails of the normal distribution) and distributions having a tail that declines with a power 

law (fat tailed distributions). 

Given that fat tail distributions exist in most financial return series (Bolleslev, 1987) re-

searchers assume the tails of the distribution to behave according to the Pareto (power) law, that is 

Pr(X>x) = k x with k constant and tail index . Estimating this tail index ( ) is of interest and is 

useful, in at least two respects. First, it provides a statistically rigorous way of discriminating be-

tween various suggested stochastic process candidates for modelling the unconditional distribution 

of financial returns. Although the sum stable distributions and other fat tailed processes, such as 
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the Student-t distribution and non-integrated ARCH models are not nested, they are nested in the 
tail of the distribution. Moreover, Jansen and de Vries (1991) and Hols and de Vries (1991) exploit 

the property that  < 2 for stable processes, whereas otherwise  is restricted only to be positive. 

Finding ’s that are statistically significantly higher than 2 hence rules out the sum stable distribu-

tions as suitable approximations for unconditional return distributions. At the same time this find-

ing would establish the appropriateness of the mean-variance paradigm. Second, under the as-

sumption that the tails are truly from the Pareto type,  can be used to determine the maximum 

number of moments that exist since only moments up to the value of  exist (Loretan and Phillips, 

1994). 

The estimation of the tail index and the statistical inference, however, lead to various sta-

tistical problems.  

1. If the tail index is estimated assuming that the true distribution is sum stable,  is a
priori restricted to be below 2, which makes it impossible to discriminate between al-

ternative stochastic processes based on .

2. Alternatively, one can assume that the tail of the distribution is a Pareto type. Then 

can be estimated in an unrestricted way by means of a Hill-estimator (Hill, 1975). Of 

note is that theoretical standard deviations on the Hill-estimator have usually been 

derived under the assumptions of independent realisations and Pareto type tails. This 

has induced further research. 

a. Kearns and Pagan (1997) have shown that GARCH-type dependence 

causes the theoretical standard errors to be so large that the tests on 

being smaller or larger than 2 are virtually always inconclusive. The re-

sults of Kearns and Pagan again question the conclusions of Jansen and 

de Vries (1991) and Hols and de Vries (1991) that second moments do 

exist.  

b. Further, Groenendijk, Lucas and de Vries (1995) in their Tables 1 and 

3, implicitly show that the assumption of Pareto type tails is crucial as 

departures from this assumption lead to severe biases in the estimation 

of . Groenendijk, Lucas and de Vries report that for the Student-t dis-

tribution with 30 degrees of freedom the number of existing moments is 

estimated to be as low as 1.767 and even after applying a bias correc-

tion only 5.403 moments were found to exist. 

Taken together, this research takes us back to basics. Even the existence of the second 

moment becomes questionable and this, for the field of finance, becomes a fundamental issue. In 

this paper, we estimate the tail index  for a number of Australian stocks based on the Hill-

estimator. Our empirical results are consistent with the US evidence of Loretan and Phillips (1994) 

and the UK evidence of Omran (1997). Given the findings of Kearns and Pagan (1997), however, 

we are aware that the theoretical standard deviations used by Loretan and Phillips (1994) and Om-

ran (1997) are severely downward biased in the presence of dependency in asset returns. Based on 

simulated combinations of Hill-estimates and characteristic exponents for truly sum stables, we are 

able to strongly reject the sum stable law as a possible candidate for the unconditional distribution 

of stock returns.  

Our research does not prove that the second moment is finite beyond any reasonable 

doubt, but it does show that the moment condition failure due to the sum stable hypothesis does 

not apply. Hence, the integrated GARCH process studied by Kearns and Pagan (1997) can still be 

regarded as a serious alternative. But, older research (e.g. Lastrapes, 1989) does cast some doubt 

on this hypothesis since structural breaks often cause integrated GARCH like behaviour. We con-

clude that it is reasonable to assume the existence of second moments in Australian stock returns. 

The remainder of the paper is organised as follows. In section 2 we explain how the tail 

index can be estimated using a Hill-estimator. In section 3 we describe the data and section 4 re-

ports the results of the Hill estimates. In section 5 we conduct a simulation experiment in order to 

judge the reasonableness of the sum stable hypothesis as an approximation of the unconditional 

distribution of stock returns and strongly reject the hypothesis. Section 6 concludes the paper.  
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2. Estimating the tail index

Let {xt} be an identically and independently distributed series following a distribution 

with asymptotic Pareto-type tails. Pareto-type tails imply that  

log Pr(X>x) = k –  log x
or

    log x = k’ –  log Pr(X>x),   (1) 

where  = l/ . If we conveniently assume that the N data points have been sorted to pro-

duce the order statistics x(1) > x(2) >…> x(N), then Pr(X>x(j)) can be estimated by the empirical sur-

vival function (i.e. the number of observations larger than x(j) divided by N).

Equation (1) reveals that one can estimate  by fitting a straight line into the log x – log 

Pr(X>x) plane. Any two points x(i) and x(j) can produce an estimate of . Obviously, one of them 

should be, depending on the tail under consideration, the most extreme observation, x(1) or x(N). The 

other point, x(m), still has to be a point in the tail of the distribution but, to date, no strong unambi-

guous arguments exist to determine the starting point of the tail region. However, Dumouchel 

(1983) suggests that m < 0.1 N is a practical rule of thumb and common practice varies m between 

1% and 10% of the sample size in order to judge the robustness of the estimate. 

Several estimators, all based on the intuition behind equation (1), have been suggested. 

Kearns and Pagan (1997) performed simulation experiments in order to calculate the bias and the 

efficiency of the Picands (1975), the Hill (1975) and the de Haan and Resnick (1980) estimator. 

Bias and efficiency were evaluated under the null hypothesis of sum stable distributed returns on 

the one hand and under the null hypothesis of integrated GARCH processes on the other. Although 

a small bias remained, under both null hypotheses, the Hill-estimator proved to be the most effi-

cient estimator, viz:  
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Kearns and Pagan (1997) signalled a cautionary note by showing that the theoretical stan-

dard deviations for the Hill-estimator derived by Hall (1982) and Goldie and Smith (1987) may 

underestimate the true standard errors whenever there is dependence of the integrated GARCH 

type. Mittnik, Paolella and Rachev (1998) also showed that the small sample performance of the 

Hill-estimator does not resemble its asymptotic behaviour, even for large samples of 10,000 obser-

vations. Taking these findings into account, we do not compute the theoretical standard deviations 

but instead build an alternative simulation based approach in order to assess moment condition 

failure caused by the infinite variance problem. 

3. Data and descriptive statistics 

In order to undertake the empirical application using the Hill-estimator we selected 23 ac-

tively traded stocks on the Australian Stock Exchange (ASE). The data were sourced from Data-

stream. Given the importance of sample size in the estimation procedures we required the stocks to 

have a full history from January 1985 until July 2000 and this provided a sample of 3,891 daily 

observations. Returns were calculated as continuously compounded, that is the logarithm of the 

ratio of two successive prices after adjusting for stock splits, bonus shares and dividends. 

Table 1 summarises some basic descriptive statistics. Average annualised returns vary be-

tween –1.4% and 20.4%, with historical annualised volatilities ranging between 21.4% and 39.9%. 

Clearly, the daily returns are not normally distributed as can be observed from the high skewness 

and kurtosis figures. First order autocorrelations based on the returns, r, are small, autocorrelations 

on the absolute returns and on the squared returns are more prominent, indicating GARCH type 

dynamics are present (see Ding, Granger and Engle (1993) for a discussion of the autocorrelations 

of absolute returns). Hence, the strict assumptions of the Hill-estimator are not fulfilled.  
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Table 1 

 Descriptive statistics for 23 Australian stocks 

 Average 
return

Standard 
Deviation

Skewness Kurtosis AC(r) AC(|r|) AC(r²) 

National Australian Bank 

Lend Lease Corporation 

Amcor

CSR

Brambles lndustry 

Coles Myer 

Pioneer International 

Fosters Brewing Group 

Rio Tinto 

Broken Hill Proprietary 

Coca-Cola Amatil 

Southcorp

Comalco

General Pr. Tst. 

Santos

Australian Gas and Light 

QBE lnsurance Group 

MIM

North

Westpac Banking 

Westfield Holdings 

Woodside Petroleum 

WMC

18.9%

16.6%

11.1% 

7.6%

20.4%

12.9%

12.0%

11.3% 

13.4%

13.6%

11.8% 

14.4%

12.4%

9.5%

4.4%

14.4%

17.9%

-1.4%

8.9%

7.5%

19.5%

14.8%

7.0%

22.5%

25.1%

24.6%

26.4%

25.8%

22.8%

28.8%

30.4%

29.2%

23.3%

30.2%

27.6%

33.5%

21.4%

26.9%

28.9%

27.1%

39.9%

39.6%

25.1%

33.9%

34.0%

32.4%

-1.24

-4.52

-4.62

-1.12

-3.95

-1.71

0.06

-1.02

-2.17

-0.37

-1.59

-0.14

-1.27

-2.99

-1.02

-0.60

-1.12

-1.79

-2.82

-1.45

-4.61

-1.84

-1.74

20.63

21.17

123.88

27.04

110.08 

30.49

30.64

24.92

54.13

14.69

37.66

12.20

28.31

72.99

18.84

15.19

27.41

43.15

84.86

27.13

110.68 

46.85

42.65

0.08

0.07

0.03

-0.00

0.03

0.02

0.07

0.05

0.13

0.07

0.07

0.00

0.08

-0.07

0.04

0.05

0.03

0.06

0.04

0.09

0.01

0.01

0.11 

0.21

0.21

0.25

0.28

0.25

0.26

0.19

0.24

0.25

0.17

0.32

0.22

0.19

0.18

0.19

0.22

0.12

0.21

0.20

0.19

0.19

0.27

0.20

0.14

0.05

0.08

0.21

0.08

0.24

0.08

0.11 

0.07

0.05

0.19

0.25

0.15

0.05

0.06

0.24

0.04

0.03

0.05

0.10

0.03

0.10

0.04

Averages and standard deviations are annualised figures and are based on a daily data set starting in 

January 1985 and ending in July 2000 (3,891 returns). Annualisation was based on 250 trading days with the 

250 rule applied to calculate standard deviations. 

4. Results of the Hill-estimator 

Before applying the Hill-estimator we first demean the series by regressing the data on 

five weekday dummies, and in a second step, on twelve monthly dummies to eliminate potential 

day of the week and seasonal effects (see Loretan and Phillips, 1994). Finally, we passed the re-

siduals from these regressions through an AR filter in order to remove any linear serial correlation. 

Because choosing m remains a contentious issue, we varied m between 40 and 400 with steps of 40 

similar in nature to those studied by Loretan and Phillips (1994) and Omran (1997). 

The point estimates in Table 2 are almost always higher than 2 and usually less than 4, 

ranging in value from 1.91 to 4.28. Based on this evidence, it would be tempting to discard the 

infinite variance stable distribution as an appropriate description of the unconditional distribution 

of stock returns. Unfortunately, theoretical standard deviations are not very useful given the 

GARCH-type dependence present in the time series (see Table 1). On the other hand, the point 

estimates indicate that the existence of the fourth moment is doubtful since almost all the Hill es-

timates are below 4 and similar to Omran (1997) they become smaller than four as the value of m

increases. If this is so, this result casts doubt on the validity of ARCH-tests and other tests on sec-

ond moments that require the existence of four moments. However, Hill-estimates only provide an 

accurate estimate of the existing number of moments under the assumption of strict Pareto tails 

and therefore for other distributions the Hill-estimate may be severely downward biased. To illus-

trate this point we simulated 1000 runs from a Student-t distribution with 5 degrees of freedom and 

2000 observations. From this experiment the average number of existing moments was estimated 

to be 4.2 and decreasing the degrees of freedom to 4 resulted in an average number of 3.65. We 
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also note that these averages are downward biased estimates of the existing number of moments, 

but regardless, they prevent us making conclusions with respect to higher moments. 

Table 2  

Hill-estimates of the tail index 

Company m= 40 80 120 160 200 240 280 320 360 400 

National Australian Bank 

Lend Lease Corporation 

Amcor

CSR

Brambles Industry 

Coles Myer 

Pioneer International 

Fosters Brewing Group 

Rio Tinto 

Broken Hill Proprietary 

Coco-Cola Amatil 

Southcorp

Comalco

General Pr. Tst. 

Santos

Australian Gas and Light 

QBE Insurance Group 

MIM

North

Westpac Banking 

Westfield Holdings 

Woodside Petroleum 

WMC

3.03

2.84

3.49

2.86

2.75

2.60

3.09

2.76

2.64

4.28

3.25

3.23

3.48

2.98

2.92

2.21

2.69

2.92

2.55

3.61

2.24

2.30

2.78

2.97

3.20

3.27

2.91

2.73

2.88

3.42

2.62

2.93

3.98

3.25

2.93

3.15

3.31

3.20

2.37

2.81

3.27

3.08

3.53

2.67

2.73

3.20

2.83

2.86

2.86

2.80

2.67

2.80

3.31

2.78

2.89

3.46

2.79

2.68

3.10

3.18

3.14

2.41

2.85

3.41

3.13

3.41

2.58

2.57

3.47

2.91

2.81

2.68

2.90

2.97

2.79

2.91

2.69

2.94

3.42

2.58

2.65

2.72

3.08

3.12

2.46

2.64

3.41

2.81

3.14

2.34

2.45

3.37

2.79

2.74

2.52

2.77

2.83

2.88

2.73

2.61

2.73

3.25

2.40

2.58

2.65

2.80

3.21

2.51

2.49

3.25

2.87

2.97

2.15

2.40

3.33

2.59

2.65

2.51

2.70

2.71

2.59

2.53

2.68

2.73

3.07

2.30

2.52

2.56

2.91

3.13

2.49

2.37

3.14

2.67

2.90

2.15

2.39

3.22

2.51

2.66

2.35

2.62

2.56

2.55

2.49

2.56

2.56

2.77

2.23

2.58

2.55

3.02

3.03

2.56

2.13

2.89

2.43

2.77

2.17

2.32

3.08

2.32

2.55

2.19

2.50

2.52

2.32

2.43

2.57

2.49

2.66

2.20

2.53

2.34

2.65

2.86

2.56

1.99

2.86

2.39

2.69

2.07

2.29

2.81

2.23

2.48

2.18

2.35

2.39

2.31

2.36

2.47

2.37

2.48

2.11 

2.57

2.35

2.41

2.64

2.55

1.94

2.63

2.35

2.44

2.06

2.39

2.72

2.14

2.37

2.13

2.24

2.27

2.19

2.31

2.23

2.38

2.43

2.01

2.40

2.29

2.27

2.53

2.36

1.91

2.59

2.30

2.38

1.97

2.28

2.57

Estimates are based on daily returns computed from January 1985 through July 2000 (3,891 

observations).

Recognising the flaws in the applicability of the theoretical standard deviations places us, 

along with previous authors, in a weak position. We cannot draw strong conclusions on the upper 

bound of the existing moments due to the downward bias in the Hill-estimates. Of greater concern 

is that the sum stable hypothesis, which implies infinite variances, cannot be rejected in a statisti-

cally rigorous way using Hill-estimates and their standard errors. We extend our analysis in the 

next section. 

5. Discarding the sum stable hypothesis 

Sum stable distributions are usually parameterised in terms of their log-characteristic 

function since, for most sum stables, the density function has no analytical closed-form expression. 

The log-characteristic function is determined by four parameters (McCulloch, 1996). First, the 

location parameter  has the potential to shift the distribution to the left (negative values) or right 

(positive values). Second, the positive scale parameter  expands or contracts the distribution about 

. Third, a skewness parameter , whose absolute value is constrained to be less or equal to one, 

indicates the symmetry of the distribution. Finally, the characteristic exponent * (positive and 

less than or equal to 2) governs the tail behaviour of the distribution and should be equal to the tail 

index . Therefore, if stock returns were truly sum stable, we can estimate the tail index through 

the direct estimation of the characteristic exponent of the distribution. 

In order to further estimate the parameters of the sum stable distribution, we applied the 

McCulloch (1986) procedure used by Ghose and Kroner (1995). Akgiray and Lamoureux (1989) 
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and Bates and McLaughlin (undated) both showed that McCulloch’s (1986) technique provides 

robust all round estimators for the parameters of the sum stable distributions (with >0.6). Table 3 

reports the estimated *s and the other distribution parameters for our sample of Australian stocks. 

The characteristic exponents were estimated by using two alternative assumptions. In the first part 

of the table all parameters are freely estimated, whereas in the second part a symmetry restriction 

( =0) is imposed. Without any formal statistical testing, one can observe that the differences be-

tween the two sets of estimates for the characteristic exponents are very marginal. All point esti-

mates are in the range 1.1 to 1.7 with estimates around 1.5 the most representative and these re-

sults are in line with the evidence of Fama (1965), Blattberg and Gonedes (1974), and Fielitz and 

Rozelle (1983). 

Table 3  

Estimates of the parameters of the sum stable distribution 

National Australian Bank 

Lend LeaseCorporation 

Amcor

CSR

Brambles lndustry 

Coles Myer 

Pioneer lnternational 

Fosters Brewing Group 

Rio Tinto 

Broken Hill Proprietary 

Coca-Cola Amatil 

Southcorp

Comalco

General Pr. Tst. 

Santos

Australian Gas and Light 

QBE Insurance Group 

MIM

North

Westpac Banking 

Westfield Holdings 

Woodside Petroleum  

WMC

Mean

Standard deviation 

1.537

1.521

1.485

1.577

1.607

1.493

1.549

1.531

1.579

1.579

1.438

1.586

1.502

1.700

1.541

1.597

1.308

1.581

1.576

1.553

1.158

1.470

1.645

1.53

0.02

0.052

0.135

0.041

-0.020

0.153

0.057

0.071

0.082

0.162

0.082

0.047

0.160

0.080

-0.056

0.028

0.139

0.041

0.025

0.015

0.040

0.059

0.127

0.107

0.07

0.01

0.007

0.008

0.007

0.009

0.008

0.007

0.009

0.009

0.009

0.008

0.009

0.009

0.010

0.007

0.009

0.009

0.007

0.013

0.012

0.008

0.006

0.009

0.011 

0.01

0.00

0.001

0.001

0.000

0.000

0.001

0.000

0.001

0.001

0.001

0.000

0.000

0.001

0.001

0.000

0.000

0.001

0.000

0.000

0.000

0.000

0.001

0.001

0.001

0.00

0.00

1.537

1.523

1.486

1.577

1.608

1.494

1.549

1.532

1.580

1.579

1.439

1.587

1.503

1.700

1.542

1.598

1.310

1.581

1.576

1.553

1.162

1.473

1.645

1.53

0.02

0.007

0.008

0.007

0.009

0.008

0.007

0.009

0.009

0.009

0.008

0.009

0.009

0.010

0.007

0.009

0.009

0.007

0.013

0.012

0.008

0.006

0.009

0.011 

0.01

0.00

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.00

0.00

Estimates are based on 3,891 daily returns (January 1985 to July 2000) using the McCulloch-

technique. The second to fifth columns contain unrestricted estimates, the last three columns contain 

estimates with a symmetry restriction imposed. H. McCulloch kindly provided the GAUSS-code. 

Whilst the results of Table 3 are also in line with previous US research, the implied con-

clusion of finding infinite variances contradicts the point estimates of the Hill-estimator in Table 2 

(that are also in line with prior findings). Recall that the tail index nests various models in the tail 

of the distribution. The Hill-estimator and the McCulloch estimator are two estimators that should 

produce the same “alpha” under the assumption that the observations are independent and have 

true Pareto-type tails. We note the discrepancy we document is not unique to Australian stock re-

turns. Ghose and Kroner (1995, Table 4) report similar discrepancies for currencies (GBP, DEM, 

CHF, JPY), stocks (S&P500) and commodities (soyabeans, live cattle and live hogs). 
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In order to discard the sum stable hypothesis without relying on the theoretical standard 

deviations on the Hill-estimator, we conduct a simulation experiment. In accordance with 

McCulloch (1996) we set the estimates of  and  to zero and from observation from Table 3 the 

scale parameter ( ) is set to 0.01. Given these inputs, we generated sum stable distributions using 

the MATLAB-algorithm provided by H. McCulloch on the Mathworks-website and obtained char-

acteristic exponents varying between 1 and 2 with a step size of 0.1. For each characteristic expo-

nent we generated 1,000 series of 3,891 observations and for each series the Hill-estimator was 

determined and the empirical distribution of the Hill-estimators computed.  

Figures 1 and 2 plot for each simulated characteristic exponent the minimum and maxi-

mum Hill-estimates along with their simulated 95% and 99% confidence interval. Hence, the low-

est (highest) line connects the minimum (maximum) Hill-estimates that were generated over 1000 

runs for characteristic exponents varying from 1 to 2. The 95% and 99% bounds were also plotted 

to give an indication about the likelihood of Hill-estimate characteristic exponent combinations. In 

Figure 1, m was set to 40, whereas Figure 2 was based upon m equal to 400 determined because 

they represent the upper and lower cut off rates used to define the tails (see also Table 2). This 

graph has also been produced for all other m values reported in Table 2 but they provided similar 

qualitative results. 
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Fig.1. Positioning Australian stocks in the Hill-estimate characteristic exponent plane 

Finally, the 23 Australian stocks were positioned in the Hill-estimate characteristic expo-

nent plane. The Hill-estimates used are the same as those reported in Table 2 whereas the charac-

teristic exponents are the ones estimated in Table 3. If stock returns follow the sum stable law we 

expect to find the stocks scattered (at the 95% level) between the minimum and 95% line. For 

m=40 we notice that only 1 stock falls within the (one-sided) 95% confidence interval. Most stocks 

are situated between the 95% and the 99% line and several stocks position above the maximum 

Hill-characteristic exponent line. For Figure 2 (m=400) the results are even more dramatic. All but 

one stock is positioned above the simulated maximum Hill-characteristic exponent line and both 

figures show that it is extremely unlikely that the real stock returns are being characterised by an 

unconditional sum stable law. 
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Fig. 2. Positioning Australian stocks in the Hill-estimate characteristic exponent plane 

6. Conclusions 

If one assumes that stock returns behave according to the sum stable law, point estimates 

for the tail index of approximately 1.5 will be observed, implying that second moments do not 

exist. This is the result we observe for the selected Australian stocks that have a full daily data set 

over 15 years and is in line with previous US research findings. On the other hand, Hill-estimates 

for the tail index estimated for all stocks provided point estimates above 2, hence providing con-

tradictory support for the existence of second moments. However, the sum stable hypothesis can 

be firmly rejected since combinations of the Hill-estimate and the characteristic exponent pro-

duced by the real data, are extremely unlikely for sum stables.  

In general the results of our research lead us to make the following conclusions. First, 

there is no real evidence that the variance does not exist and this provides support for a number of 

fundamental assumptions contained in the disciplines of finance and investment analysis. Second, 

assuming that all moments exist is still dangerous. The existing literature in this area is not helpful 

and econometricians should handle this problem with care. 
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