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Arbitrage and Portfolio Constraints 

Helmut Elsinger, Martin Summer

Abstract

We analyze the pricing of risky income streams in a world with competitive security mar-

kets where investors are constrained by restrictions on possible portfolio holdings. We investigate 

how we can transfer concepts and pricing techniques from a world without frictions to such a more 

realistic situation. Portfolio constraints can lead to situations where not all arbitrage opportunities 

are necessarily eliminated. For a world with portfolio constraints the concept of no arbitrage has to 

be replaced by a weaker concept which we call no unlimited arbitrage. The power of no arbitrage 

techniques is preserved in the sense that no specific assumptions about utility functions of inves-

tors have to be made. 

Key words: Arbitrage, Portfolio Constraints, Asset Pricing. 

1. Introduction 

Pricing securities and risky income streams by no arbitrage arguments has become the 

cornerstone of modern asset pricing theory. No-arbitrage arguments have also been an impressive 

practical success. The valuation techniques derived from them have become the daily tools and 

workhorses of thousands of practitioners and financial engineers worldwide. The idea of no arbi-

trage is simple. It requires that correctly priced securities should make it impossible to achieve by 

financial transactions a consumption bundle at zero costs that increases some investor’s utility. 

This idea ultimately relies on an equilibrium argument and has powerful implications for asset 

pricing formulas. A great deal of this power comes from the fact that the question whether or not 

security prices do allow arbitrage, can be inferred from observable data: the prices of actively 

traded securities and their payoff structure. We do not have to know the entire equilibrium. More-

over, once the “correct” security prices have been found, the price of any risky income stream 

which can be generated by combinations of these securities is determined. Thus security pricing by 

no arbitrage leads to a general valuation technique for arbitrary contingent claims, which can be 

generated from securities traded on financial markets. 

Yet the formulas are derived under highly idealized conditions. Among them, perfect
competition and frictionless security trading are the two most important ones. Evidence as well as 

practical experience suggest that the assumption of price taking behavior is to a large extent fairly 

appropriate for financial markets for standard securities, such as options, futures, stocks and bonds. 

The assumption of frictionless trading – however – is surely inappropriate. Margin requirements, 

short selling restrictions, borrowing constraints and collateral requirements belong to the basic 

facts of (financial) life, even for the most competitive financial markets. 

In this paper we ask whether and how we can transfer the power and the simplicity of 

pricing a risky income stream by no arbitrage arguments to a world where such constraints bind 

investors in their portfolio decisions. It turns out that once portfolio constraints are taken into ac-

count the requirement that financial markets admit no arbitrage is too restrictive. We argue that the 

appropriate criterion we have to use in a world with frictions is a concept which we call no unlim-
ited arbitrage. Constraints can lead to situations where not all arbitrage opportunities are elimi-

nated in equilibrium because the constraints prevent investors to fully take advantage of them. In 

parallel to the frictionless world we are able to characterize the requirement that financial markets 

admit no unlimited arbitrage by the existence of positive state prices. 

Since it is our aim to analyze and clarify some of the conceptual questions that arise in 

transferring arguments in the spirit of no-arbitrage to a framework where investors are constrained in 

their potential portfolio holdings, we have decided to use a framework, which has the minimal struc-
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ture that is able to address the issues in a meaningful way. The reader initiated to modern asset pric-

ing theory and security pricing might thus perhaps miss the rich stochastic structure which has be-

come a trade mark of this literature. We present our arguments in a framework that is stripped to the 

bare essentials to convey the basic logic of pricing contingent claims under constraints. Our results 

do however not depend on the simplified framework and can easily be generalized to richer setups. 

The paper is organized as follows: Since at first sight all the different contributions to the 

pricing problem under constraints seem to offer their own (idiosyncratic) approach we have de-

cided to start in section 2 with a discussion of the literature to put the papers including our own 

contribution into perspective. Section 3 gives an exposition of the model and introduces the formal 

description of constraints along with some examples. Section 4 characterizes no unlimited arbi-

trage in terms of state prices. Section 5 concludes. 

2. Related Research 

We do not claim to be the first authors treating security pricing in the presence of portfo-

lio constraints. In fact there is a growing literature on this topic building on a stock of seminal pa-

pers. To our best knowledge our paper is the first to propose the concept of no unlimited arbitrage 

as an appropriate tool for analyzing security markets with constraints1. Our aim is to develop a 

framework in which conceptual issues can be discussed in a transparent way and which is capable 

to bring different approaches in the literature into a unified perspective. 

In the following we give an overview on the recent literature on portfolio constraints 

which is most closely related to the ideas discussed in our paper. We suggest classifying the papers 

according to two broad categories. The literature in the first category approaches the valuation 

problem with constraints by extending a classical paper by Harrison and Kreps (1979) (see also 

Kreps (1981)) which discusses the case of an unconstrained financial market. The primitives by 

which the problem is approached there is an abstract linear space of net-trades together with a lin-

ear pricing function defined on this space. These two objects reflect in an abstract way frictionless 

trading of arbitrary risky income streams (the linear space property) and perfect competition (the 

linearity of the pricing functional). It is assumed that the economy is populated by agents with 

preferences over net trades about which some general properties are known. Among these, 

monotonicity (“more is better”) is the most important one. In this context the question is asked: 

When can the pricing functional together with the feasible net trades be part of an economic equi-

librium, if agents are known to have these general properties (see Kreps (1981))? The answer to 

this question is then given by a characterization of a no arbitrage requirement via the existence of 

certain state prices. Thus the general idea is to approach the valuation problem without postulating 

a specific structure on agents’ preferences besides of some general properties. This general idea is 

then extended to a world with financial constraints. The literature in the second category ap-

proaches the valuation problem by building on the analysis of solutions to an optimization problem 

of a representative investor, who can put his wealth into a riskless bank account and a set of risky 

securities the prices of which follow some stochastic process. The valuation question in this 

framework is answered by pricing any contingent claim using the utility gradient of the representa-

tive investor. Thus the general idea in this approach is to postulate a specific utility function and a 

specific stochastic model of security prices to add portfolio constraints and analyze the value of 

some given claim by solving the representative investor’s utility maximization problem. 

Our approach is in the spirit of the first category. Important papers in this literature are He 

and Pearson (1991), Jouini and Kallal (1995a, 1995b), and Huang (1998). Jouini and Kallal formu-

late their model by restricting the framework of Harrison and Kreps (1979). They take a convex
cone2 of net trades (instead of a linear space) and a sublinear pricing function (instead of a linear 

                                                          
1However Charupat and Prisman (1997) in a critical note on a paper by Chen (1995) have pointed out conceptual problems 

arising by naively transferring the no arbitrage conditions from a frictionless world to a world with constraints. 
2A non empty subset C  of a real vector space V  is called a convex cone, if x C , 0 x C ,

x y C : x y C  (see Luenberger (1969)). 
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one) for contingent claims as a primitive1. Using these primitives, no arbitrage is characterized 

when some general properties on investors’ preferences are assumed. Our model contains the re-

sult of characterizing no arbitrage, when net trades are constrained to be in a cone as a special 

case. Contrary to Jouini and Kallal, we take some effort to model in detail the role of security 

prices and financial markets for the pricing of arbitrary contingent claims. We achieve this by 

working in a slightly less abstract framework clearly distinguishing financial markets, the prices of 

securities and arbitrary contingent claims which can be generated by these securities under con-

straints as separate objects. We are thus able to make fully transparent under which conditions 

linear security prices (competition) and portfolio constraints (frictions) interact to actually imply a 

sublinear pricing function for arbitrary contingent claims. Huang (1998) conducts an analysis simi-

lar to ours in an infinite horizon event tree setting for the special case of constraint sets which are 

cones. Our paper discusses a more general class of constraints, because there are practically impor-

tant situations for which this is indeed required. Furthermore, contrary to Huang, we discuss con-

ceptual issues at some length and analyze the relation between no arbitrage and no unlimited arbi-

trage. The paper of He and Pearson (1991) in contrast to ours considers a smaller class of con-

straints. They give a characterization of arbitrage free prices under constraints for this special case 

but when they make use of the characterization to value an arbitrary contingent claim, they have to 

use a utility function. Resorting to a utility function can be avoided in our approach. Finally a dis-

cussion most closely related to ours recently appeared in a book by LeRoy and Werner (2001)2.

Our discussion differs from LeRoy and Werner in two aspects. We cover a larger class of con-

straints and our characterization of the no unlimited arbitrage condition quantifies the costs of the 

friction caused by portfolio constraints. 

Seminal papers in the second category are by Cvitani  and Karatzas (1992, 1993). These 

papers consider general convex constraint sets and have inspired further research, most notably 

Cuoco (1997), Munk (1997, 2000), Tepla (2000) and Detemple and Murthy (1997). Cvitani  and 

Karatzas have developed a technique which exploits duality theory in a skillful way to get arbi-

trage-free prices for contingent claims in a representative investor framework with portfolio con-

straints, where security prices follow a Brownian motion.  

In the context of the literature, our paper has the following contributions: First, we dem-

onstrate in an elementary way how ideas of asset pricing by no arbitrage can be transferred to a 

world with portfolio constraints. Second, we show in a transparent way how competitive security 

prices and trading frictions interact to restrict the valuation of arbitrary contingent claims, thus 

highlighting the role played by (competitive) financial markets. 

3. The Finance Model with Portfolio Constraints 

Consider the standard general equilibrium, finance model in its simplest version. There are 

two dates 0 1t  and a finite set S {1 }S  of states of the world at date1, describing uncer-

tainty. There is a finite set I {1 }I  of investors who wish to exchange a (numèraire) good, 

which we could think of as income. In order to do so they can competitively trade a finite set 

{1 }J J  of financial contracts in quantities z  at prices q  at date 0. Financial contracts are 

promises to some payoff of the good in the different states at date 1 and are represented by a S J

matrix A 3. Investors are characterized by a continuous, strictly quasi-concave, and strictly monotone 

utility function RRu Si 1:  and a vector 
1Si R  of initial endowments of the good. 

                                                          
1A real valued function f  defined on a real vector space V  is said to be sublinear on V  if 

( ) ( ) ( )f x y f x f y  for all x y V  and ( ) ( )f x f x  for all 0  and x V . As an example, 

consider any norm on V . By definition the norm is a real valued function, which is positive, homogeneous and fulfills the 

triangle inequality, hence is a sublinear function (see Luenberger (1969)). 
2While writing this paper we were not aware of LeRoy and Werner’s book. We introduced independently the same termi-

nology to describe the consequences of portfolio constraints. 
3We adopt the convention that all entries in A are non negative. In some parts of the finance literature such securities are 

called limited liability assets. Since we do not include into the model problems of bankruptcy and default, following the 
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For the formal description of constraints, we assume that each investor i I  can choose 

his portfolios z  consisting of positions in the J  contracts traded on the market not from 
JR , as 

it is usually assumed, but only from a closed, convex set 
JRZ . To be precise we require 

Assumption (CON): Each Investor i I may choose his portfolio 
iz from a closed, 

convex set 
JRZ , which is non-trivial, i.e. {0}Z  and which contains 0 .

Assumption (CON) allows describing a fairly large class of practically important restric-

tions on portfolio holdings. To see this, let us consider some examples. 

Example 1. Margin Requirements: Margin requirements are common practice in secu-
rity trading. In particular in derivative trading investors are required to keep margin accounts, 

which represent a performance bond. Margins are set by regulators, clearing houses and interme-

diaries. Many of the common margin requirements can be described by (CON). The particular 
form will depend on the specific margin requirement considered. An example of a margin re-

quirement is for instance that security positions can only be chosen from the set 

JjRmqzmzqRzZ jjjj

J ,for

Thus the ability of investors to short sell certain securities is limited by the requirement to 
maintain an income margin, which is a (linear) function of their creditworthiness. Note that this 

example refers to margins in derivatives markets. Margins required in equity trading are a slightly 

different issue. There the margin has the function of a down payment for the purchase of an equity 
and is de facto like a loan. When we talk of margin requirements we mean margin accounts with a 

performance bond function as it is common for instance in futures trading.

Example 2. Collateral Requirements: Some securities traded on competitive financial 
markets can be used as debt instruments and have to be secured by an asset or a pool of assets, 

which are often other securities. Examples are collateralized swap contracts, collateralized mort-

gage obligations, collateralized depository receipts or collateralized bond obligations. One way to 
describe such constraints by (CON) can for instance be as follows: Let us divide a portfolio 

JRz into assets and liabilities, depending on whether 0jz  or 0jz  Denote assets by 

1(max[0 ])J

j jz z  and liabilities by 1(min[0 ])J

j jz z . The requirement that liabilities 

are partially collateralized by assets can then be written in terms of the set Z  as 

1,0,qzqzRzZ J

Example 3. Portfolio Mix Constraints or Target Ratios: Constraints on the mix of a 

portfolio or target ratios for specific assets are common in security trading. These constraints can 

come from various sources, for instance regulations or corporate financial policies. Whenever we 
have a situation where constraints of this sort occur, we can use (CON) to describe it. In this cases 

the set Z  can be described as 

0,, with JjkzqzqzqRzZ jjkkjj

J

Huang (1998) has modelled debt to equity ratios in this way. These constraints require in-

vestors to keep the ratio of asset k  and j  in a certain range determined by the bounds  and 

Example 4. Bid-Ask Spreads and Taxes: Assumption (CON) is also able to model trad-

ing frictions expressed by different bid and ask prices, as studied for instance by Jouini and Kallal 

(1995b). This can be formalized by considering two financial contracts 
jA ,

kA , j k J  with 

an identical payoff structure (i.e. 
jA kA ) one of which can not be sold short ( 0jz ), 

                                                                                                                               
mainstream of the literature on asset pricing, this assumption can be made without loss of generality. The results do not 

depend on this assumption. 
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whereas there is a buying constraint on the other one ( 0)kz  As an example think of a riskless 

bank account, which can be used for saving and borrowing. This can be modelled as two uncon-

tingent income streams 
SR1  for the savings and for the borrowing account. The savings ac-

count must not be sold short, whereas the borrowing account can only be held in negative 

amounts. The restriction de facto makes two different assets out of 
jA ,

kA  which will be re-

flected in different prices. The difference between these prices can be interpreted as a bid-ask 
spread. By the same logic one could use (CON) to describe the effects of taxes as in Prisman 

(1986) or in Dybvig and Ross (1986).

From a formal viewpoint in all these examples Z  is a convex cone. This is the case al-

most exclusively dealt with in many papers on arbitrage and portfolio constraints. However to cap-

ture some important additional portfolio constraint situations, which are practically relevant, let us 

point out that our weaker requirement that Z  is just a closed and convex subset of 
JR is indeed 

necessary. To see this consider the following: 

Example 5. Short Selling Limits and Buying Floors: Many securities are restricted in 
the amount that can be sold short. Stocks can usually not be sold short in large amounts or only at 

a very high cost. Buying constraints can occur, when some legal restrictions prevent holding of 

particular securities above some given threshold prescribed by the regulation. Constraints of this 
nature can easily be described by (CON). Consider for example different short selling limits on 

securities 1i k  and buying floors for securities 1j k J , then 

JkikjRuluzlzRzZ iiijjj

J ,...,1,,...,1 with ,,, .

For 0l  or 0u  the constraints do not generate a cone but rather a translation of a 

cone. Let ( )p l u  then Z p  is a cone. Following Luenberger (1969) we will call this a cone 

with vertex p . From a formal point of view these constraint sets are almost like the cones dis-

cussed in the major parts of the literature but not quite. We will see that the role played by the ver-

tex p  is not as innocuous as one might assume at first sight. Note that the constraint set need not 

have a linear structure. If feasible portfolio holdings are functions of risk measures like Value at 

Risk feasible portfolio holdings might for instance become functions of volatility parameters. 

Example 6. Capital Adequacy: Constraints of the sort described in the previous example 

have become of particular interest during the last years, where capital adequacy has dominated the 
regulatory debate about financial markets. Capital adequacy is a risk management concept which 

requires that the capital of a financial organization is sufficient to protect its counterparties and de-

positors from on- and off-balance sheet market risks, credit risk, etc. The European Union has re-
cently implemented capital adequacy rules and they have become particularly important in portfolio 

insurance. Capital adequacy rules work like a minimal capital requirement (Bardhan, 1994). The 
requirement can be a function of risk measures like for instance Value at Risk (Jorion, 1996). 

Example 7. Risk Based Capital Requirements: Sometimes capital market regulations 

can lead to constraint situations, where the portfolio set Z  is bounded. Cvitani  (1997) gives as 
one particular example situations where feasible security holdings are limited in potential long 

and short positions. For instance the regulation of insurance companies sometimes prescribes so 
called risk based capital requirements. These requirements limit the amounts that can be invested 

into assets of a certain (default) risk class. Combined with short selling limits such constraints 

lead to a set Z , which can’t be described by a cone or a cone translation.
These two examples belong to a class of constraints which are of considerable practical 

importance. However in these cases Z  is not a cone but rather just a closed and convex set. As-

sumption (CON) allows describing these cases. 

This discussion demonstrates that the consideration of more general constraint sets than 

those which are usually dealt with in large parts of the literature is indeed required to cover impor-

tant situations occurring in the practice of financial markets. 



Investment Management and Financial Innovations, 3/2005 100

Let us finally note that assumption (CON) is used in different, essentially equivalent, ver-

sions. For instance, a seminal paper by Cvitani  and Karatzas (1992) works with constraints on 

proportions of initial endowment 
i
 invested in various available assets (see also the textbook by 

Pliska (1997)). Some authors model direct constraints on dollar amounts that can be invested. All 

these approaches can easily be translated into each other. In our view the description chosen here 

allows a particularly transparent description of the relation between competitive financial markets, 

portfolio constraints, state prices and the implied contingent claim values. 

Note that Z  contains 0 . This property of the portfolio constraints is natural because a 

reasonable model should always allow for not making any financial market transactions and just 

consuming the endowment, whatever the constraints may be. As a formal object the financial mar-

ket model is a tuple E 1{( ) ( )}i i I

iu A Z .

Investors achieve consumption indirectly via competitive security trading. Because of 

portfolio constraints, however, each investor is confined to a restricted (future) consumption pro-

file depending on the constraint set Z . If we add to A  as the first row the vector q  to form a 

new matrix 

q
T

A
 (1) 

we can write the net income transfers achievable for consumer i  by holding a portfolio 
iz Z  as 

i i iTz z Z  (2) 

Using (2) we can define the feasible income transfers induced by the financial market. Let 

us introduce the following definition: 

Definition 1: The set of feasible income transfers induced by ( )T Z  is denoted by 

ZzTzRC S ,1
.

Since Z  is a closed, convex set, and T  is a continuous linear transformation, the set of 

achievable income transfers will also be convex. Indeed we can assert: 

Lemma 1: The set C  of feasible income transfers is a convex subset of 
1SR  containing 0 .

Proof:
11 , SS RZzTzRC  by Definition 1. Since 0 Z  and T  is 

a linear transformation C  must also contain 0 , hence be non-empty. Let 1  and 2  be in C  and 

consider [0 1]  Then 1 2(1 ) 1 2 1 2(1 ) ( (1 ) )Tz Tz T z z . Since 

Z  is convex, 1 2(1 )z z  is in Z , thus 1 2(1 )  is in C  and C  is convex. 

Unfortunately the set C  does not necessarily inherit the closedness of Z 1. We preclude 

such a situation by assumption. 

Assumption (CONC): Each Investor i I may choose his portfolio 
iz from a closed, 

convex set 
JRZ  , which is non-trivial, i.e. {0}Z  and which contains 0 . Z , A  and q

are such that C  is closed2.

Since many practically important portfolio constraints can be formally described as cones 

or translations of cones, we want to know whether the set of feasible income transfers inherits this 

structure from Z .

                                                          
1Sufficient conditions that C will inherit the closedness property from Z under the mapping T would for instance include the 

cases where Z is compact or polyhedral. 
2An assumption similar to this is used in a different context by Ross (1987). 
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Lemma 2: If Z  is a convex cone with vertex p , C  is a convex cone with vertex Tp .

Proof: If Z  is a cone, z Z  implies that for all 0  the vector z Z . Thus 

Tz C  implies ( )T z Tz C , thus C  is a cone. If Z  is a cone with vertex p , then 

Z p  is a cone. Hence the set 
1{ | } SC Tx x Z p  is a cone. As 

C C Tp  it is a cone with vertex Tp .

4. Arbitrage and Portfolio Constraints 

A central idea of modern asset pricing theory is the explanation of the value of securities by 

analyzing security prices
JRq  which allows no arbitrage. Essentially this requirement expresses the 

idea that in any equilibrium1 it should not be possible to achieve a consumption bundle at zero costs that 

increases some investor’s utility by trading securities (Kreps, 1981). The reason is that investors with 

monotone preferences would then wish to take an unlimited position in the arbitrage portfolio to gener-

ate an unlimited consumption profile. The ability to take arbitrary portfolio positions is therefore one 

essential building block of pricing arguments which invoke a no arbitrage condition. 

Though ultimately the pricing of risky income streams by no arbitrage indirectly relies on an 

equilibrium argument, much of its power comes from the fact that the question whether or not secu-

rity prices are arbitrage free (and can therefore be part of some equilibrium) can be inferred from the 

payoff structure of securities, the matrix A , and the observed security prices q . There is no need to 

know the entire equilibrium. A famous theorem of finance (see for instance Duffie (1996)) demon-

strates for the standard finance model that the absence of arbitrage is equivalent to the existence of 

implicit strictly positive values of income in the different states of the world – the so called state 

prices – such that the value of any security is exactly equal to the value of the future income stream it 

provides under these state prices. It can therefore be checked from ( )q A  alone whether or not there 

is an arbitrage possibility. On this limited information it is thus possible to find out which 'q s  are 

consistent with some equilibrium. Strictly positive state prices which make securities zero-profit in-

vestments, characterize the absence of arbitrage in the standard finance model. 

Most of the models transferring this kind of argument to a world with constraints work 

with a generalization exactly along these lines. It can be formulated in analogy to the uncon-

strained case: The financial market ( )q A Z  allows no-arbitrage if there exists no z Z  such 

that 0Tz 2. Written in a slightly less condensed form the definition requires that there does not 

exist a z Z  with 0qz  and Az 0  where at least either the first or one of the other S

inequalities is strict. 

However, when we consider general situations of convex constraints as formalized by as-

sumption (CON) and illustrated by the various examples we gave before we have to be careful 

since such a characterization might be too strong and we need a slightly weaker criterion. The 

problem which arises when we consider constraints in the class described by (CON) can perhaps 

most clearly be seen in a toy example where Z  is a cone with vertex p . The basic message of 

the example is that portfolio constraints can lead to a situation where security prices can allow in 

principle financial transfers that imply limited arbitrage opportunities. This situation can neverthe-

less be consistent with some equilibrium, since constraints make it impossible for individuals to 

take any advantage of them. 

                                                          
1For a formal definition of an equilibrium for a model with financial markets with no portfolio constraints see for instance 

Magill and Quinzii (1996). 
2The inequality 0x for a vector  nRx means that all components of the vector are nonnegative and not all of them are 

zero. We have 0and0 xRxx n .
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Example 8: Consider a model with no uncertainty, so that {1}S . There are two inves-

tors 1 2i  with endowments 
1 (8 1)  and 

2 (2 14)  who have both identical prefer-

ences described by the utility function 

0 1 0 1( ) log( ) log( )i i i i iu x x x x

The payoff matrix of financial contracts is given by (1 1)A  and the constraint set is 

given by [ 2 ) ( 2]Z . So there is a short selling limit on security one and a buying 

floor on security two. Now it is easy to check that the security prices (1 1 2)q  and the con-

sumption and security demands 
1 (5 5)x  and 

2 (5 10)x ,
1 (2 2)z  and 

2 ( 2 2)z  form an equilibrium for this economy because at these prices each investor has 

solved his utility maximization problem and in the market for the good and for securities supply 

and demand are balanced1. The example can perhaps most clearly be seen by looking at Figure 1, 
which shows the equilibrium.

Fig. 5. With portfolio constraints the financial markets need not be arbitrage free even in equilibrium 

                                                          

1To calculate an equilibrium apply Definition 8.2. p. 69, in Magill and Quinzii (1996), replacing the condition
Ji Rz

by the condition 
i

Zz .



Investment Management and Financial Innovations, 3/2005 103

What can we learn from this example? Had we required that there exists no z Z  with 

0Tz  to exclude all prices which can’t possibly be part of any equilibrium, we would have ob-

viously discarded the prices (1 1 2)q  However these prices – as we have just seen – are con-

sistent with some equilibrium and should therefore not be ruled out. Exactly this would have oc-

curred, however, by applying the criterion of no arbitrage. From the example we can see that it is 

not necessary for an equilibrium that there exists no z Z  such that 0Tz . Obviously such 

z s  do exist and yet we have an equilibrium because constraints prevent the advantageous use of 

these opportunities by the agents of the economy1.

One can take a geometric viewpoint on the requirement of no arbitrage. It is equivalent to 

the condition that 0\1SRC . This condition is not fulfilled in the equilibrium of the 

example because there C  is a cone with vertex (1 0) . Therefore C  can not have an empty 

intersection with 0\1SR . This example suggests the following weaker criterion for a world 

with portfolio constraints described by (CONC). 

Definition 2 (NUA): The financial market ( )q A Z  allows no unlimited arbitrage if 

there exists a vector C  such that there is no z Z  with Tz
In analogy to the unconstrained world we can characterize this requirement by the exis-

tence of certain state prices. We assert the following 

Theorem 1: ( )q A Z  admits no unlimited arbitrage if and only if there exist a vector 

1SR  and a vector C  such that 
*, C .

Proof: Let | there is no such thatC CT . Assume ( )q A Z

admits no unlimited arbitrage. Then  is not empty. Denote by ( )intT T  the interior of T  with 

respect to the topology induced on T, take some 
* ( )intT T  and consider the set 

CRC S 1' . Since we have assumed (NUA), 0\' 1SRC . C  is a 

non-empty, closed, convex, set in 
1SR  since it is a translation of the set C , which is non-empty, 

closed and convex by Lemma (1) and has a non-empty interior by (CONC). Let  be the non-

negative simplex in 
1SR . The simplex is a convex and compact subset of 

1SR  containing no 

interior points of C  since we have assumed that there is no unlimited arbitrage. We can therefore 

apply a version of the separating hyperplane theorem (Magill and Quinzii, 1996, p. 73). The sepa-

ration theorem implies that there is a linear functional 
10 SR such that 

'

sup inf
C

Let ( ) { |K C C  and }1SR  the convex cone generated by C . This 

cone is non-empty, closed and convex. As 
*0 ( )intT T  by assump-

tion, 0' 1SRCK . Therefore the above separating hyperplane theorem is applicable. As 

( )C K C , the set of s  that separate ( )K C  from  also separate C  from . Hence it 

                                                          
1We have to mention that problems of equilibrium mispricing with features similar to those in our example have been al-

ready pointed out in the early literature on tax arbitrage (Damon and Green (1987), Ross (1987)). In the context of portfolio 

constraints this problem has been described by Basak and Croitoru (2000) and in an earlier paper by Charupat and Prisman 

(1997). These results – in particular the paper by Charupat and Prisman (1997) – seem to have remained largely unnoticed 

in the literature on asset pricing with portfolio constraints. 
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suffices to show that there is a 
1SR separating ( )K C  from  such that 0  for all 

( )K C .

Since 0 ( )K C , the separation inequality implies that 0 inf . Suppose now 

that 0s  for some state s S  and consider the transfer (0 0 1 0 0)se  which 

is 1 in state s  and 0  otherwise. Then 0 inf se 0s  which is a contradic-

tion. Hence 
1SR . It remains to be shown that 0 ( )K C . Suppose there is a 

( )K C  such that 0 . Since ( )K C is a cone it follows that ( )K C , 0 .

It is easy to see that 1 1inf min( )S , which is finite. Now we can choose a suffi-

ciently large  such that inf . This is a contradiction. 

Contrary to the result for unrestricted economies we can not turn the inequality into an 

equality. The obvious reason is that C  does not imply C . Thus we get only the ine-

quality 0 C  which can be rewritten as C .

To prove the other direction assume there is C  and 
1SR  such that 

C . This implies ( ) 0 C . Because 
1SR  we can conclude 

that 0  is impossible for all C . And this is exactly the no unlimited arbitrage condi-

tion. 

Remark: We have imposed assumption (CONC) to cover a large class of practically im-

portant constraint situations. Unfortunately some rather strange cases are also compatible with 

(CONC) and therefore we have to use the ( )intT T  construction. Why do we have to take 

* ( )intT T ? If we took T  but not in ( )intT T , we could face the problem that 

( )K C  meets 
1SR  not only in 0  but also in other points 0x  but not strictly larger than 0 .

Hence we would get the weaker result that there has to exist a 
1SR  such that 

C , where some components of  might be 0 .

What does this theorem tell us about security prices that can be part of some equilibrium? 

To get an economic interpretation it is useful to write the inequality, which appears in the charac-

terization of our theorem in a slightly less condensed form. In order to do so, let us normalize 

0 1, , , S  by the first entry 0  so that we get 

1
1

0 0 0

1
ˆ1 , ,1 1,S

Let 0 1( ) . Then the no unlimited arbitrage inequality can be written as 

1 0 1 1
ˆ ˆ( )qz Az z Z C . (3) 

In general in a situation with convex constraints of the portfolio holdings the present 

value of any traded security must be larger or equal to the present value of the income stream un-

der the state prices 1
ˆ ˆ(1 )  corrected by the present value of additional transfers provided by 

the limited arbitrage possibility induced by an appropriately chosen C .
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As the limited arbitrage opportunity can be exploited only once the pricing functional 

need not be sublinear. Only in the case where  equals 0 we get the result that the pricing func-

tional has to be sublinear. 

A problem with this characterization is obviously that typically there are many  and 
1SR  fulfilling the inequality 

*, C . Moreover these 
1SR  will differ 

depending on the chosen . Let ( )  denote the set of all 
1SR , which fulfill the ine-

quality 
*, C  for a given feasible C  The set of all potential state prices ,

which are consistent with the requirement of no unlimited arbitrage, is characterized by the union 

( )
C

, i.e. ( )
C

. If worse comes to worst, this union might be rather too 

large to provide a reasonably sharp characterization. Moreover the whole construction looks quite 

bulky at first sight. These remarks can perhaps best be seen in Figure 2, illustrating an example 

with so called “rectangular constraints” (Cvitani  1997). 

The examples have shown that many of the practically important constraint situations de-

scribed by (CONC) are cones or translations of them. For this important class of constraints we are 

able to give a characterization of no unlimited arbitrage by using the vertex Tp  of C .

Fig. 6. Rectangular Constraints 

Corollary 1: If Z  is a cone with vertex p , the financial market ( )q A Z  admits no 

unlimited arbitrage if and only if there exists a vector 
1SR  such that ,Tp C .

Proof: It is sufficient to show that ( ) ( )Tp C . If ( )  our as-

sertion is trivially true. Now take any  such that ( )  and suppose that there exists a 

( )  such that ( )Tp  and hence Tp . Let 

(1 )( ) ( )Tp Tp Tp  where 0 . By construction C .

Premultiplying  by  yields  

( )Tp ,
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where the inequality follows from the assumption that ( )Tp . This result contra-

dicts that ( ) . Hence 
* ( )Tp .

Remark: As Tp  is not necessarily in ( )Tint T  this Corollary implies that ( )Tp

if there is a  such that ( ) , i.e. if the market admits no unlimited arbitrage. 

Thus for constraint sets which are cones with vertex p  we know that all state prices 

which allow no unlimited arbitrage must lie somewhere in the set. 

CTpRTpC S ,|: 1!
. (4) 

which is just the negative conjugate cone of C Tp 1. Thus in the case of cones or cone 

translations the set of all candidate state prices can be constructed by polarity from the knowledge 

of the set C  of feasible income transfers induced by financial markets. 

This important special case, gives us an opportunity to relate our results to other charac-

terizations of no arbitrage in the presence of constraints, which have been suggested in the litera-

ture. 

The cases almost exclusively dealt with are constraint sets, which are cones. In particular 

this case is investigated in the papers by He and Pearson (1991), Jouini and Kallal (1995a), Jouini 

and Kallal (1995b) and Huang (1998). 

For cones the condition of no unlimited arbitrage reduces to the familiar requirement of 

no arbitrage, which is stated in the following 

Corollary 2: If Z  is a cone, ( )q A Z  admits no unlimited arbitrage if and only if there 

exists a vector 
1SR  such that 0, C .

Proof: This is a direct consequence of Theorem 1 and Corollary 1. 

By (4) we see that in this case we get a direct generalization of the results for a world 

without frictions. There the set of income transfers is a linear space and its polar cone is its or-

thogonal complement. 

If we normalize  as above, the no-arbitrage inequality implies that security prices must 

fulfill the relation: 

1
ˆqz Az z Z  (5) 

for a strictly positive 1
ˆ 2.

The economic interpretation of this inequality is that security prices are arbitrage free if 

and only if they are larger or equal to the present value of the future income stream provided by 

the corresponding securities traded on the financial markets. Potential discrepancies do not gener-

ate arbitrage opportunities because the constraints on the feasible portfolio positions prevent inves-

tors from taking advantage of these opportunities. 

This is the result which has repeatedly been obtained in the literature on portfolio con-

straints independently by He and Pearson (1991) and by Jouini and Kallal (1995a) and Huang 

                                                          

1Let X  be a vector space which is equipped with the inner product x x . Denote by X  its dual space. Given a set 

S X , the set 0 for allS x X x x x S
!

 is called the negative conjugate cone of S  (Luen-

berger, 1969). 

2If some asset j  must not be sold short (i.e. 0jz ) the price of the asset must not be less than the promised income 

stream evaluated at the state prices 1 (i.e. 1 1
S
ij i j iq a ). This is exactly the characterization given in LeRoy and 

Werner (2001, Theorem 7.3.2). 
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(1998). Our discussion shows that in fact a constraint set which is a cone is needed to get (5) as an 

appropriate characterization of prices which can be part of some equilibrium. It can be seen as a 

special case of no unlimited arbitrage with a vertex 0 .

Our inequality for cones is exactly the statement of Jouini and Kallal’s Theorem 2.1 (Jou-

ini and Kallal, 1995a). Their theorem says that no arbitrage is equivalent to the existence of a posi-

tive linear functional (in our case )  with the property that its restriction to C , lies below the 

contingent claim pricing functional. This is exactly what is expressed in condition (5). Though we 

don’t know the pricing functional for an arbitrary income stream y C  yet, we know that in any 

way it must fulfill inequality (5). We see that more generally this condition has to be modified and 

can be appropriately applied only for the case of constraints which are a cone. 

5. Conclusions 

In this paper we have analyzed the pricing of contingent claims in security markets, where 

investors are constrained by various trading restrictions, which can be described as a convex set. 

We have given a characterization of no unlimited arbitrage in the simplest possible framework. As 

it turns out a financial market allows no unlimited arbitrage if and only if there exists present value 

of any traded security must be larger or equal to the present value of the income stream under the 

state prices   corrected by the present value of additional transfers provided by the limited arbitrage 

possibility induced by an appropriately chosen. 

We hope that these results will prove useful for financial economists who are interested to 

get an overview of the economics of portfolio constraints and security pricing, without going into 

the technicalities of continuous time stochastic finance. Ultimately, however, this is a paper about 

asset pricing. It is our hope that our results will prove useful for experts interested in practically 

developing and implementing valuation techniques inspired by tools from a heavenly linear space, 

within the constraints of an earthly convex set. 
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