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Abstract

This paper aims to analyze the impact of energy consumption, economic structure, 
and manufacturing output on the CO

2
 emissions of East European countries by apply-

ing the Structural Time Series Model (STSM). Several explanatory factors are used to 
construct the model using annual data of the 1990–2017 period. The factors are: total 
primary energy supply, GDP per capita and manufacturing value added, and, finally, 
a stochastic Underlying Emission Trend (UET). The significant effects of all variables 
on CO

2
 emissions are detected. Based on the estimated functions, CO

2
 emissions of 

Belarus, Ukraine, Romania, Russia, Serbia, and Hungary will decrease, by 2027, to 53.2 
Mt, 103.2 Mt, 36.1 Mt, 1528.2 Mt, 36 Mt, and 36.1 Mt, respectively. Distinct from other 
countries, CO

2
 emissions of Poland will extend to 312.2 Mt in 2027 due to the very 

high share of fossil-based supply (i.e., coal and oil) in Poland. The results also indi-
cate that the most forceful factor in CO

2
 emissions is the total primary energy supply. 

Furthermore, for Poland, Romania, Hungary, and Belarus, the long-term impact of 
economic growth on CO

2
 emissions is negative, while it is positive for Russia, Ukraine, 

and Serbia. The highest long-term manufacturing value-added elasticity of CO
2
 emis-

sions is calculated for Serbia and Belarus.
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INTRODUCTION

Following the first industrial revolution, global CO
2 

emissions have 
been ascending expeditiously. CO

2 
concentration was almost constant 

and ranged between approximately 270-285 ppm (Ritchie & Roser, 
2019). For the first time in the history of humanity, global daily CO

2 

concentration has been recorded as 417.91 ppm in April 2020 (Scripps 
Institution of Oceanography, 2020). Despite the continuous efforts of 
the United Nations and improving commitments, CO

2
 kept increas-

ing and hit this peak. Therefore, it is important to boost more research 
on the subject. 

Notwithstanding, each country’s contribution to the global CO
2
 emis-

sions is not equal, and it has been changing over time. Compared to 
many other regions, Eastern Europe shows a considerably reasonable 
emission level. That is why the region and its CO

2
 account is pretty 

much neglected. This paper attempts to fill in this research gap in terms 
of considering the economic structures, energy demands, manufac-
turing values, and underlying CO

2
 emissions trends of these countries. 

As seen from Figure 1, the share of East European countries, includ-
ing Russia, Belarus, Ukraine, Hungary, Poland, Serbia, and Romania, 
has been continuously decreasing since the 1990s. Apart from Russia, 
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the rest of the countries in the region show even a lower pattern. The East European countries, except 
Russia, Belarus, Ukraine, Hungary, Poland, Serbia, and Romania, are omitted due to data being stat-
ic during the estimation period. The data of two more countries, China and India, were included as a 
benchmark to make the comparison more interesting. The share of China and India have been persis-
tently increasing. Therefore, they are also included in Figure 1 to show the difference in the contribution 
of each country to the global CO

2
 emissions better.

In parallel with the Intergovernmental Panel on Climate Change (IPCC), 195 countries put signatures 
to the first adstrictory climate change treaty at the Paris Climate Conference (COP21). Signatory states’ 
governments agreed to confine the increase in GMST below 2°C in comparison to the pre-industri-
al levels, and they have targeted decreasing their CO

2
 emissions until 2030. As declared in Intended 

Nationally Determined Contribution (INDC), based on taking 1990 as the base year for calculation, the 
targeted greenhouse gas (GHG) reduction rates of Ukraine, Poland, Hungary, and Romania are 40%, 
while that of Belarus, Russia and Serbia are 28%, 25-30%, and 9.8%, respectively (UNFCCC, 2015). 

Within this context, the quantitative analysis of CO
2
 emissions plays a critical role in the determination 

of energy and environmental policies. Besides, it is essential to achieve CO
2 
mitigation targets for 2030. 

Thus, determining key drivers of CO
2 
emissions for each selected country is crucial to decide regulations 

and policies applied to achieve their mitigation targets.

In addition to the most common key drivers of CO
2 
emissions, the impact of underlying CO

2
 emissions 

trend, such as developments in technology, changes in human behaviors, and legislations/regulations, 
etc. is not adequately investigated for CO

2 
emission forecasts. In this study, this gap in the CO

2 
emission 

forecasting area is fulfilled by adding a stochastic variable, so-called Underlying Emission Trend (UET), 
into the time series analysis. The notation of the Underlying Energy Demand Trend (UEDT) has been 
using only for energy demand forecasting studies. In this study, this concept is adapted to forecast CO

2 

emissions for the first time.

The literature background of CO
2
 emissions decomposition studies, mainly focused on East European 

countries, is summarized in the next section. In section 2, the methodology and the data for the analy-
sis are presented. The proposed model and estimation results are given in section 3. The forecasting 
assumptions and results are also shown in the same section. In section 4, all estimation results are 
discussed and compared with previous studies. Finally, the last section concludes with an emphasis on 
possible policies and regulations.

1. LITERATURE REVIEW

The anthropogenic greenhouse gases (GHG) emis-
sions can be ranked starting with the lead of CO

2
,
 

which has more than 73% share in anthropogen-
ic GHG emissions that takes an essential place 
among greenhouse gases. It is followed by meth-
ane (CH

4
) and nitrous oxide (N

2
O), with shares 

of 18% and 6%, respectively (Olivier, Schure, & 
Peters, 2018). GHGs engender more thermal radia-
tion absorption than usual. For this reason, GHGs 
are stated as the most significant cause of global 
warming by scientists. Further, the reports pub-
lished by the Intergovernmental Panel on Climate 
Change (IPCC) declared that the global mean 

surface temperature (GMST) from 2006 to 2015 
was roughly 0.87°C greater than the period be-
tween mid-18th and the beginning of 20th century, 
named as pre-industrial era (Stocker, Qin, Plattner, 
Tignor, Allen, ... & Midgley, 2013).

An increase in global CO
2 
emissions is mostly caused 

by the consumption of primary energy sources such 
as coal and oil. The changes in combustion-based 
CO

2 
emissions in terms of fuel between 1978 and 

2017 are shown in Figure 2. Based on data from the 
International Energy Agency, during the period be-
tween 1978 and 2017, the CO

2 
emissions caused by 

the combustion of coal, oil, and gas increased 133%, 
32%, and 169%, respectively (IEA, 2019).
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The literature on GHGs analysis that depends on 
energy supply and economic structure from dif-
ferent countries is stunning. Nonetheless, there 
are very few studies in the literature that are spe-
cific to the East European area. This section en-
deavors to review the literature that constitutes 
the backbone of this study.

In this regard, using the Artificial Neural Network 
(ANN) method, Antanasijević, Ristić, Perić-Grujić, 
and Pocajt (2014) develop a model to forecast CO

2 

emissions of 28 European countries comprising 
Hungary, Poland, and Romania. Sustainability, 
economic characteristics, and industrial indicators 
of the period 2004–2010 are analyzed as model in-
puts. The outcome of this analysis shows that gross 
domestic energy consumption is the most impor-
tant factor that affects GHG emissions, whereas 
GDP and “GDP in the industry” have the least im-
pact. In a similar study, Jebli, Farhani, and Guesmi 
(2020) investigate the impact of the economic 
structure, renewable energy consumption, indus-
trial, and service value-added on the CO

2
 emissions 

for 102 countries, including Ukraine, Belarus, and 
Russia, that are classified by four income levels. The 
results of the Generalized Method of Moments 
and Granger causality test revealed that, regard-
ing the lower-middle-income countries such as 
Ukraine and upper-middle-income countries such 
as Belarus and Russia, the economic growth has a 
negative impact on the CO

2
 emissions. In contrast, 

the impact of industrial value added on the CO
2
 

emissions is positive. 

By taking into account the technology heteroge-
neity, Wei, Yan Li, Wu, and Yingbo Li, (2019) ap-
ply the Metafrontier Malmquist Luenberger Index 

(MML) decomposition method to specify the pri-
ority of signatory states of COP21 to advance their 
CO

2
 emission efficiencies. Similar to Jebli, Farhani, 

and Guesmi (2020), signatory countries of COP21 
are divided into four levels of income regarding 
Word Bank Development Indicators. The results of 
empirical analyses exhibited that innovation and 
improvement in energy technology is the key pow-
er to advance CO

2 
emissions efficiency. Likewise, 

using the Environmental Kuznets Curve (EKC) 
and the Environmental Logistic Curve (ELC) 
methods, Perez-Suarez and Lopez-Menendez 
(2015) analyze the goodness of fit and the fore-
casting accuracy for 175 countries. The empirical 
output shows that the sufficiency of both methods 
is quite significant to explain the CO

2 
emissions 

for different countries. Grytten and Koilo (2019) 
aim to examine the impact of economic devel-
opment, energy consumption, and trade on CO

2 

emissions for eleven East European countries. The 
EKC method usage shows that income elasticity of 
all eleven countries is positive, and Ukraine’s CO

2
 

emissions are the most sensitive to the change in 
economic growth. Furthermore, total energy con-
sumption has a negative impact on the environ-
ment as it enhances the level of CO

2 
emissions.

Dissimilar to the previous studies, Köne and Büke 
(2010) aim to forecast the energy-related CO

2
 emis-

sions using trend analysis approach method for the 
top 25 countries, including Russia, Ukraine, and 
Poland, based on CO

2 
emissions data from 1971 

to 2007. Thus, the forecast analysis is run only for 
eleven countries. The results are also compared 
with International Energy Outlook 2009 of the U.S. 
Department of Energy. They show that the projec-
tions of this study are in a tolerable range.

Figure 1. Global CO
2
 emissions shares of East European countries, China, and India 
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More recently, Song and Zhang (2019) analyze 
the movement of CO

2
 emissions using the gravi-

ty theory. To diagnose the key elements of gravity 
movement, they also implement the contribution 
decomposition method and study the decoupling 
state of CO

2
 emissions for different countries. It 

is shown that the gravity midpoint of global CO
2
 

emissions shifted to the southeast from 1965 to 
2015. Furthermore, in 17 developing countries, in-
cluding Belarus, Romania, and Poland, econom-
ic development is decoupled from CO

2
 emissions 

from 2010 to 2015.

Though there are numerous researches focused on 
the CO

2
 emissions in the East European countries, 

the effect of underlying CO
2
 emissions trend (e.g., 

changes in human behaviors and legislations/reg-
ulations, etc.) is not adequately examined for East 
European countries. This study undertakes to fill 
in this gap simply by adding a stochastic variable, 
so-called Underlying Emission Trend (UET), into 
the time series analysis. 

2. METHODOLOGY  

AND DATA

The methodology and the data used in this re-
search will be presented in this section.

2.1. Methodology

The co-integration technique has been widely applied 
in the forecasting models for a long time (Hendy & 
Juselius, 2000). Nonetheless, both the co-integra-

tion method and unit-root test have been criticized 
because of their decrepit statistical features and un-
necessary and misleading procedure (Harvey, 1997; 
Maddala & Kim, 1998). As an alternative method, 
Harvey, Henry, Peters, and Wren-Lewis (1986) de-
veloped a so-called Structural Time Series Model 
(STSM) by combining the interpretation of the re-
gression model and the elasticity of time series model.

STSM is a very useful model for the unobservable 
stochastic trends changing over time. Thus, the 
mixture of STSM and Autoregressive Distribution 
Lag (ARDL) may be quite proper to establish fore-
casting functions. By both stochastic trend and 
seasonality, it is possible to determine the elastici-
ties of descriptive variables.

In addition to STSM, Hunt, Judge, and Ninomiya 
(2000) introduce the notion of Underlying Energy 
Demand Trend (UEDT) as a factor for exogenous 
effects, including development in technical pro-
gress, energy efficiency improvements, changes in 
human behaviors, economy, and environmental 
regulations. In this context, in this study, STSM 
and the notion of UEDT are implemented to form 
a forecasting model for CO

2 
emissions of the afore-

mentioned countries for the first time.

Herewith, the aggregate CO
2 
emissions are identi-

fied by the following equation:

( ), , , , ,t t t t t tC f E Y P M UET=  (1)

where E
t
, Y

t
, P

t
, M

t
, UET

t
 represent the total pri-

mary energy supply, GDP per capita, population, 

Source: Prepared by the authors based on IEA (2019) data.

Figure 2. Changes in released CO
2
 emissions in terms of fuel resource 
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manufacturing added value, and underlying CO
2
 

emissions trend, respectively. A dynamic ARDL is 
used to estimate equation (1) as follows:

[ ]

2

1

2

0

t i t ii

i t i i t i i t i i t ii

t t

c c

e y p m

UET

α

ϑ γ δ θ

ε

−=

− − − −=

=

+ + + +

+

+

+ +

∑
∑

 (2)

where c
t
, e

t
,
 
v

t
, p

t
, m

t
 are natural logarithms of C

t
, 

E
t
, Y

t
, P

t
,
 
and M

t
,
 
in a year, respectively. The coef-

ficients ϑ
0
, γ

0
, δ

0,
 and θ

0
 stand for the short-term 

impact elasticities of primary energy supply, GDP 
per capita, population, and manufacturing added 
value, respectively, whereas ε

t 
represents a random 

white noise error term. Additionally, the long-
term primary energy supply, GDP per capita, pop-
ulation, and manufacturing added value may be 
estimated by 

0 1 2

1 2

,
1

ϑ ϑ ϑ
α α
+ +

Γ =
− −

 0 1 2

1 2

,
1

γ γ γ
α α
+ +

∆ =
− −

 

0 2

1 2

,
1

δ δ δ
α α
+ +

Π =
− −

 and 0 1 2

1 2

,
1

θ θ θ
α α
+ +

Θ =
− −

 

respectively (Atalla & Hunt, 2016).

Following Harvey, Henry, Peters, and Wren-Lewis 
(1986), Underlying Trend (UT) is a stochastic 
trend presumed by the STSM as:

1 1 ,t t t tµ µ β η− −= + +  ( )20,  ,t NID ηη σ∼  (3)

1 ,t t tβ β ξ−= +  ( )20,  .t NID ξξ σ∼  (4)

The notation μ
t 
and β

t 
represent the level and slope 

of the UET, respectively. Moreover, the parameters 
η

t
 and ξ

t 
are the mutually uncorrelated white noise 

disturbances having zero means and variances σ2
η
 

and σ2
ξ
. These variances also are called hyper-pa-

rameters. The parameters η
t
 and ξ

t
 designate the 

shape of the stochastic trend factor (Harvey & 
Shephard, 1993).

It is also very crucial to include irregular (Irr), 
slope (Slp), and/or level (Lvl) interventions into 
the established model to assure that the auxiliary 
residuals have a normal distribution. These inter-
ventions might present some information about 

extraordinary structural breaks and variations 
in the estimation period (Harvey & Koopman, 
1992). In light of such information, Dilaver and 
Hunt (2011) present the UET as:

irregular interventions + 

+ level interventions + slope interventions.

t tUET µ= +
 (5)

Equitation (2) is determined by the combination 
of Kalman filter and maximum likelihood. The 
software package program STAMP 8.3 is used 
to run the established model (Koopman, Harvey, 
Doornik, & Shephard, 2007).

2.2. Data

In this study, data were gathered from various 
sources. The yearly CO

2 
emissions (Mt) and the total 

primary energy supply (Mt) data from 1990 to 2017 
were taken from the International Energy Agency 
(IEA, 2019). Furthermore, annual GDP per capita 
and manufacturing value added of certain coun-
tries were collected from the World Bank (World 
Bank, 2019a, 2019b). The change in TPES and emis-
sions during the estimation period are shown in 
Figure 3. The sizes of the circles are in direct pro-
portion to the GPD per capita of each country.

3. ESTIMATION RESULTS 

AND FORECAST RESULTS

3.1. Estimation results

In the estimation period, four different model 
specifications, namely stochastic levels/stochastic 
slope, stochastic level/fixed slope, stochastic level/
no slope, and fixed level/fixed slope, are examined 
for each country. The preferred specification for 
each country passes the evaluation for residuals 
and auxiliary residuals. The test results for the se-
lected countries are given in Table A1 in Appendix.

Primary energy supply, real GDP per capita, and 
manufacturing value added are found to be signif-
icant drivers for CO

2 
emissions of Ukraine. The 

estimated model may be written as:

1 1

1

1.657 0.531 0.

.

25

0.083 0.086

t t t t

t t t

c e e y

m m UET

− −

−

= − + −

− − +
 (6)
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As seen in Table A1, there is no autocorrelation 
issue, and all specifications pass the diagnostic 
tests. Heteroscedasticity is also not an issue as 

( )5 2.1189H =  is smaller than the statistical 
threshold 0.025,5,5 7.146F = . The period of 2010–
2017 is used to examine the stability and reliability 
of the model. 

As given in Table A1, primary energy supply, real 
GDP per capita, and manufacturing value added 
are detected as significant drivers of CO

2 
emissions 

for Belarus. Based on the estimated coefficients, the 
CO

2 
emissions model for Belarus is given as:

1

2 1

2

0.252 0.196 0.158

0.175 0.26 0.175

0.202 .

t t t t

t t t

t t

c e y y

y m m

m UET

−

− −

−

= − − −

− + + +

+ +

 (7)

Durbin-Watson statistic with the value of 1.77 is 
very close to 2, and r

(1) 
is also close to 0. This means 

that there is not any evidence for autocorrelation. 
Furthermore, ( )5 0.6539H =  is much smaller 
than the threshold 0.025,5,5 7.146F = . Thus, it can 
be said that heteroscedasticity is not a problem for 
this model. 

The established model for Poland is given in equa-
tion (8). As shown in Table A1, there is no auto-
correlation and heteroscedasticity issue, since 

( )5 3.4892H =  is fewer than the threshold value 
of 0.025,5,5 7.146F = , and r

(1) 
is very close to 0.

1

1 2 1

2

0.951 0.179 0.052

0.124 0.113

.

0.119

0.12

t t t t

t t t

t t

c e e y

y y m

m UET

−

− − −

−

= + − −

− + + −

− +

 (8)

The equation for Romania is shown further. The 
test statistics and residual diagnostics for Romania 
assert a good fit to the data and the assumptions of 
the model (see Table A1).

2

1.115 0.137

0.073 0.139

t t t

t t t

c e y

y m UET−

= − −

− + +
 (9)

Heteroscedasticity is not a difficulty for this model 

( )( )0.025,6,66 1.5431 5.82 .H F= < =

For the case of Russia, the model is established as:

1 10.763 0.072 0 03 .. 4t t t t tc e y m UET− −= + − +  (10)

Figure 3. Change in TPES and emissions during the estimation period
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All of the variables are found to be significant 
for Russia. Different from the models mentioned 
above, there is an autocorrelation problem since 
r(1)= –0.4422, and Durbin-Watson test statis-
tics with the value of 2.49 is a bit away from 2.0. 
However, heteroscedasticity does not cause a prob-
lem ( )( )0.025,2,22 26.991.5431 39.0 .H F= < =  

When the estimation results for Serbia is tackled, 
it can be seen that all parameters are found signifi-
cant. The established model for Serbia is presented 
in equation (11).

2

2

1.024 0.457

0.1

.

99 0.496

0.194

t t t

t t

t t

c e y

y m

m UET

−

−

= + +

+ − −

− +

 (11)

Similar to the Russia case, r
(1) 

and Durbin-Watson 
test statistics with the values of –0.26 and 2.46, re-
spectively, are a bit higher. This may be an indi-
cator of an autocorrelation problem. Nonetheless, 
the model succeeds in all diagnostic and re-
sidual tests. Since heteroscedasticity is found 

( ) 0.025,2,24 0.4771 9.604,H F= < =  there is no 
heteroscedasticity issue for this model. 

Lastly, the established model for Hungary is given as:

2

2

1.111 0.408 0.11

0.266 .

t t t

t t

e y m

m UET

−

−

− + +

+ +
 (12)

Considering ( )5 0.8353H =  is less than the 
threshold value of 0.025,5,5 7.146,F =  there is no 
heteroscedasticity problem. Besides, autocorrela-
tion is not a problem as r

(1)
 and DW are close to 0 

and 2, respectively.  

As mentioned in the previous section, UET is 
a stochastic trend component that adds exoge-
nous factors such as developments in technology, 
changes in human behaviors, and legislation in-
to the model. UETs for each country are shown 
in Figure A1 in Appendix. For Ukraine, it may be 
said that UET is almost linearly downward. The 
developments in technology, changes in human 
behaviors and legislation have a positive effect 
on reducing CO

2 
emissions. Similar to Ukraine, 

Belarus’ UET shows a downward trend until 2000 
and stays nearly constant until 2015. However, it 

starts to increase after this period. This increase in 
UET may indicate the changes in regulation and 
legislation.

For Poland, it is very obvious that there is a contin-
uous decrease in UET after 2007. Poland became 
a member of the European Union (EU) in 2004 
(European Union, n.d.). After becoming an EU 
member, Poland has to obey some environmental 
restrictions. The impacts of these legislations and 
restrictions on CO

2
 emissions may arise after 2007. 

Hungary, Serbia, and Russia show a similar shift 
during the estimation period. As seen from Figure 
A1, the UET is deterministic rather than stochas-
tic. However, because of the interventions, UETs 
of Serbia and Russia are non-linear. The estimated 
UETs for these three countries are decreasing per-
manently. Unlike other countries, Romania shows 
an upward trend for UET throughout the estima-
tion period. There is a level shift in 1993, which 
probably reflects taking a step towards the liberal-
ization of the market. Changes in regulations and 
legislations during this period may cause some 
reduction in CO

2 
emissions. Following this level 

shift, UET continues its increasing trend during 
the estimation period.

3.2. Forecast assumptions  
and results

Following the estimation of CO
2 

emission equa-
tions of each country, forecasting the future CO

2 

emissions of these countries are investigated in 
this section. To forecast CO

2 
emissions, some as-

sumptions should be made. Total primary energy 
supply, GDP per capita, and manufacturing add-
ed value are extrapolated by the trend of the last 
10 in-sample observations. Hereunder, the results 
of annual CO

2
 emissions forecasts (black lines) for 

the 2018–2027 period are shown in Figure A2 in 
Appendix.

Given the above assumptions, the CO
2 

emissions 
of Belarus, Ukraine, Romania, Russia, Serbia, and 
Hungary will descend, by 2027, to 53.15 Mt, 103.18 
Mt, 36.06 Mt, 1528.16 Mt, 35.98 Mt, and 36.06 Mt, 
respectively. Unlike these countries, Poland has 
upward CO

2
 emissions during the forecasting pe-

riod, and forecasted that CO2 emissions will reach 
312.16 Mt in 2027. The main reason for this differ-
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ence between Poland and other countries arises 
due to the very high share of fossil-based supply 
(i.e., coal and oil) in Poland. In Poland, the total 
share of coal and oil in total supply is more than 
75%, while the average of the total share of coal and 
oil in total supply for the rest of Eastern European 
countries is approximately 45% (IEA, 2019). Thus, 
this situation may cause an increase in CO2 
emissions in the future in Poland. Furthermore, 
Poland is the second largest coal producer coun-
try in Europe. This reserves lead much higher con-
sumption of coal for electricity generation with a 
78.3% share (Eurocoal, 2019).

When the future status of UETs is examined, it 
can be asserted that Ukraine, Romania, Serbia, 
and Hungary show a downward UET, where-
as, UETs of Poland and Russia practically do not 
change during this period, as seen from Figure A2. 
Among the East European countries, the only one 
that has an upward UET is Belarus. This shows 
that the government of Belarus should change 
some regulations or raise awareness about GHGs 
in the future.

4. DISCUSSION

In light of the general equations of each country’s 
CO

2 
emissions, long-term total primary energy 

supply elasticity is found quite high. This means 
that CO

2 
emissions are very sensitive to TPES as 

expected due to the widespread consumption of 
primary energy sources such as coal and oil. The 
long-term GDP per capita and long-term manu-
facturing value added of East European countries 
are shown in the x-axis and y-axis of Figure 4, re-
spectively, whereas the size of the circles indicates 
the long-term TPES. Apart from other countries, 
long-term TPESs of Belarus and Russia are be-
low 1. The share of natural gas in TPES is much 
higher than other fuel types in Belarus and Russia. 
Compared to coal and oil, the combustion of nat-
ural gas is much more environment-friendly fuel 
in terms of CO

2 
emissions. Therefore, long-term 

TPESs of these two countries are relatively low 
than the rest of the East European countries.

Parallel to literature, energy consumption is de-
tected as the most significant factor affecting the 
level of CO

2 
emissions. The strong connection be-

tween TPES and CO
2 
emissions impels the govern-

ments to put some regulations and implementa-
tions into practice to encourage the private sector 
to invest in renewable energy sources.

Furthermore, it is a well-known fact that the ener-
gy demand of the world is continuously increasing. 
Governments should implement target-driven 
carbon taxation systems, subsidization programs, 
and trading strategies to go towards clean and 
more efficient energy sources instead of building 
new fossil fuel-based power plants. They may meet 
the growing energy demand with the inner energy 
sources like biogas, hydro, wind, and solar while 
avoiding the financial and monetary burden of 
shifting toward green energy with the help of the 
proper environmental laws and policies.

Considering GDP per capita as the economic var-
iable, the impacts of the economic status of East 
European countries show different features in 
the long term, as seen from Figure 4. For Poland, 
Romania, Hungary, and Belarus, the long-term 
impact of economic growth on CO

2
 emissions is 

negative, while it is positive for Russia, Ukraine, 
and Serbia. Higher-income levels of Poland, 
Romania, and Hungary as EU members lead to 
a decreasing effect on CO

2 
emissions in the long 

term. The higher-income level may ease shifting 
towards green energy policies. Conversely, in-
creases in GDP per capita have a boosting effect 
on CO

2 
emissions for Russia, Ukraine, and Serbia 

in the long run. This result is found very close to 
the findings of the study by Grytten and Koilo 
(2019). According to this study, CO

2 
emissions be-

gin to decline after GDP per capita reaches USD 
9775.56 for East European countries. As seen 
from Figure 3, Poland, Romania, and Hungary 
are the countries with the highest GDP per cap-
ita. The change in CO

2
 emissions in Serbia and 

Belarus, the most responsive countries, is found 
to be with values of 0.66 and –0.53, respective-
ly, with respect to economic development change. 
Besides, Poland and Russia are the least elastic 
countries in terms of economic development and 
CO

2
 emissions.

The impact of manufacturing on CO
2 
emissions is 

found significant for all East European countries. 
However, contrary to expectations, it has a miti-
gating impact on CO

2 
emissions in Ukraine and 
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Russia. The main reason for this situation is that 
the emission laws in force in Russia since 2012 
compel the manufacturing sector to be more en-
vironmentally-friendly (Aris, 2019). The highest 
long-term manufacturing value added elastici-

ty of CO
2 

emissions are calculated for Serbia and 
Belarus. This indicates that the structure of indus-
tries of these countries has higher carbon intensi-
ty or lower efficiency than that of other countries 
(OECD, 2014).

CONCLUSION

This paper aims to estimate CO
2 
emissions of East European countries depending on total primary energy 

supply, GDP per capita, manufacturing value added, and Underlying Emission Trend as an exogenous factor. 
With the annual data of the 1990–2017 period, the estimated models calculate the long-term income, total 
primary energy supply, and manufacturing value added elasticities of each country using the STSM approach. 
The paper’s results indicate that the most forceful factor in CO

2 
emissions is the total primary energy supply. 

Long-term GDP per capita elasticities of Russia, Serbia, and Ukraine are found positive. Besides, Serbia 
and Belarus are detected to be the most sensitive countries with respect to economic growth. The high-
est long-term manufacturing value added elasticity of CO

2 
emissions is obtained for Serbia and Belarus.

The model forecasts that CO
2 
emissions of Belarus, Ukraine, Romania, Russia, Serbia, and Hungary will 

decrease, by 2027, to 53.2 Mt, 103.2 Mt, 36.1 Mt, 1528.2 Mt, 36 Mt, and 36.1 Mt, respectively. Distinct 
from other countries, CO

2 
emissions of Poland will extend to 312.2 Mt in 2027. 

Moreover, UETs of Ukraine, Romania, Serbia, and Hungary show a downward trend, while UETs of 
Poland and Russia do not vary during the forecasting period. However, Belarus has an upward UET. 

Figure 4. Long-term GDP per capita, manufacturing value added and TPES 
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The upward-sloping UET indicates that the efficiency of manufacturing and energy generation sectors 
has decreased throughout this period or has improved but was outweighed by other exogenic determi-
nants such as politics.

RECOMMENDATIONS

This analysis could be extended to involve the cultural changes after liberation and considering the 
social impacts of industrialization. Though technology impacts on CO

2
 emissions are widely studied, 

possibilities of ecological use of technology are rarely studied. 

Technological changes in Industry 4.0 in East European countries are still to be studied with the impact 
on CO

2
 emissions. Despite the increase in industrial awareness, the increase in robotics causes more 

energy use. Hence, this subject is to be studied together with the changes in energy resources. As an ex-
ample, renewable energy and storage replacing the old nuclear bases will cause changes in responding 
to the demand for industrial energy.

It is also recommended to use other stochastic methods for prescriptive analytics to foresee the GDP of 
the same countries with reaction to global changes like 2020.
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APPENDIX A

Table A1. Estimated results for each country
Estimated coefficients Ukraine Belarus Poland Romania Russia Serbia Hungary

α
0

– – – – – – –

α
1

– – – – – – –

ϑ
0

1.6574* 0.2516* 0.9512* 1.1153* 0.7632* 1.024* 1.1109*

ϑ
1

–0.5310** – 0.1790* – – – –

γ
o

– –0.1956** –0.0517* –0.1373** – 0.4565* –

γ
1

0.2497* –0.1581* –0.1238* – 0.0718* – –

γ
2

– –0.1747* 0.1134* –0.0733** – 0.1993* –0.4076*

θ
0

–0.0826** 0.2601* – 0.1392** –0.0343* –0.4963* 0.1111*

θ
1

–0.0855*** 0.1751* 0.1189* – – – –

θ
2

– 0.2023* –0.1205* – – –0.1942* 0.2655***

LR elasticity
Γ 1.1264 0.2516 1.1302 1.1153 0.7632 1.024 1.1109

Δ 0.2497 –0.5284 –0.0621 –0.2106 0.0718 0.6558 –0.4076

Θ –0.1681 0.6375 0.0 0.1392 –0.0343 0.6905 0.377

Hyper-parameters
Irregular 0.0222 0.00008 0.0 0.0002 0.00002 0.0003 0.0004

Level 0.0 0.00005 0.00004 0.0 0.0 0.0 0.0

Slope 0.0037 0.00004 0.0 0.0 0.0 0.0 0.0

Interventions –0.1739

Outlier(2010)*

0.0711

Outlier (2010)*

–0.0270 

Outlier (1993)*

–1.1894

Outlier (1996)*

–0.0696

Level (1993)*

–0.0489

Outlier (2009)*

–0.095

Outlier (2003)*

–0.0717

Outlier (2010)*

–

Goodness of fit
p.e.v. 0.00088 0.00021 0.00003 0.0003 0.00002 0.0002 0.0003

AIC –6.3912 –7.6918 –9.4906 –7.5548 –10.363 –7.7843 –7.6035

R2 0.99 0.99 0.99 0.99 0.99 0.99 0.98

R
d

2 0.90 0.96 0.98 0.95 0.99 0.99 0.88

Residual diagnostics
Std. error (%) 2.9 1.4 0.5 1.7 0.4 1.4 1.8

Normality 0.3552 0.8026 4.7184 0.4732 0.2534 0.3604 0.0404

H(h) H
(5)

 = 2.1189 H
(5)

 = 0.6539 H
(5)

 = 3.4892 H
(6)

 = 1.5431 H
(2)

 = 26.991 H
(4)

 = 0.4771 H
(5)

 = 0.8353

r
(1)

–0.4731 –0.1393 –0.0179 –0.0603 –0.422 –0.245 0.0209

r
(q)

r
(5)

 = 0.073 r
(5)

 = –0.268 r
(5)

 = –0.054 r
(5)

 = –0.121 r
(5)

= –0.189 r
(5)

 = 0.132 r
(5)

 = –0.045

DW 2.6292 1.7771 1.8676 2.0851 2.4883 2.4567 1.7306

Q(p,d) Q
(5,3)

 = 9.499 Q
(5,3)

 = 3.174 Q
(5,3)

 = 0.935 Q
(5,3)

 =6.1748 Q
(5,3)

 = 7.094 Q
(5,3)

 = 6.618 Q
(5,3)

 = 5.856

Notes: *, **, *** denote statistical significance at 1%, 5%, and 10%, respectively.  p.e.v. is the prediction error variance, and AIC is the Akaike information criterion. R2 is the coefficient of 

determination, and 2

dR  is the coefficient of determination based on differences, a measure that benchmarks the estimated model against the random walk with drift. Mathematically, 

( )2
2

2
1 ,

T

d tt
R SSE y y

=
= − ∆ −∆∑  where SSE is short for Sum of Squared Errors and y∆  is the mean of the first differences (Harvey, 1989). DW is the Durbin-Watson statistic. r

(1)
 is the 

estimated residual autocorrelations at lag 1 distributed approximately as N(0, 1/T).  Normality is the Bowman-Shenton statistic of the third and fourth moments of the residuals that are 

approximately
2

2χ . H(h) is a measure of heteroscedasticity that follows approximately F
h,h

. Q(p,d) is the Box-Ljung statistic depending on the first p autocorrelations that follow a Chi-

square distribution.
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Figure A1. Underlying CO
2
 emissions trends
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Figure A2. Forecast results and UETs for each country
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Figure A2 (cont.). Forecast results and UETs for each country
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