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Abstract

Longevity risk management is an area of the life insurance business where the use of 
Artificial Intelligence is still underdeveloped. The paper retraces the main results of the 
recent actuarial literature on the topic to draw attention to the potential of Machine 
Learning in predicting mortality and consequently improving the longevity risk quan-
tification and management, with practical implication on the pricing of life products 
with long-term duration and lifelong guaranteed options embedded in pension con-
tracts or health insurance products. The application of AI methodologies to mortality 
forecasts improves both fitting and forecasting of the models traditionally used. In par-
ticular, the paper presents the Classification and the Regression Tree framework and 
the Neural Network algorithm applied to mortality data. The literature results are dis-
cussed, focusing on the forecasting performance of the Machine Learning techniques 
concerning the classical model. Finally, a reflection on both the great potentials of us-
ing Machine Learning in longevity management and its drawbacks is offered. 
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INTRODUCTION

The availability of large datasets and the advances in Artificial 
Intelligence (AI) to analyze and extract information from the data rep-
resent a challenge for the insurance sector. It is well known that the in-
surance industry is a data-driven business, so AI can have significant 
consequences on its processes and decisions. A survey conducted by 
Deloitte (2018) and the European Financial Management Association 
shows that the activities in which AI could have the strongest influ-
ence vary substantially from one sector to another. In the insurance 
sector, 56% of the respondents consider the Risk Management the area 
in which AI has the greatest impact, versus 29% in the banking sector. 

Regarding the insurance business, longevity risk management is pre-
sented as part of the wider Enterprise Risk Management (ERM) of an 
insurance company (Pitacco, 2020). The ERM is a comprehensive ap-
proach that goes from risk identification to risk assessment (that goes 
from product design to pricing to natural hedging techniques), capital 
allocation, and risk monitoring. Certainly, there are areas of risk man-
agement where the use of AI is more developed, like the risk monitor-
ing of the underwriting process, and others where the potential bene-
fits of automated predictive modeling have not yet been fully exploited. 
This is the case of the management of longevity risk in life business, to 
assess which many insurers still rely on traditional methods and make 
predictions resorting to classical demographic frameworks based on 
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extrapolative models. Some stochastic longevity models have been proposed starting from the classical 
financial literature on interest rates, due to similarities between the process of mortality and interest 
rate (e.g., Milevsky & Promislow, 2001; Cairns et al., 2006; Biffis, 2004; Dahl, 2004; Schrager, 2006). 
Other models exploit traditional statistical tools to fit the real data model using the Singular Value 
Decomposition of the matrix of mortality rate by age and time or the Principal Component Analysis. 
The Lee-Carter model (Lee & Carter, 1992) is widely recognized as the cornerstone of mortality mod-
eling and forecasting; it introduces a model for central death rates involving both age and time-de-
pendent terms. The Renshaw-Haberman model (Renshaw & Haberman, 2003, 2006), for the first time, 
introduces a cohort parameter to catch the observed variations in mortality among individuals belong-
ing to different cohorts. The assumption that the error term of the model is described by white noise is 
violated because the force of mortality at older ages rather shows a higher variability than at younger. 
For this reason, Brouhns et al. (2002) have extended the basic model by describing the number of deaths 
according to a Poisson distribution. Other approaches use penalized splines to smooth mortality and 
derive future mortality patterns (Currie et al., 2004). Generally, all these models have been applied to 
national data consisting of yearly observations. However, actuaries are more interested in deriving the 
underlying mortality of given portfolios. An important difference between mortality data aggregated 
at the national level and specific mortality relates to the range of the observation period: often, a given 
portfolio data does not contain observations during very long periods as in the national dataset, though 
it contains many other descriptive variables. 

In Section 1, the advancements of the recent literature on longevity risk management with the introduc-
tion of Machine Learning techniques applied to mortality forecast are retraced to improve the classical 
models’ predictability. Section 2 presents the family of the generalized age-period cohort models and 
the main accuracy measures. Section 3 retraces the method presented in the literature on mortality 
modeling with ML: a brief overview of the Classification and Regression Trees (CART) approach ap-
plied to mortality and a global perspective on the NN in mortality modeling is provided. An introduc-
tion to the basic idea behind NN architecture is presented, and the benefits of NN in both integration 
and full replacement of canonical models are explored. Sections 4 and 5 are devoted to describing and 
discussing the results and the benefits of using ML techniques as complementary to standard mortality 
models. This way of operating is likely to please the longevity risk managers who are unwilling to use 
not immediate explainable algorithms. The last section is devoted to the findings. 

1. LITERATURE REVIEW

Recently, AI in general and Machine Learning 
(ML) in particular have appeared in actuarial re-
search and practice. Moreover, while the scientific 
productions and the applied researches boast an 
increasing number of contributions in non-life in-
surance (Wüthrich et al., 2019; Ferrario et al., 2018; 
Gabrielli et al., 2019; Noll et al., 2020), the life in-
surance sector is suffering the unwillingness of the 
demographers to replace the traditional models 
with a sort of “black boxes”, referring to how ML 
algorithms operate. Nevertheless, the first results 
of the application of ML techniques to mortal-
ity forecasts and longevity risk management have 
been presented during the last years. At first, some 
early unsupervised methods for mortality analysis 
have been introduced with application to different 

medicine fields; lately, they have been exploited by 
demographers (Carracedo et al., 2018) and actu-
aries (e.g., Huang & Browne, 2017; Piscopo et al., 
2017). Deprez et al. (2017) introduce the use of su-
pervised ML algorithms to improve the fitting of 
the log mortality rates. Levantesi and Pizzorusso 
(2018) extend the model and take advantage of ML 
to produce better mortality forecasts in the Lee-
Carter model. The authors show that mortality 
modeling can benefit from ML, which better cap-
tures patterns that traditional models do not iden-
tify. Specifically, Deprez et al. (2017) use decision 
trees to detect the weaknesses of different mor-
tality models and investigate the cause-of-death 
mortality. Levantesi and Pizzorusso (2018) use de-
cision trees, random forest, and gradient boosting 
to calibrate an ML estimator. Finally, Levantesi 
and Nigri (2019) focus on the random forest al-
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gorithm. Hainaut (2018) proposes the application 
of Neural Network (NN) to model mortality rates. 
Richman and Wuthrich (2018) implement the 
Lee-Carter model in the multiple population set-
ting where parameters are estimated using deep 
Neural Networks. Nigri et al. (2019) extend the 
original Lee-Carter model to catch the nonlinear 
mortality trend introducing a Recurrent Neural 
Network (RNN) with Long Short-Term Memory 
(LSTM) to improve the coherence of the mortal-
ity forecasts. Nigri et al. (2020) provide an autore-
gressive model leveraging Deep Learning (DL) to 
forecast, independently and simultaneously, sum-
mary longevity measures. Maier et al. (2019) dis-
cuss how it is possible to deepen a rich application 
data set with the survival modeling to create a life 
score used in an automatic underwriting system. 
A common component of the underwriting pro-
cess is the estimation of individual-level mortal-
ity risk. Traditionally, this is performed manually 
using human judgment and point-based systems, 
subjected to inconsistency, limiting the ability to 
price the products efficiently. On the contrary, the 
availability of wide historical data sets represents 
a challenge for ML to support real-time automated 
decision-making deepening the available data.

ML techniques permit us to integrate a stochastic 
model with a data-driven approach. In addition to 
improving the underwriting process, a more accu-
rate longevity risk quantification can sustain the 
reinsurance of this “toxic risk” (Blake et al., 2006) 
and the development of the longevity capital mar-
ket. The contribution given by the use of hedging 
assets designed for longevity management has been 
highlighted in Cocco and Gomes (2012). Different 
longevity assets have been designed: firstly, mortal-
ity and longevity bonds, afterward forwards and 
swaps. The significant reduction in the forecasting 
error reached through the application of ML and 
DL techniques is particularly useful in the pricing 
of these products. The analysis of the impact of 
mortality rates provided by these models on the 
pricing of longevity derivatives has been investigat-
ed, for example, in Levantesi and Nigri (2019).

This paper aims to describe the main results of the 
recent actuarial literature on applying AI meth-
odologies to mortality forecasts to improve both 
fitting and forecasting of the models traditionally 
used to stimulate their use in the actuarial prac-

tice, with relevant implications in the longevity 
risk management. Note that all the contributions 
mentioned here work on aggregate data by coun-
try, age, and gender, not on individual features.

2. METHODS

The class of the generalized age-period cohort 
(GAPC) models (Villegas et al., 2015) embraces 
most of the stochastic mortality models proposed 
in the literature, where the following predictor ex-
plains the effects of age a, calendar year t, and co-
hort c:

( ) ( ) ( )1 0

, 1
,

n i

a t a a t a t ai
η κα β β γ −=

= + +∑  (1)

where α
a
 is the age-specific parameter giving the 

average age-specific mortality pattern; 
( )i
tκ de-

notes the time-varying index for the general mor-
tality and 

( )i
aβ modifies its effect across ages, so it 

represents the deviations from the trend of age as 
( )i
tκ  varies, their product is the age-period factor 

of the mortality trends; γ
t-a

 is the cohort param-
eter and 

( )0

aβ  modifies its impact across ages (c = 
t – a is the year of birth), for this 

( )0

a t aβ γ −⋅  is the 
cohort term. 

According to the GAPC framework, the Lee-
Carter model is described as follows:  

( ) ( ) ( )1 1

, ,log a t a a tm α β κ= +  (2)

where the predictor η
a,t

 is the logarithm of the 
central death rates, m

a,t
. Throughout the paper, it 

will refer to the Lee-Carter model as extended by 
Brouhns et al. (2002), based on the assumption 
that the observed number of deaths, D

a,t
, in the 

population are realizations the random variable, 
which follows a Poisson process.

It is necessary to introduce in the model two con-
straints to solve the identifiability questions of the 
parameters:

 
( ) ( )1 1

0, 1.t a

t a

κ β
∈ ∈

= =∑ ∑
 

 

The time trend 
( )1

tκ  is described by an autoregres-
sive integrated moving average (ARIMA) process to 
estimate the future probabilities. An ARIMA(0,1,0) 
usually provides the best fit to the data. 
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Mortality forecasting literature does not provide a 
vast space for ML modeling. It is still unfamiliar to 
both actuaries and demographers. The main con-
tributions are from Deprez et al. (2017), Levantesi 
and Pizzorusso (2019), Levantesi and Nigri (2019); 
the common idea behind all these works is to im-
prove the fitting accuracy of canonical models 
using ML algorithms. In other words, correct the 
mortality surface produced by standard stochas-
tic mortality models. All of the proposed methods, 
adopting CART, calibrate an ML estimator used to 
adjust (and improve) the mortality rates estimated 
by the original mortality model. Those authors 
show that mortality modeling can benefit from 
ML, which better captures patterns that tradition-
al models do not identify. Specifically, Deprez et al. 
(2017) imply decision trees to overcome the weak-
nesses of different mortality models, also investi-
gating the cause-of-death mortality. Levantesi and 
Pizzorusso (2019) use decision trees, random for-
est, and gradient boosting to calibrate an ML esti-
mator. Finally, Levantesi and Nigri (2019) focus on 
the random forest algorithm. 

All these contributions work on mortality data 
downloaded from the Human Mortality Database 
(HMD). At state of the art, there are still no ac-
ademic contributions in the field of ML working 
with mortality data of insurance portfolios.

The regression and decision tree algorithm, 
known as CART, which stands for Classification 
and Regression Trees, works on the feature space. 
The algorithm provides a sub-spaces division of 
the predictor space, partitioning it into a sequence 
of binary splits (Hastie et al., 2016). The ML liter-
ature has rapidly shown relevant evolution, adopt-
ing the ensemble methods (e.g., random forest and 
gradient boosting machine) to improve CART 
performances aggregating many trees. 

In the literature, the ML implementation of mor-
tality models refers to four categorical variables 
identifying an individual: gender (g), age (a), cal-
endar year (t), and year of birth (c). Therefore, 
the model assigns each individual the feature 

( ), , ,x g a t c= ∈  with = × × ×      the 
feature space, where:
 { } { }

{ } { }1 1

, , 0, , ,

, , , , , .n m

males females

t t c c

ω= = …

= … = …

 

 

 

The feature space X could be enriched with other 
information such as the income, the marital status, 
to be or not to be a smoker. The model requires that 
the number of deaths D

x
 satisfies the age indepen-

dence condition in x∈  and follows a Poisson 
distribution, ( )x x xD Pois m E∼ ⋅  for all ,x∈  
where m

x
 is the central death rate and E

x
 are the 

exposures. Let us denote the expected number of 
deaths of the chosen stochastic mortality model j 
as j

xd  and let j

xm  the central death rate. Following 
the framework in Deprez et al. (2017), the initial 
condition of the model is j

x xm m=  and:

( ) ,
with , .1

j

x x x

j j

x x x x

D Pois d

d m E

ψ

ψ

∼ ⋅

≡ =

Note that the condition 1xψ ≡  is equivalent to 
state that the mortality model completely fits the 
crude rates. This is an ideal condition as the mod-
el might overestimate ( 1)xψ ≤  or underestimate 
( 1)xψ ≥  the crude rates in the real world. The 
aim of the approach used in Deprez et al. (2017), 
Levantesi and Pizzorusso (2019), and Levantesi 
and Nigri (2019) is essential to calibrate the pa-
rameter ψ

x
 according to an ML algorithm in or-

der to improve the fitting accuracy of the mortal-
ity model. The estimator ψ

x
 is found as a solution 

of a tree classification algorithm used on the ratio 
between the death observations and the death cal-
culated through specified mortality model:

.x

j

x

D
gender age year cohort

d
∼ + + +  (3)

Let ,ˆ j ML
xψ  denote the ML estimator that is solu-

tion of equation (3), where j  is the mortality mod-
el and ML  the ML technique. To reach a better 
fit of the observed data, the central death rate of 
the mortality model, j

xm , are adjusted through 
,ˆ j ML
xψ  as follows: 

, , , .ˆj ML j ML j

x x xm m xψ= ⋅ ∀ ∈  (4)

The mortality improvement reached by the ML 
algorithm is given by the relative changes of cen-
tral death rates , , 1.ˆj ML j ML

x xm ψ∆ = −  The values of 
,ˆ j ML
xψ  are then obtained by applying an ML al-

gorithm. As shown in Levantesi and Nigri (2019), 
this approach can also be used to analyze the tra-
ditional mortality models’ limits. 
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The ML algorithms used in the application provid-
ed by the specific literature on mortality modeling 
are Decision Tree (DT), Random Forest (RF), and 
Gradient Boosting Machine (GBM) and are sum-
marized as follows. 

Let ( )Xτ τ∈
 be the partition of Χ, where J is the 

number of distinct and non-overlapping regions. 
The DT estimator, given a set of variables x, is de-
fined as: ( ) { } ,ˆ ˆ 1 DT

x X
x

ττ τψ ψ∈ ∈= Σ   where { }1 ,
x Xτ∈  

is the indicator function. The regions ( )Xτ τ∈
 are 

found by minimizing the residual sum of squares.

RF aggregates many DTs, obtained by generat-
ing bootstrap training samples from the original 
dataset (Breiman, 2001). This algorithm’s main 
characteristic is to select a random subset of pre-
dictors at each split, thus preventing the domi-
nance of strong predictors in the splits of each 
tree (James et al., 2017). The RF estimator is cal-
culated as

 ( ) ( ) ( )
1

1
| ,ˆ ˆ

B DTRF

b
x x b

B
ψ ψ

=
= ∑  

where B is the number of bootstrap samples and 
( ) ( )ˆ |
DT

x bψ  is the DT estimator on sample b.

GBM considers a sequential approach in which 
each DT uses the information from the previ-
ous one to improve the current fit (Friedman, 
2001). Given the current fit ( )1

ˆ ,ixψ −  at each 
stage i (for i = 1, 2, ..., N), GBM algorithm pro-
vides a new model adding an estimator h  to  the 
fit: ( ) ( ) ( )1 ,ˆ ˆ

i i i ix x h xψ ψ λ−= +  where ih H∈  
is the family of differentiable functions and λ is 
the multiplier derived through the optimization 
problem.

According to Levantesi and Pizzorusso’s (2019) 
framework, an ML estimator improves mortal-
ity forecasts obtained by implementing the Lee-
Carter model. The ML estimator is modeled as 
follows:   

( ) ( ) ( )1, 1,, ,lo ˆg LC ML

x a a t

ψ ψψψ α β κ= +  (5)

where the parameters 
( )1,

, ,a a

ψψα β and 
( )1,

t

ψκ  cor-
respond to the parameters 

( )1
, ,a aα β  and 

( )1

tκ  in 
the classical Lee-Carter model. From equations 4 
and 5, the following model is obtained, which im-
proved the Lee-Carter through ML: 

( ) ( )
( ) ( ) ( ) ( )

,

1, 1, 1 1
.

log LC ML

x a a

a t a t

m ψ

ψ ψ

α α

β κ β κ

= + +

+ +
 (6)

The authors underline that adopting the original 
mortality model for both fitting and forecast of 
ML estimator leads to an improvement in projec-
tion and makes it easy to understand the effect of 
such improvements on the model’s parameters.

Among the CART methods, the Lee-Carter model 
might be enhanced through the following model 
suggested by Levantesi and Nigri (2019). The au-
thors provide a novel view in which ML estima-
tor’s future values are consequences of the ex-
trapolation of ˆ

sψ  previously smoothed with 2-di-
mensional P-splines (Eilers & Marx, 1996). As a 
result, forecasted values are strongly dependent on 
the smoothing process. Indeed extrapolation con-
siders future observations as missing values esti-
mated by the 2-dimensional P-splines (Currie et 
al., 2006).  

The mean absolute percent error measures the 
model’s accuracy, 

100
,

ˆ
x x

x x

m m
MAPE

N m

−
= ∑  

and the mean absolute error, 
,ˆ

x xx
MAE m m N= −∑  where N is the data 
dimension, m

x
 and m̂

x
 are respectively the ob-

served and the estimated central death rates. 
While the models accuracy of forecasting is calcu-
lated through the root mean squared error, 

( )2
,ˆ

x xx
RMSE m m N= −∑  

which is used to compare the future mortality 
rates in an out-of-sample test.  

Despite the widespread skepticism among demog-
raphers and actuaries, it is possible to record a 
steady increase of scientific contributions to mor-
tality modeling through DL. Albeit the proposed 
literature shows prominent approaches, the ap-
plications on global panorama seem too uneven, 
jeopardizing the practitioner’s interpretation and 
most likely pushing down the DL and NN attrac-
tiveness. In light of that, a clear recap and exposi-
tion of NN in mortality are required.
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The term NN refers to a computational model in-
spired by the human brain, where multiple pro-
cessing layers are implied to learn information 
from data represented by multiple levels of ab-
straction, solving even the most complex prob-
lems. Its shape is based on neurons, links be-
tween them, and learning algorithms (backprop-
agation). NN works as a weighted regression in 
which each unit suggests “weighted” information 
thanks to the activated links, and the activation 
function transforms the weighted sum of input 
signals into output. Albeit DL embodies a wide 
variety of networks differing from each other 
by the architectural structure, the basic scheme 
of NN is presented, the so-called feedforward 
structure.

Let n
j
 be the number of neurons in layer j  and 

ϕ
i,j

 a generic activation function. The output of the 
i-th neuron in layer j, denoted by y

i,j
, is computed 

as follows: 

( )1

, , , , 11
ù .

jn j

i j i j i k k jk
y yφ −

−=
= ∑  (7)

The contributions on this topic are from Hainaut 
(2018), Richman and Wüthrich (2018), and Nigri 
et al. (2019, 2020). All of them apply NNs as uni-
versal function approximators, aiming to solve 
different tasks, thus deserving separate discus-
sions. The framework used in Hainaut (2018) 
aims to replace singular value decomposition 
(SVD) into the Lee-Carter model. Specifically, the 
author proposes two stages of estimation: firstly, 
through the autoencoder, the mortality dataset is 
reduced in a small number of latent factors. Thus, 
during the second step, an econometric model is 
applied to forecast the latent variables. The neu-
ral analyzer is adjusted to different countries us-
ing as input the centered log-forces of mortality, 
denoted by:

( )

( )

( )

( )

min

max

min

min max

max

,

ln ,

: , ,ln ,

ln ,

x

x

x

t x

X t t t tt x

t x

µ α

µ α

µ α

 −
 
 
 = = …− 
 
 − 




 (8)

where X(t) is a vector of dimensions x min maxn x x= −  
and α

x
 is the vector of average log-mortality rates 

according to the Lee-Carter formulation.

The basic idea is to determine two functions: 
an encoding and a decoding function denot-
ed by : xnenc df R R→  and .: xndec df R R→
Concerning the classical Lee-Carter model, the 
factor β

x
κ

t
 is substituted with a nonlinear function, 

and log-mortality forces are calculated through 
the following relation: 

( ) ( )
( )( )( )

ln , ,

, .

dec nn

x t

dec enc

x

t x f x

f x f X t

µ α κ

α

= + =

+
 (9)

The encoding and decoding functions are cali-
brated to minimize the sum of squared residuals 
between observer and generated mortality curves: 

( )
( ) ( )max

min 

  

2

2
ˆ .

,

arg min || ||

enc dec

t

t t

f f

X t X t
=

=

= −∑
 (10)

This approach aims to overcome the parameter es-
timation related to SVD, which mainly concerns 
the lack of nonlinear components, which affects 
the mortality surface estimation. It is worth not-
ing that the forecasting methods remain the same 
so that the extrapolation over time is related to 
canonical models with the classical limitation 
that are pointed out in Nigri et al. (2019), where 
a DL integration into Lee-Carter model is sug-
gested. They underline the key role of κ

t
 param-

eter to depict the future nonlinear mortality be-
havior. More precisely, Nigri et al. (2019) propose 
alternative processes applying an RNN with an 
LSTM architecture to describe the evolution of κ

t
 

over time. Indeed, taking into account both long 
and short-term dynamics, the LSTM can treat the 
time series noise, reproducing it into the forecast-
ed trend. The authors propose an LSTM model 
that approximates the function f  linking κ

t
 to its 

delayed values:  

( )1 2 1: , , ,,t t t t tLSTM fκ κ κ κ ε− − −= … +  (11)

where ε is a homoscedastic error term. To imple-
ment the LSTM algorithm, the dataset is split into 
the training test, where supervised learning is in-
structed, and the testing set.

During the training, the network learns the input-
output relationship; the function that describes 
such a link can predict the interested variables, in 
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this case, κ
t
, starting only from the input. In the 

dataset, the input is a (n × J) matrix of the time 
lags of κ

t
, and the output is the (n × 1) vector of 

its current values, where n ∈ N is the number of 
instances. The forecasted values of κ

t 
are derived 

recursively and are calculated using only the pre-
dicted values ˆ

tκ  and not those observed. Despite 
the remarkable predictive ability of NNs to pro-
vide high precision point forecasting, the lack of 
interval estimation remains the main drawback. 
In this regard, Marino and Levantesi (2020) ex-
tend the approach proposed in Nigri et al. (2019), 
employing the bootstrap technique to perform a 
point forecasting of the Lee-Carter time-index 
through LSTM and produce a confidence interval 
for the LSTM’s parameter uncertainty. It needs to 
consider that the approaches pursued so far work 
into a stable framework, aiming to integrate the 
Lee-Carter model. The pure DL based-approach 
proposed by Richman and Wüthrich (2018) is in-
troduced, extending the Lee-Carter model to mul-
tiple populations in a NN framework. The authors 
define the NN model in two steps: firstly, they 
model all mortality rates, considering a feature 
space that is the year of death, age of last birthday 
before death, region, and gender. Thereby, though 
the embedding layer, they model region and gen-
der as categorical features; then, it maps each cat-
egory in a low dimensional vector, whose param-
eters are learned during the fitting.

3. RESULTS

Deprez et al. (2017) implement the decision trees 
algorithm to verify the goodness of mortality es-
timates obtained by implementing the Lee-Carter 
model and Renshaw-Haberman model. They back-
test a mortality model to highlight the model’s abil-
ity to explain mortality for each age, year of birth, 
and gender. The case study is based on the mor-
tality data of Switzerland and the following set of 
variables { } { }0, ,97 , 1876, , 2014= … = …   
for both genders. The results show improvements 
in the accuracy of the Lee-Carter and Renshaw-
Haberman models’ mortality fitting because there 
are factors that are not well caught by these models.

Levantesi and Pizzorusso (2019) enhance the Lee-
Carter, Renshaw-Haberman, and Plat mortality 
projections through DT, RF, and GBM. These al-

gorithms work on the ratio between observed and 
estimated deaths from a given model. The results 
show an increase in the accuracy of the projec-
tions of all three models. The case study is devel-
oped on the Italian mortality dataset with vari-
ables { } { }0, ,100 , 1915, , 2014 ,= … = …   
and { }1815, , 2014= …  for both the genders. 
They obtain better results for RF that is more ef-
fective than DT and GBM. Both fit and forecast-
ing appear improved.

Following the same research line, Levantesi and 
Nigri (2019) propose to extrapolate the ML esti-
mator on the whole mortality surface using the 
two-dimensional P-splines and obtain more ac-
curate mortality projections. Moreover, the au-
thors develop a sensitivity analysis of the model 
to predictors, aiming to investigate if the results 
are reasonable in a demographic perspective, 
and a sensitivity analysis on the age interval to 
analyze if there are some improvements on a re-
duced dataset. The numerical application is based 
on the mortality dataset of Australia, France, 
Italy, Spain, the UK, and the USA with variables 

{ } { }20, ,100 , 1947, , 2014 ,= … = …   and 

{ }1847, ,1994= …  of both genders. The au-
thors obtained significant improvements in the 
mortality projection of the Lee-Carter model by 
applying the RF algorithm. These results hold for 
all the analyzed countries.

The innovation through DL models is driven by 
constant mortality improvement, addressing the 
need to better understand future mortality dy-
namics changes. In this scenario, the canonical 
Lee-Carter model and its evolutions remain the 
gold standard for comparing future models’ per-
formance. Hainaut, 2018 using the data for French, 
UK, and US mortality rates; the training data-
set comprises the years 1946–2000 and the test 
set by the years 2001–2014. The results show that 
the NN approach has strongly over perform the 
Lee-Carter model with and without cohort effects. 
Since this method acts only as an estimation pro-
cedure, the authors state that the empirical evi-
dence supports that a simple random walk might 
be a plausible method to forecast the latent factors. 
On the other hand, Nigri et al. (2019) point out the 
relevant implications of exploiting an extension 
of the Lee-Carter model, based on an RNN with 
LSTM architecture to forecast the latent factor κ

t
. 
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The authors investigate six countries, showing bet-
ter accuracy levels of the mortality trend forecast 
than the classical approach. Finally, Richman and 
Wüthrich (2018), pursuing a pure NN approach, 
project multi-population mortality rates exploit-
ing the main advantages of the multi-population 
approach, i.e., the robustness compared to single-
population models, due to common factors such 
as population health, economics, and technology. 
The authors use all countries in the Human 
Mortality Database, considering data from 1950 to 
1999 as the training set and data from 1991 to 1999 
as the testing set. Therefore, they assess the fore-
casting performance on the validation set from 
2000 onwards.

4. DISCUSSION

The diffusion of ML techniques in the insur-
ance sector to deal with large available datasets 
and extract important information from them 
is increasing competitiveness, bringing to more 
effective risk management and efficient pricing 
policies. This work has retraced the advances in 
recent literature on the application of ML tech-
niques to longevity risk. While it is now a wide-
spread practice in many areas of the insurance 

business to use modern predictive techniques, 
in practice, the management of longevity risk 
is still entrusted to traditional approaches. In 
this context, the first advantage AI could gen-
erate is reducing the information asymmetry 
between insurer and policyholder: a better un-
derstanding and quantification of each policy-
holder’s specific risk can be reached by simul-
taneously exploiting the information present in 
national and international datasets and those 
relating to individual portfolios. This is useful 
in pricing life products with long-term dura-
tion and lifelong guaranteed options embedded 
in pension contracts. Another AI opportunity 
is the improvement of longevity risk quantifi-
cation for health insurance and long term care 
products thanks to the exploitation of patterns 
in available medical and socio-economic da-
ta since traditional risk models require a very 
long time to process. AI favors the advances of 
the microeconomic and structural models, and 
the risk management is shifting from statistical 
methods to supervised tree algorithms that au-
tomatically select variables of interest and bet-
ter identify the data connections. Available data 
could be integrated by those offered by smart 
sensor technologies for policyholders’ health 
monitoring.

CONCLUSION

Detailed considerations on the regulatory and ethical aspects deriving from the introduction of ML 
techniques in the insurance sector are beyond the scope of this work, which instead aims to stimulate 
reflection on the advantages that these techniques implemented in practice could bring to the quantifi-
cation of longevity risk. However, besides the great potential of ML, there are also some drawbacks. First 
of all, one issue concerns the forecasts’ bias, which can be significant for mortality datasets. As it is well 
known in data science, the bias may result from how the data was collected: if the algorithm is trained 
on a non-representative data set of the real distribution of the population, the forecasts could be biased. 
This can happen if the algorithms used to estimate a specific insurer’s portfolio’s longevity risk are cal-
ibrated on national data. Simultaneously, the problem is partially solved if internal databases built on 
the historical experience of the individual company are available. On closer inspection, it falls back on 
the classic question of the possibility of incurring the so-called basic risk, of which not even the tradi-
tional models are free. Another widely known limit of algorithms trained on big data is the possibility 
of a correlation between variables in this large dataset. On the other hand, through ML, the output from 
internal risk models can be validated and improved continuously. One thing is certain: the introduction 
of AI requires companies to change the business culture. The crucial point is to develop processes and 
tools to give stakeholders the possibility to understand how risks can be identified and managed within 
limits set by the firm’s risk culture. With this awareness, it is important to assess whether the results of 
the application of ML are in line with the results produced by classical models and to find the explana-
tion for any variance. 
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In light of the above, it can be argued that ML can offer insurance companies and pension fund man-
agers new tools and methods supporting actuaries in classifying longevity risks, offering accurate pre-
dictive pricing models, and reducing losses. In addition to the areas in which ML methodologies are 
already used, the transition from the traditional modeling of longevity risk to an innovative one could 
represent a challenge for the life insurance sector. 
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