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European and American put options on insurance products 

Abstract

We consider a European and American put option defined on pure endowment insurance and risk insurance contracts, 
respectively. These options give the holder of the option or the beneficiary of said holder the opportunity to exercise 
the options and earn the difference between the future value of the insurance benefit discounted by a fixed interest rate 
– the strike price of the option, and the future value of the insurance benefit discounted by the real interest rates which 
the option writer achieves on the investments through the exercise date. The randomness of the interest rate is 
modulated by two stochastic processes: the Ornstein-Uhlenbeck (OU) process and the Vasicek process. In each case 
considered, an explicit expression of the value of the option contract is given, as are numerical examples. 

Keywords: American put option, European put option, exotic option, Ornstein-Uhlenbeck process, pure endowment 
insurance, risk insurance, Vasicek process. 
JEL Classification: G21, G23, G24.

Introduction6

We propose an option defined on life insurance 
contracts, whereby insured parties can buy European 
and American put options on their insurance benefit.  
The kind of options proposed here is a type of 
gamble between the option writer and the insured 
parties who purchase the options, on the interest rate 
the option writer will achieve by the exercise date of 
the options. We first consider a European put option 
defined on a pure endowment insurance contract.   

In a pure endowment insurance contract, the insured 
will have the insurance benefit only by surviving 
through the maturity date of the policy contract.  In 
a European option contract, the option can be 
exercised only at the exercise date of the option 
contract. We suggest a combination of these two 
types of contracts to form a European option, 
meaning that option holders can exercise the option 
only if they survive through the exercise date.  In 
this option, an investor interested in buying this 
contract has a subjective view on the interest rate 
that he thinks the option writer will achieve on his 
investments, and he is willing to gamble on it.  On 
the other hand, the option writer thinks that he could 
achieve a higher interest rate than is written in the 
option contract, so he sells a put option in which he 
has a commitment to pay the option holder at the 
exercise date (if the option holder survives until this 
date) an amount of money B, which is the benefit 
insurance defined in the option contract, discounted 
by the difference between the fixed interest rates 
(the subjective interest rate of the option buyer) and 
the real interest rates achieved on the investment. If 
the option writer achieves a higher interest rate than 
the one written in the option contract, the value of 
the option contract is zero. Thus, option holders gain 
from holding this option only if two conditions are 
met: they need to survive through the exercise date, 
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plus the option writer has to achieve a lower interest 
rate than the one defined in the option contract. Note 
that this type of option is a put option, because when 
exercising the option contract the option holder can 
“sell” to the option writer for a strike price – namely 
that the future value of the defined insurance benefit 
discounted by a fixed (subjective) interest rate – and 
gain the difference between the strike price of the 
option and the future value of the insurance benefit 
discounted by the real interest rate achieved by the 
option writer at the exercise date. Also, note that it 
is not particularly difficult to monitor the interest 
rates the option writer achieves by the exercise date 
of the option: in Israel. For example, insurance 
companies are obligated to report each month to the 
government insurance supervisor the interest rate 
achieved for each type of life insurance contract.  
The result is full transparency of the interest rates 
achieved.  Moreover, note that the fixed interest rate 
defined in the option contract should be higher than 
the interest rate of the long-term government or 
corporate bonds; otherwise no one will purchase this 
type of option contract.  Given the aforementioned 
circumstances, the option writers need to invest in 
the stock market or in other derivatives, in order to 
achieve a higher interest rate than the one defined in 
the option contract, to ensure that it is not exercised. 

Next, we consider an American put option defined 
on a risk insurance contract. In a risk insurance 
contract, if the insured does not survive through the 
maturity date of the policy contract, the beneficiary 
receives the sum assured from the insurance 
company as defined in the insurance contract after 
death occurrence. In an American put option, the 
option can be exercised at any point during the life 
of the option. We suggest that a combination of 
these two contracts constitutes an exotic option.  
This means that if the option holder dies prior to the 
maturity date, the beneficiary could exercise the 
option contract and receive the difference between 
the commitment of the option writer, which is the 



Investment Management and Financial Innovations, Volume 5, Issue 2, 2008

49

future value of the benefit insurance discounted by a 
fixed interest rate – the strike price of the option 
contract, and the future value of the insurance 
benefit discounted by the real interest rates which 
the option writer achieves on his investments. Thus, 
the beneficiary of the option holder only gains from 
exercising this option if the option writer achieves a 
lower interest rate than the one defined in the option 
contract.  Note that this type of American put option 
is not a typical one in the sense that the owner of the 
option contract does not choose when to exercise the 
option, since the exercise date depends on the death 
of the option holder which is supposed to be random 
(unless we allowed suicide – which in our case, we 
do not).  But such an American option can be viewed 
in the sense that the exercise date could be any day 
until the end of the term of the option contract. 

For both types of option contracts considered here, 

we use two kinds of stochastic processes to 

modulate the randomness of the interest rates: the 

Ornstein-Uhlenbeck (OU) process and the Vasicek 

process.  In each one of these stochastic processes, 

we evaluate the prices of these options. 

Actuaries and finance researchers have long been 

aware of the random nature of interest rates, 

particularly when dealing with long-term contracts.  

Recent studies also integrate the mathematics of 

finance as a part of the mathematics of insurance.  

Starting with unit-linked life insurance, Bernnan and 

Schwartz (1976) recognized the option structure of a 

unit-linked life insurance contract with a guarantee.  

Briys and de Varenne (1994) deal with the bonus 

option of the policy-holder and the bankruptcy 

option of the (owners of the) insurance company in 

terms of contingent claims analysis. Other recent 

studies dealing with the bonus option are Miltersen 

and Persson (1998) or Grosen and Jørgensen (2000). 

Other contexts in which two or more stochastic 
processes govern the life of a put option that have 
been studied in the literature are the pricing of put 
options on defaultable bonds or swaps, and the 
pricing of Asian exchange rate options under 
stochastic interest rates. The study of options in 
other contexts, in which two or more stochastic 
processes govern the life of defaultable bonds or 
swaps, has a long history, but the seminal paper in 
this field is most likely the one written by Duffy and 
Singleton (1997).  There, the riskless, instantaneous 
interest rate is adjusted by the firm issuing the bond 
or swap default hazard, to yield a model that 
formally resembles the default-free case, and that 
can be resolved in a similar manner. The 
adjustment, however, involves the sum of two 
hazard-like terms that imply independence, despite 
the fact that some type of relationship probably 

exists between the default hazard and instantaneous 
interest rate.  Similarly, Asian options are written on 
the exchange rate in a two-currency economy. In 
valuing these options, both the stochastic nature of 
the foreign and domestic zero-coupon bond prices 
and the exchange rate process are modeled. A recent 
treatment of the problem is given by Nielsen and 
Sandmann (2001), in which the two countries' zero-
coupon bond price processes are assumed to be 
independent geometric-Brownian motions, but the 
exchange rate process is modeled by a stochastic 
differential equation that is a geometric Brownian 
motion based on the difference of the short-term 
interest rate processes in the two countries. 

Both discrete and continuous-time stochastic models 
for interest rate processes have been presented in the 
actuarial literature, primarily Gaussian 
autoregressive processes. Panjer and Bellhouse 
(1980) provide a thorough review of autoregressive 
processes of order 1, AR(1), and of order 2, AR(2),
with constant volatility (variance). They show how 
the force of interest may be modeled according to an 
AR(1) or AR(2) process, leading to formulae for the 
moments of the cumulative force of interest and the 
annuity certain function, which is the present value 
of $1, n years hence.  (1994), and references therein, 
discusses modeling the force of interest, versus 
modeling the accumulated force of interest, using a 
continuous-time autoregressive process of order 1: 
the OU process with a superimposed linear trend, 
and the Weiner process with linear trend. More 
recently, Milevsky and Promislow (2001) modeled 
the short-rate process itself as a Cox-Ingersoll-Ross 
(CIR) process.  The CIR process is an AR(1) process 
in continuous time, with random volatility that is 
proportional to the square root of the instantaneous 
interest rate just prior to time t. Additionally, the 
actuarial literature has also considered put options 
defined on pension insurance. Historically, the study 
of put options on pension plans could be regarded as 
an extension of the ''pension put option'' approach of 
Sharpe (1976) and Bicksler and Chen (1985) – to a 
''pension call'' model that describes the general 
phenomenon of the unwillingness of fund sponsors 
to terminate over-funded plans. Note that in our case 
of the European put option, defined on pure 
endowment insurance, instead of receiving the sum 
assured as a lump sum, it can be received as an 
annuity. In this case, it can be considered as a 
European put option defined on a pension annuity.  
A pension put option, as described by Sharpe 
(1976), is the sponsor's right to abandon an under-
funded pension plan.  If the sponsor exercises the 
pension put option, it leaves the responsibility of the 
shortfall to either the beneficiaries, or to the PBGC 
(Pension Benefit Guarantee Corporation) in the 
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short term.  Sharpe (1976) argues that to preserve 
the value of the pension put option; the sponsor 
would not be motivated to terminate an under-
funded plan.  Consequently, the value of early 
termination of a defined benefit plan to the sponsor 
is similar to the exercise value of a call option on 
the pension asset portfolio to the insured.  The 
exercise price of the call option is equal to the 
vested benefit at the time plan termination.  Other 
recent studies combining call options on pension 
annuity insurance plans, were conducted by Ballotta 
and Haberman (2003), Yosef, Benzion, and Gross 
(2004) and Yosef (2006). 

The remainder of this paper is structured as follows:  
In Section 2, we present a European put option 
defined on a pure endowment insurance contract and 
find an explicit expression for the value of this 
option contract in case of the OU and the Vasicek 
processes, which modulate the randomness of the 
interest rate process. Furthermore, some important 
features of these processes are provided. In Section 
3, we solve the case of an American option contract, 
defined on risk insurance contracts in the two cases 
of the stochastic processes presented above.  
Numerics and conclusions are given in Section 4.  
Note that we make no attempt to factor in expenses, 
profits and other administrative charges, but rather 
assume that everything is presented on a net basis. 

1. European put option on pure endowment 

insurance  

The main purpose of this section is to evaluate the 
European put option defined on pure endowment 
insurance, as presented above, under the stochastic 
structure of the interest rates. As aforementioned in 
this option, an investor interested in buying this 
contract has a subjective view on the interest rate 
that he thinks the option writer will achieve on his 
investments, and he is willing to gamble on it. On 
the other hand, the option writer thinks that he could 
achieve a higher interest rate than is written in the 
option contract, so he sells a put option in which he 
has a commitment to pay to the option holder at the 
exercise date (in case that the option holder survives 
until this date) an amount of money B, which is the 
benefit insurance defined in the option contract, 
discounted by the difference between the fixed 
interest rates and the real interest rates achieved on 
the investment. If the option writer will achieve a 
higher interest rate than the one written in the option 
contract the value of the option contract is zero. 

We can write this European put option contract 
where the mortality and the interest rate are 
stochastic by: 

,)Pr()0( 0)( 000

BtTeeEP tXtt
pe     (1) 

where t0 – the time from 0 to the end of the policy 
contract; T – random variable that describes the total 
lifetime of an individual; – constant risk-free 
interest intensity;  – the fixed (subjective) interest 
rate defined in the option;  – constant factor; 

0)( ttX  – the random interest process; B – benefit 

insurance defined in the option contract; Ppe(0) – 
denotes the present value of this put option defined 
on pure endowment insurance – at time 0. 

Note that formula (1) based on the assumption that 
the time-at-death random variable is stochastically 
independent of market rates some measure.  Also 
note that the strike price of this option contract is the 
future value of the benefit insurance discounted by 

the fixed interest rate: 
0tBe . In contrast is the real 

interest rate that the option writer achieves on his 
market investments through the exercise date.  This 
interest rate changes randomly according to the 
stochastic structure of the interest rate process. 

As aforementioned, we assume that the stochastic 
structure of the interest rate follows two types of 
stochastic processes: the OU process and the 
Vasicek process. These two processes have 
interesting behaviors. The OU process has an 
advantage in that its sample functions tend to revert 
to the initial position, a property that seems 
appropriate for many interest rate scenarios.  The 
finite dimensional distributions are normal, and the 
process has a Markovian property (see Beekaman 
and Fuelling, 1990, 1991).  The Vasicek model has 
a tendency to fluctuate around a fixed interest rate, 
> 0, with an eventually stabilizing volatility.  The 
connection between these two processes and more 
about OU and the Vasicek processes will be 
described in the following subsections. 

1.1. The Ornstein-Uhlenbeck process. Let B(t) be 
a standard Brownian motion, and let X(t) be the 
unique solution of the stochastic differential 
equation:

,)0(),()()( xXtdBtXtXd     (2) 

where 0,0 . X(t) is termed the Ornstein-

Uhlenbeck (OU) process. It is well known that the 
solution of (2) is a Markov process with continuous 
sample paths and Gaussian increments. By Karlin 

and Taylor (1981, p. 332), ))(,(~)( thxeNtX t

where ]1)[2/()( 22 teth . Denote by 

)()(
)(

tX
tX eE  the Laplace Transform (LT) of 

X(t); it can then be written by 

,
)()(

)(
2

2
thxe

tX

t

e  .     (3) 
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Note that the OU process has the following 
properties, assuming X(0) is a random variable:  

.1
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))0(())((

)(min2
2

2
22

st(t,s)(

t

t

ee))Var(X(
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e))Var(X(Var(X(t))

exEtXE

If the initial random variable X(0) has a normal 

distribution with mean zero and variance 
2

2

, then 

X(t) is a stationary, zero-mean Gaussian process 
with covariance function 

,
2

),( ||
2

stets

see Beekman and Fuelling (1990). 

Now for the evaluation of (1), we first prove the 
following lemma: 

Lemma 1. Let X(t) follow the OU process as 

described in (2), then for 0  the size 

)( 000 tXtt eeE

can be written by: 
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where )( is the cumulative distribution function 

of the normal distribution, )(

)( 0tX
is the LT of the OU 

process which is given in (3) at t0 and where
0220 1)2/()( teth .

Proof. Denote by 
)(

)( 0

y

tX
dF  the cumulative 

distribution function of the OU process at t0 at point 

y, then for 0
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Now since ))(,(~)( 00 0

thxeNtX t , we can solve 

these two integrals and get
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02 2

2

0 1)( teth .

Denote by )0(OU
peP  the price of this European put 

option defined on pure endowment insurance under 
the OU process.  Thus, we can rewrite the price of 
the European put option presented in (1) by: 

,)Pr(

))((
1

1

)0( 0

0

0)(

)(

)(

0

)(

00

0

0

00

0

BtT

th

thxe
e

th

xe
e

P
tt

tX

t

tt

t

OU
pe        (4) 

where )(

)( 0tX
 is the LT of the OU process given in 

(3) at point t0, 0  and where 
0220 1)2/()( teth .

1.2. The Vasicek model. We are now interested in 
valuating (1), where the interest rate is modulated by 

the Vasicek process. Denote by )(
~

tX  the Vasicek 

process that is defined as a diffusion process 
satisfying the stochastic differential equation: 

)())(
~

())(
~

( tdBdttXtXd ,   (5) 

where 0),,(  and 0))(( ttB  is the standard 

Brownian motion with drift 0 and variance 1 per 

unit time (see Baxter and Rennie, 1996, p. 15). In 
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terms of a stochastic integral, the solution of (5) is 

given by  

t

stt sdBeeXtX

0

)( ).())0(
~

()(
~

   (6) 

According to (6), X
~

 has a drift towards  of (state-

dependent) size ))(
~

( tX , which is thus 

proportional to the distance from .  Note that we 
can represent the Vasicek process by  

)()1()(
~

tXetX t ,     (7) 

where X(t) is the OU process given in (2). Thus 
from (7) and (3), we can write the LT of the Vasicek 

process, )(

)(
~

tX
, by:   

,
)()1()(

~
)(

)(
~ 2

2
thexetX

tX

tt

eeE R.   (8) 

Lemma 2. Let )(
~

tX follow the Vasicek process as 

described in (5).  We can then write the size 

)(
~ 000 tXtt eeE

by: 

,
])()1([

1

))1((
1

0

0)(
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)(
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0
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ttt
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ttt
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where )( is the cumulative distribution function 

of the normal distribution, )(

)(
~ 0tX

is the LT of the 

Vasicek process given in (8) at t0, and where
0220 1)2/()( teth .

Proof. Since ))(,(~)( 00 0

thxeNtX t
 and 

using (7), 0(
~

tX ) has a normal distribution with 

mean ))1((
00 tt exe  and variance h(t0).  So 

following the proof of Lemma 2, the result is as 
follows.

The price at time zero of these European put options 
defined on pure endowment insurance under the 

Vasicek process, )0(Vasicek
peP , can be written by: 

,)Pr(

])()1([
1

))1((
1

)0( 0

0

0)(

)(

)(
~

0

)(

Vasicek

000

0
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000

0

BtT
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thexe
e

th
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e

P
ttt

tX

t

ttt

t

pe

where )(

)(
~ 0tX

 is the LT of the Vasicek process given 

in (8) at point t0, 0  and where 
0220 1)2/()( teth .

2. American put option on risk insurance 

This section examines pricing the value of a put 

option defined on risk insurance under the stochastic 

structure of the interest rates.  As previously 

mentioned, this type of option gives the beneficiary 

of the option holder the opportunity to exercise this 

option for a strike price defined in the option 

contract, only in case of death of the option holder 

prior to the exercise date of the option.  Should the 

option holder survive through the exercise date, the 

worth of this option is zero.  Note that the death of 

the option holder can occur at any time prior to the 

exercise date, meaning that the option could be 

exercised by the beneficiaries of the option holder 

any time prior to the exercise date. 

Now the value of this American put option can be 

written by:  

,)0( )()()( 000

BeeEP tTXtTtT
ri  (10) 

where t0, T, B,,, , X(t) as defined in the above 

subsection and where Pri(0) denotes the present 

value of this put option at time 0. 

We now turn our attention to calculating the value 

of the option contract presented in (10) under the 

OU process, denoted by )0(OU
riP , and under the 

Vasicek process, denoted by )0(Vasicek
riP . We 

begin with the Vasicek process. 

Lemma 3. Let )(
~

tX follow the Vasicek process as 

described in (5).  Then for 0 , we can write (10)

by:
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where )(t
TdF is the cumulative distribution function 

of  T, )(  is the cumulative distribution function of 

the normal distribution, and 
( )

( )X t
is the LT of the 

Vasicek process given in (5).

Proof. Let ],min[ 0tT .  Then for 0 ,

.|1

)0(

)(
)(

~
)(

~

)(
~

)(
~

Vasicek

X

X

X

X
ri

eeEBE

eeBEP

Now the size of the conditional expectation with 

respect to )(
~
X , could be written by: 
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thus following Lemma 2 we get  
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Now given that  = T for T < t0, and that the value 

of this option is 0 for T > t0, taking expectation with 
respect to = T, we get the required result of (10) 

which is provided in (11).  

We are now interested in evaluating 
OU
riP  which is 

the value of this option under the OU process. 

Lemma 4. Let )(tX follow the OU process as 

described in (2).  Then for 0 , we can write (10)

by:
0

0

( )
OU ( )

0

( )
( ) ( )

( )
0

( )
(0) 1

[ ( ) ]
1 ,
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 (12) 

where )(t
TdF is the cumulative distribution function 

of T, )(  is the cumulative distribution function of 

the normal distribution, and 
)(

)( 0tX
is the LT of the 

OU process given in (3).

Proof. Following the proof of Lemma 3 and letting 

0 , we obtain the required result.  

Numerics and conclusions

We now consider two cases of the random variable 

of the total lifetime of an individual, T. The first 

case is an exponential lifetime, where 
0*0 )Pr( tetT  for positive constants 

0, t .  The 

second case is Gompertz’s low: 
age

age wc  for 

positive constants w and c.  In this case, we can 

write the survival lifetime as: 

))1((0
0

ln)Pr(
tage

c
w cc

etT , where the 

parameter “age” refers to the present age of the 

insured.  In each case, we will find the prices of the 

put options )0(OU
peP , )0(Vasicek

peP  and )0(OU
riP ,

)0(Vasicek
riP , i.e. formulas (4), (9) and formulas 

(11), (12) respectively, under several assumptions of 

the parameters.  We compare these results to the 

prices, where the probability of the insured to 

survive through the exercise date is 1, i.e. 

1)Pr( 0tT .

Now suppose the constant parameters of the 

processes are: ,01.0,05.0

05.0,7.0,1.0,02.0 0x  and that the 

benefit insurance is B = $1. The results will be given 

for a scenario of the fixed interest rate , for some 

positive ,0t , and for the age parameter in the 

following tables (t0 is given in years).  Also, suppose 

that the constant parameters of Gompertz’s low are:  

w = 10-4, c = 1.1. Table 1 presents the results for the 

European put option defined on pure endowment 

insurance, i.e. formulas (4), (9) and Table 2 presents 
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the results for the American put option defined on 

risk insurance, i.e. formulas (11), (12). 

Table 1 outlines the prices of the European put 
option defined on pure endowment insurance and 
the sensitivity to the constant parameters. As 
mentioned in Section 2, the strike price for this 

option on the exercise date is 
0tBe , meaning that 

the present value of the gain from exercising is 

)( 000 tXtt eeBE .  We can look, for example, 

at the first case, where the constants are 
,01.0,03.0 t0 = 5. Note that assuming 

03.0  is equal to assuming a fixed interest rate of 

3.0455% per year.  The prices of this option contract  

in case of the OU process, where the survival 
lifetime is Pr(T > 5) = 1 is $0.0823 and in case of 
the Vasicek process is $0.0828.  The price of this 
option in the exponential case is $0.0782 in the 
OU process and $0.0787 in the Vasicek process.  
This means a decline of about 5% of the price of 
the option from the certain lifetime case, and a 
decline of about 2.2% comparing Gompertz’s case 
with the insured age 30 and 3% to the insured age 
40.  Further, note that the option holder pays at 
time zero $0.0782 in the OU process and will 
receive an amount of money with a present value 
of $0.0823.  This means that the interest rate on 
the investments is 5.24% in case of survival 
through the exercise date. 

Table 1. Prices of the European put options on pure endowment insurance: formulas (4), (9) 

Pr(T > t0)0te *

1
)).(.(

.ln
11111
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410 tage

e
),,,( aget 0

)(0OU
peP )(0Vasicek

peP )(0OU
peP )(0Vasicek

peP )(0OU
peP )(0Vasicek

peP

(0.03, 0.01, 5 
40

30
) 0.0782 0.0787 0.0823 0.0828 

0.0813 

0.0799 

0.0819 

0.0804 

(0.03, 0.015, 5 
40

30
) 0.0763 0.0768 0.0823 0.0828 

0.0813 

0.0799 

0.0819 

0.0804 

(0.03, 0.01, 15 
40

30
) 0.1424 0.1431 0.1654 0.1663 

0.1561 

0.1423 

0.1569 

0.1430 

(0.03, 0.015, 15 
40

30
) 0.1321 0.1328 0.1654 0.1663 

0.1561 

0.1423 

0.1569 

0.1430 

(0.03, 0.01, 30 
40

30
) 0.1359 0.1365 0.1835 0.1842 

0.1358 

0.0840 

0.1363 

0.0843 

(0.03, 0.015, 30 
40

30
) 0.1170 0.1175 0.1835 0.1842 

0.1358 

0.0840 

0.1363 

0.0843 

(0.05, 0.01, 5 
40

30
) 0.0008 0.0011 0.0009 0.0012 

0.0008 

0.0008 

0.0012 

0.0012 

(0.05, 0.015, 5 
40

30
) 0.0008 0.0011 0.0009 0.0012 

0.0008 

0.0008 

0.0012 

0.0011 

(0.05, 0.01, 15 
40

30
) 0.0006 0.0011 0.0007 0.0013 

0.0007 

0.0006 

0.0012 

0.0011 

(0.05, 0.015, 15 
40

30
) 0.0006 0.0010 0.0007 0.0013 

0.0007 

0.0006 

0.0012 

0.0011 

(0.05, 0.01, 30 
40

30
) 0.0003 0.0006 0.0004 0.0009 

0.0003 

0.0002 

0.0006 

0.0004 

(0.05, 0.015, 30 
40

30
) 0.0003 0.0006 0.0004 0.0009 

0.0003 

0.0002 

0.0006 

0.0004 

Table 2 indicates the prices of the American put option 

defined on risk insurance. If we take, for example, 

these constant parameters  = 0.03,  = 0.015, t0 = 30, 

we can see the prices of this option contract in the case 

of the OU process of a certain lifetime is $4.4297 and 

in the case of the Vasicek process is $4.2706. The 

price of this option in the exponential case is $0.0356 

in the OU process and $0.0358 in the case of the Vas-

icek pro cess, constituting a tremendous difference 

between the prices. This difference derives from the 

lifetime probability of over 30 years. Additionally 

differences exist between the option prices under the 

Gomperz low of mortality and the exponential case, 

predominantly due to the lack of memory with regard 

to the age of the insured parties attributed to the 

exponential lifetime. 
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Table 2. Prices of the American put options on risk insurance: formulas (11), (12) 
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) 0.0021 0.0022 0.2211 0.2225 

0.0004 

0.0010 

0.0004 

0.0010 

(0.03, 0.015, 5 
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) 0.0032 0.0032 0.2211 0.2225 

0.0004 
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0.0004 

0.0010 

(0.03, 0.01, 15 
40
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) 0.0139 0.0140 1.5309 1.5397 

0.0026 

0.0064 

0.0026 

0.0065 

(0.03, 0.015, 15 
40

30
) 0.0200 0.0201 1.5309 1.5397 

0.0026 

0.0064 

0.0026 

0.0065 

(0.03, 0.01, 30 
40

30
) 0.0356 0.0358 4.2497 4.2706 

0.0067 

0.0148 

0.0067 

0.0149 

(0.03, 0.015, 30 
40

30
) 0.0491 0.0493 4.2497 4.2706 

0.0067 

0.0148 

0.0067 

0.0149 

(0.05, 0.01, 5 
40

30
) 0.0000 0.0000 0.0037 0.0047 

0.0000 

0.0000 

0.0000 

0.0000 

(0.05, 0.015, 5 
40

30
) 0.0001 0.0001 0.0037 0.0047 

0.0000 

0.0000 

0.0000 

0.0000 

(0.05, 0.01, 15 
40
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) 0.0001 0.0002 0.0118 0.0175 

0.0000 

0.0001 

0.0000 

0.0001 

(0.05, 0.015, 15 
40

30
) 0.0002 0.0002 0.0118 0.0175 

0.0000 

0.0001 

0.0000 

0.0001 

(0.05, 0.01, 30 
40
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) 0.0002 0.0003 0.0202 0.0338 

0.0000 
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0.0001 

(0.05, 0.015, 30 
40
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) 0.0002 0.0004 0.0202 0.0338 

0.0000 

0.0001 

0.0001 

0.0001 

To conclude, we note that the suggestion of these 
options could lead insurance companies, if we 
think of them as option writers, to be more 

involved in the capital market, an objective that is 
very important to all parties involved, particularly 
in a country as small as Israel. 
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