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Funds of hedge funds: a comparison among different portfolio

optimization models implementing the zero-investment strategy 

Abstract 

Hedge funds are alternative investment vehicles where the fund manager’s task is to generate positive returns regard-
less of the market conditions. A fund of hedge funds is a portfolio of hedge funds generally characterized by positive 
return and a high degree of diversification. In this paper, we analyze two portfolio optimization models for constructing 
a fund of hedge funds. Both models, which we refer to as the two-step model and the single-step model, are based on a 
zero-value strategy, a strategy which combines long and short selling in order to attain (ignoring margin and the cost of 
short selling) a zero initial investment. The principal difference between the two models is the selection techniques of 
the funds included in the long/short portfolio. The two-step model requires, as the first step, the classification of the 
funds into winner and loser groups according to their historical performance as is done in the literature on momentum 
strategies. After the pre-selection step, the model is solved via linear programming, the model’s second step. The sin-
gle-step model avoids the pre-selection of hedge funds at the cost of introducing binary variables to exclude the possi-
bility that a hedge fund is present in both the short and long portfolios. Both models are solved with respect to a set of 
scenarios, based either on historical, or forecasted scenarios generated by GARCH modeling. Combining the two mod-
els and the two sets of scenarios, we end up with four strategies. Finally, we evaluate the ex post one-year performance 
of the four strategies with monthly portfolio rebalancing using hedge fund data that encompass the sub-prime crisis.

Keywords: hedge funds, fund of hedge funds, linear programming, zero-value strategy.  
JEL Classification: C15, C61, P45, G11.  

Introduction 1

Hedge funds are funds pursuing aggressive invest-
ment strategies, including short selling, leverage, 
derivatives, risk arbitrage, and securities with com-
plex structures. As of this writing, hedge funds are 
exempt from many of the regulatory requirements 
governing types of investment companies. Hedge 
funds are restricted by federal securities law to limit 
the number of investors per fund, and the types of 
investors that are permitted to invest in the funds 
(i.e., qualified investors). Consequently, typically 
hedge funds impose extremely high minimum in-
vestment amounts. As with mutual funds, investors 
in hedge funds pay a management fee; however, 
hedge funds also collect a percentage of the profits 
(usually 20%).  

The primary investment goal of most hedge funds is 

to reduce risk at minimal possible capital cost. The 

strategies formulated by hedge funds seek to gener-

ate positive returns regardless of the movement of 

the market for the asset class in which they invest. 

Empirical evidence suggests that hedge funds are 

scarcely correlated with traditional investment dur-
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ing normal market conditions and, as such, the in-

clusion of hedge funds into an investment portfolio 

may provide diversification not otherwise available 

in traditional investment vehicles. There are a large 

number of hedge fund investment styles – many 

uncorrelated with each other under normal market 

conditions – that provide investors with a wide 

choice of hedge fund strategies to meet their in-

vestment objectives.  

The complexity of their management is mainly due 
to the high number of instruments that can be in-
volved in a hedge fund, the correlation among the 
different instruments and the ability to implement 
winning selection strategies. 

Knowing and understanding the characteristics of 
the many different hedge fund strategies are essen-
tial to capitalizing on their variety of investment 
opportunities. Some strategies which are not corre-
lated with equity markets are able to deliver consis-
tent returns with extremely low risk of loss, while 
others may be as or more volatile than mutual funds. 
A successful fund of hedge funds recognizes these 
differences and blends various strategies and asset 
classes together to create more stable long-term 
investment returns than any of the individual funds.  

In recent years, investors’ interest in funds of hedge 

funds has increased. In 2007, for example, funds of 

hedge funds received about US $60 billion of net 

new assets under management, increasing the 

amount of global capital invested in this type of 

fund of funds to around US $800 billion. Some 

market observers believe that fund of hedge funds 

will attract the majority of capital invested in the 
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fund of funds, an industry that has steadily grown 

since 1960s. Compared to the total amount invested 

in the fund of funds industry that has US $ 1,208 

billion of assets under management as reported by 

the Barclay group, hedge funds represent about two 

thirds of that amount [14]. 

In this paper, we use various indices of hedge funds 
mainly based on distinct investment strategies, each 
offering different degrees of risk and return to de-
termine the optimal hedge fund combinations using 
a zero-investment strategy. To do so, in Section 1 
we introduce two portfolio optimization models 
based on this strategy, a strategy characterized by 
the value of the long portfolio equal to the value of 
the short portfolio so that the portfolio’s net invest-
ment is zero. This self-financing strategy involves 
short selling which, under U.S. securities law, re-
quires that a margin account be funded at the outset 
of the strategy and maintained throughout until the 
short sale is closed. The obligation to maintain a 
term deposit (in cash or securities) equal to 50% of 
the value of the shorted securities, has two implica-
tions. First, the strategy is no longer a self-financing 
strategy because of the need to post margin. Second, 
it effectively make it necessary to close the strat-
egy’s short positions if the losses become too high. 
The introduction of a marginal account will be con-
sidered in our discussion but do not affect the selec-
tion model. 

The first model we refer to as the two-step model, is 
so named because it is based on two steps: (1) a pre-
selection of the hedge funds to be included in the 
long portfolio (the portfolio consisting of winners) 
and the short portfolio (the portfolio consisting of 
losers), and (2) an optimization procedure. This 
approach is in line with the zero-investment mo-
mentum strategies discussed in the literature [2, 7] 
based on the empirical finding of persistence of 
stock returns continuation at least in the short pe-
riod. The simplest decision criterion is based on the 
computation of compounded total monthly return in 
selecting the winners and losers over some defined 
ranking period. Given the empirical evidence that 
returns exhibit non-normality, it is important to in-
corporate this information into the pre-selection 
criterion in order to include not only a return but 
also a risk component and construct a return/risk 
profile of the assets. To achieve that goal, we rank 
all the hedge funds according to the modified 
Sharpe ratio [4] performance measure, and we de-
termine the winners as the top 50% and the losers as 
the bottom 50%.  

The implementation of the momentum strategy in-
volves decisions on the length of the data used for 
the ranking of the assets and the length of the hold-

ing period. The ranking of the assets is ideally com-
puted based on the last year data. Since we consider 
monthly data, we used a longer period and found 
that the sets of winner loser hedge funds are quite 
stable for different lengths of the ranking period. 
The holding period is one year with monthly rebal-
ancing.

The second approach, the single-step model, avoids 
this ex ante ranking with the introduction of binary 
variables in the optimization model, forcing the 
assets to be included in only one of the sets of win-
ners and losers. 

Section 2 describes the data and the procedure for 
generating the scenarios. We consider both histori-
cal and forecasted scenarios. The latter are obtained 
by identifying a set of orthogonal factors which 
explain the variability of the indices’ returns via 
principal component analysis. Isolating the most 
relevant factors, we estimate the residuals on which 
we fit univariate GARCH models. The scenarios are 
then obtained via simulations on a correlated set of 
innovations. Finally, in Section 3 we describe the 
empirical results and compare the different strategies.  

1. The zero-investment strategy  

The zero-investment strategy allows building a port-

folio divided into a long portfolio and a short portfo-

lio whose market values are the same such that the 

strategy involves no investment outlay.  

1.1. The two-step model. With the two-step model, 
the optimal solution for a given (unit) period is ob-
tained through a two-step process. In the first step 
we perform the pre-selection of the hedge funds in 
the database we use, classifying the hedge funds 
into winners and losers. We rank hedge funds ac-
cording to a pre-specified criterion1 and then split 
the ranked hedge funds in half with the top half 
representing the winners and the bottom half the 
losers. The next step, the solution of the program-
ming problem (1) below, involves minimizing the 
portfolio’s average value-at-risk (AVaR)2 subject to 
a constraint on the expected return that must be 

                                                     
1 In order to rank the hedge funds, we use the modified Sharpe ratio

defined as the average return over the modified Cornish-Fisher [4, 6] 
VaR.
2 VaR (R), on a probability space ( , ,P), is defined as 

rRrRVaR Prinf)(  at tail probability . For 

continuous return distributions, the AVaR (R) is defined as the average 
VaR beyond a given VaR level. Not only does AVaR have an intuitive 
definition, but there are also convenient ways of computing and estimat-
ing it. As a result, AVaR turns into a superior alternative to VaR suit-
able for managing portfolio risk and dealing with optimal portfolio 
problems. In general, AVaR is defined as follows:

0

)(
1

)( dpRVARRAVaR p

, where denotes the tail probability [15].
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greater than a minimum value . We denote this 
average value-at-risk by AVaR .

As Rockefellar and Uryasev [11, 12] demonstrate, it 

is possible to linearize the AVaR  by introducing a 
vector of auxiliary variables, solving a linear prob-
lem where )`(min rwAVaRa  is approximated by  

)0,`max(
1

min
1,,

k
n

kdw
rw

n

and  is VaR ,

k

n

kdw
d

n 1,,

1
min ,

s.t.  

0, kk
kT ddrw , k N,

where N is scenarios’ set. 

The linear programming problem that we solve is 
formalized in (1) below where the third and the 
fourth constraints require that the sum of the 
weights of the long and short portfolios must be 
equal to 1 and -1, respectively, while the last two 
constraints set some bounds on the weights, in order 
to guarantee a minimum diversification. 
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where w is the vector of the weights composing the 
zero-investment portfolio; E(r) is the vector of ex-
pected returns of the hedge funds composing the 

portfolio; is the minimum expected return re-

quired for the portfolio; I  and I  are the sets of 
the winner and the loser portfolios, respectively; UB
and LB detone upper bound and lower bound on the 
weights of the winners and losers portfolios, respec-
tively, in order to ensure a certain degree of diversi-
fication.

Finally, we determine the optimal asset allocation of 
the zero-investment portfolio for different values of 

, and then we choose the optimal portfolio which 
maximizes the ratio between the expected return and 

its AVaR . This risk/return ratio is called the 
STARR ratio and described in [2]. 

1.2. The single-step model. The single-step model 
avoids the ex ante selection by introducing binary 
variables (i.e., there is no need to rank the hedge 
fund candidates in order to obtain the sets of win-
ners and losers). With this approach the optimiza-
tion problem for a given (unit) period is solved 
through a single-step process, and the selection of 
the hedge funds to include in the long and short 
portfolio positions is obtained via binary variables 
according to programming problem (2) below:
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Many of the equations in (2) are the same as in (1). 
In the programming problem (2), we introduce a 

new set of variables /i iw w  which are respectively 

the weights of the i-th item in the long/short portfo-

lio. Note that in this model, /i iw w  are always 

positive and i  is a binary variable associated with 

the i-th stock of the zero-investment portfolio, with 
the set I of all hedge funds. 

Also in this case, the objective function is given by 

the minimization of the AVaR  with confidence 
level . The first two constraints simply require that 

the sum of the weights for both the long and the 
short portfolio positions must equal unity and the 
third constraint forces the weights of the zero-
investment portfolio to be equal to the difference 
between those of the long and short portfolios. The 
fourth constraint requires that the portfolio offers a 
minimum level of expected return, while the fifth 
constraint is used to linearize the objective function. 
Finally, the last two constraints represent the real 
novelty inside this model: the introduction of the 

binary variables i  guarantees that the product 

/i iw w  must be zero for all funds.  
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As in the two-step model, we solved the optimiza-
tion problem for different values of expected return 

and chose the optimal asset allocation as the one 
maximizing the STARR ratio. 

We observe that the two-step model is formulated as 
a linear programming problem, while the single step
model is a mixed integer programming problem due 

to the presence of the binary variables i . Since the 

number of binary variables equals the number of 
assets, in this case, the computational burden in-
creases significantly. 

2. The data and scenario generation 

In the application of the two models, we focus our 
attention on the optimal composition of hedge funds, 
to be more precise of indices of hedge funds. Our 
dataset is the time series of monthly returns from 
May 1994 to October 2007 of 13 indices representa-
tive of the 13 style-based investment strategies of the 
hedge fund universe1. The database is obtained from 
the Credit Suisse/Tremont Hedge Fund Index Group 
webpage (http://www.hedgeindex.com).

We split the sample in two sets and we use a rolling 
window of 150 monthly returns starting from May 
1994 to October 2006 for parameters estimation. 
The  selected  period  includes,  of course,  several  

financial crises – the failure of Granite Partners, a 
hedge fund also known as Askin Capital Manage-
ment in 1994, and the major problems in the collat-
eralized mortgage obligations market that followed 
the 1997 Bhat crisis, and the Russian ruble crisis in 
August 1998 followed by the collapse of a major 
hedge fund (Long-term Capital Management) in 
September 1998. The last 12 months of our dataset – 
November 2006 to October 2007 – are used to evalu-
ate and compare the performance of the different 
strategies using the aggregate wealth value at the end 
of the holding period. Note that the holding period 
includes the subprime mortgage crisis that began in 
summer 2007. 

All the hedge fund indices were ranked on the 
basis of their performance as measured by the 
modified Sharpe Ratio, as commonly done in 
evaluating momentum strategies. The implemen-
tation of the momentum strategy involves deci-
sions on the length of the time period used for the 
ranking of the hedge funds and the length of the 
holding period. The ranking of the hedge funds is 
ideally computed using data for the prior year. 
However, because we consider monthly data we 
use a longer period and in doing so we found that 
the winner and loser portfolios are quite stable for 
different time periods 

Table 1. Summary statistics for the hedge fund indices, S&P 500, J.P. Morgan U.S. Government Bond Index 
and CGSY commodity index 

Hedge fund index Symbol Mean Median Std. deviation Kurtosis Asymmetry 

Convertible arbitrage CA 0.76% 1.03% 1.30% 6.87 -1.43 

Dedicated short bias DSB -0.13% -0.62% 4.85% 5.27 0.88 

Emerging markets EM 0.92% 1.57% 4.43% 8.87 -0.82 

Equity market neutral EMN 0.82% 0.81% 0.82% 3.54 0.31 

Event driven ED 0.98% 1.07% 1.58% 29.27 -3.60 

Event driven-distressed DIS 1.11% 1.22% 1.76% 24.64 -3.14 

Event driven multi-

strategy 
MULTI 0.91% 0.96% 1.72% 19.89 -2.55 

Event driven-risk 

arbitrage 
RA 0.64% 0.60% 1.18% 9.80 -1.20 

Fixed income arbitrage FIA 0.54% 0.72% 1.04% 21.19 -3.19 

Global macro GM 1.19% 1.18% 2.98% 6.79 0.07 

Long/short equity LSE 1.06% 1.01% 2.84% 7.40 0.19 

Managed futures MF 0.53%  0.20% 3.50% 3.15 0.03 

Multi-strategy MULTI1 0.80% 0.84% 1.18% 6.37 -1.12 

Asset class indices Symbol      

S&P 500  S&P 0.80% 1.16% 4.10% 4.70 -0.69 

J.P. Morgan US Gov-

ernment Bond Index 
JPM 0.06% 0.12% 1.32% 4.22 -0.50 

 CGSY commodity index CGSY 0.81% 0.98% 5.73% 3.29 0.10 

                                                     
1A description of the indices and the corresponding strategies is provided at www.hedgeindex.com 
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In Table 1 we report the statistics for the 13 time 
series, Standard & Poor’s 500, J.P. Morgan U.S. 
Government Bond Index, and the CGSY com-
modity index. We include the three indices in 
Table 1 in order to compare the performance of 
the hedge fund indices with the other asset 
classes: stocks, bonds and commodities. We ob-
served the following: (1) the volatility of most of 
the hedge fund indices was less than that of the 
S&P 500 and CGSY commodity indices while at 

the same time having a higher average; (2) there 
is strong evidence of non-normality for most of 
the time series due to the high kurtosis present in 
the monthly data; and (3) the abnormal returns are 
all concentrated at the end of 1998, corresponding 
to the Russian crisis. We report the correlation 
matrix in Table 2. Note that the correlation of the 
hedge fund indices with the other asset classes is 
low, confirming the commonly held belief that 
hedge funds are an alternative investment vehicle. 

Table 2. Correlation between the hedge fund indices and asset class indices 

 CA DSB EM EMN ED DIS MULTI RA FIA GM LSE MF MULTI1 S&P JPM  CGSY 

 CA 1.00                

DSB -0.24 1.00               

EM 0.28 -0.54 1.00              

EMN 0.33 -0.31 0.24 1.00             

ED 0.57 -0.61 0.66 0.37 1.00            

DIS 0.49 -0.61 0.57 0.35 0.93 1.00           

MULTI 0.57 -0.53 0.66 0.34 0.94 0.74 1.00          

RA 0.41 -0.51 0.43 0.32 0.68 0.57 0.65 1.00         

FIA 0.55 -0.07 0.25 0.13 0.37 0.31 0.41 0.16 1.00        

GM 0.28 -0.12 0.42 0.21 0.38 0.31 0.42 0.14 0.41 1.00       

LSE 0.27 -0.71 0.60 0.34 0.67 0.59 0.65 0.53 0.19 0.41 1.00      

MF -0.09 0.08 -0.06 0.14 -0.09 -0.06 -0.11 -0.13 -0.02 0.27 0.05 1.00     

MULTI1 0.43 -0.12 0.05 0.24 0.27 0.18 0.32 0.14 0.34 0.19 0.24 0.09 1.00    

S&P 0.18 -0.67 0.44 0.37 0.55 0.54 0.48 0.50 0.03 0.20 0.49 -0.06 0.11 1.00   

JPM  -0.04 0.17 -0.16 0.03 -0.18 -0.14 -0.19 -0.12 -0.02 0.15 -0.04 0.28 -0.05 -0.17 1.00  

CGSY -0.02 -0.05 0.06 0.06 0.09 0.07 0.09 0.03 0.05 0.04 0.20 0.21 0.09 -0.01 0.07 1.00 

The optimization problems described in the previous 

section are solved for the 12 consecutive months for 

two sets of scenarios: historical scenarios and simu-

lated ones. In the historical approach we consid-

ered as scenarios the monthly data using a window 

of 150 months; the k-th historical scenario is the 

vector of monthly returns of the 13 indices in 

month k: this means that a scenario is given by the 

vector KKKK rrrr 1321 ,...,, with k N, where the first 

month considered as the first scenario is May 1994 

and
K

ir  denotes the k-th historical monthly return 

for the i-th index.  

On the basis of these scenarios we solve the optimi-

zation problems presented above, repeating this 

procedure for 12 months using a moving windows 

of length 150. Each time we select as the optimal 

solution the one maximizing the STARR ratio. In 

other words, we repeat the optimization procedure 

12 times, and every time we use the solution to the 

problem to compute the final wealth accumulated by 

the portfolio. 

For the simulated scenarios, an econometric model 

is used to generate the forecasted scenarios for the 

next unit period. We use the data in the rolling win-

dow to estimate the parameters of the econometric 

model in order to generate the 150 forecasted sce-

narios which are the input into the optimization 

model. We generated for each month from Novem-

ber 2006 to October 2007, 150 different one-step 

ahead scenarios and, on the basis of these scenarios, 

we solved the two models. This procedure has the 

advantage of reducing the volatilities of the scenar-

ios since we generate 150 future realizations of the 

returns in the next month and not the dynamics of an 

asset in the next 150 months as when the historical 

scenarios are used.  

The procedure we employed in the forecasting ap-
proach for scenario generation basically involves 
two distinct steps. Commencing with the historical 
returns, we utilize principal component analysis 
(PCA) to find three orthogonal factors that have an 
explanatory power of more than 80% of the variabil-
ity for the 13 hedge fund indices.  

Thus, we compute the residuals not explained by the 
three factors obtained from the PCA and we then 
model the variance of the residuals with an ARMA-
GARCH model in order to capture the dependence of 
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returns. These models incorporate (1) a dependence 

effect given by the relevance of the observations of 
the immediate past (conditional term), and (2) a feed-

back mechanism with which past observations are 
taken into consideration to explain the present volatil-
ity value (autoregressive part). Roughly speaking, if a 
time series exhibits GARCH effects, it means it is 
heteroscedastic; that is, its variance may be well de-
scribed by a time-varying process.  

The importance of GARCH modelling is due to the 
fact that it considers two important characteristics of 
most time series: the excess kurtosis effect and vola-

tility clustering. Hence, in general a GARCH model 
is able to forecast (ex ante analysis) or to explain (ex

post analysis) quite accurately the variances derived 
from different hedge fund index returns.  

The variables to be modelled are the residuals series 
obtained by the PCA. We applied the following 

univariate ARMA(1,1)-GARCH(1,1) to each of them: 

1* tt RESARCRES t +MA* t-1

** 2
1

2 ARCHGARCHK tt
2

1t ,

where RESt are the residuals from the PCA; C – 
constant in the ARMA(1,1) model; AR – autoregres-
sive term in the ARMA(1,1) model; MA – moving 
average in the ARMA(1,1) model; GARCH – 
GARCH coefficient in the GARCH(1,1) model; 
ARCH – ARCH coefficient in the GARCH(1,1) 

model; 2
t  – conditional variance process of the 

residuals; t – innovation of the time series process 
with ttt z  and zt is a Gaussian iid process with 

zero mean and unit variance. 

In Table 3 we report the estimate of the 
ARMA(1,1)-GARCH(1,1) models and asymptotic t-
statistics.

Table 3. Parameters estimate of the ARMA(1,1)-GARCH(1,1) model for the last month of the ex-post

analysis (October 2007) 

Hedge fund index C AR(1) MA(1) K GARCH (1) ARCH (2) 

Equity market neutral 
-0.0002 

(-0.4246) 

0.4464 

(1.5536) 

-0.2329 

(-0.7212) 

0.0000 

(1.1224) 

0.5230 

(1.5531) 

0.1620 

(1.6224) 

Event driven distressed 
0.0004 

(0.6649) 

0.6795 

(3.0933) 

-0.4945 

(-1.7891) 

0.0001 

(4.4146) 

0.0000 

(0.0000 ) 

0.4417 

(4.7217) 

Event driven 
0.0003 

(0.6349) 

0.7513 

(4.7352) 

-0.5608 

(-2.9877) 

0.0000 

(1.7087) 

0.6833 

(9.1228) 

0.2386  

(3.9111) 

Global macro 
0.0025 

(1.3384) 

-0.8831 

(-21.516) 

1.0000 

(50.8795) 

0.0000 

(0.9212) 

0.8324 

(13.3215) 

0.1676 

(2.6308) 

Long/short equity 
0.0004 

(0.3245) 

0.2829 

(0.5444) 

-0.0789 

(-0.1507) 

0.0000 

(2.176) 

0.7430 

(9.3411) 

0.1679 

(2.9999) 

Multi strategy 
0.0004 

(0.641) 

0.7294 

(2.863) 

-0.6085 

(-2.0153) 

0.0000 

(1.4995) 

0.7534 

(10.2735) 

0.2096 

 (2.6651) 

Event driven multi strategy 
0.0007 

(0.7941) 

0.2434 

(0.3225) 

-0.0944 

(-0.1228) 

0.0000 

(0.7827) 

0.9170 

(20.725) 

0.0830 

(2.0926) 

Convertible arbitrage 
0.0004 

(0.8224) 

0.5256 

(4.1543) 

-0.0760 

(-0.4819) 

0.0000 

(4.7083) 

0.0000 

(0.000) 

0.7769 

(3.0449) 

Event driven risk arbitrage 
0.0002 

(0.1382) 

-0.5986 

(-2.1629) 

0.7632 

(3.538) 

0.0000 

(1.048) 

0.7982 

(7.1823) 

0.1321 

(2.1157) 

Fixed income arbitrage 
0.0002 

(0.1545) 

-0.0230 

(-0.0512) 

0.3343 

(0.7934) 

0.0001 

(0.5917) 

0.0000 

(0.0000) 

0.0629 

(0.4445) 

Emerging markets 
0.0047 

(1.2573) 

-0.7332 

(-4.8475) 

0.8857 

(9.1835) 

0.0000 

(0.8729) 

0.8574  

(17.2709) 

0.1426  

(2.9918) 

Managed futures 
0.0006 

(0.4348) 

-0.4181 

(-1.6732) 

0.6908 

(3.4714) 

0.0000 

(0.8147) 

0.5670  

(1.1518) 

0.0799  

(0.7724) 

Dedicated short bias 
-0.0015 

(-1.1259) 

-0.6154 

(-1.8134) 

0.7415 

(2.5503) 

0.0000 

(0.8567) 

0.8427 

 (11.5752) 

0.1389  

(2.4452) 

Note: t-statistics are in parentheses. 

We generate the scenarios using the one step fore-
cast of the variance of the residuals for the next 
month obtained with the GARCH(1,1) model, 
updating the diagonal of the next month covari-
ance matrix of the residuals and adjusting the off 
diagonal elements with the historical correlations. 

We draw a vector of residuals simulating the in-
novations from the multivariate Gaussian with a 
zero-mean and the updated covariance matrix. 
Once we obtain the simulated residuals, we recon-
struct the forecasted scenarios using the estimated 
three principal factors.  
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3. Empirical result  

Overall, we had four strategies to evaluate: 

Strategy 1: Two-step model with historical scenarios. 

Strategy 2: Two-step model with simulated scenarios. 

Strategy 3: Single-step model with historical scenarios. 

Strategy 4: Single-step model with simulated sce-
narios.

In order to implement the first two strategies, we 

determine the winner and the loser sets for each 

month. In Table 4 we report the two sets of winners 

and losers for the first month of the analysis. We 

compute each month the modified Sharpe ratio and 

observe the relative ranking changes, but the sets of 

winner and losers remain unchanged in all the peri-

ods of the analysis. Most of the assets with the high-

est kurtosis are included in the winners set. 

Table 4. Pre-selection according to the modified Sharpe ratio  

 Symbol Description E(R) MVaR* Modified Sharpe ratio 

EMN Equity market neutral 0.82% 2.11% 0.1914 

DIS Distressed 1.09% 4.55% 0.1475 

ED Event driven 0.94% 3.96% 0.1313 

GM Global macro 1.19% 5.98% 0.1299 

LSE Long/short equity 1.03% 5.38% 0.1146 

MULTI Multi-strategy 0.77% 3.11% 0.1138 

Winner

MULTI1 Multi-strategy 1 0.86% 4.14% 0.1063 

CA Convertible arbitrage 0.74% 3.35% 0.0974 

RA Risk arbitrage 0.62% 2.79% 0.0713 

FIA Fixed income arbitrage 0.55% 2.61% 0.0509 

EM Emerging markets 0.80% 8.83% 0.0440 

MF Managed futures 0.53% 6.13% 0.0193 

Loser

DSB Dedicated short bias -0.11% 6.50% -0.0804 

In Table 5 we report the average composition of the 

long and short portfolios and the standard deviation of 

the composition. The results for the two-step model 

and single-step model are in Panels (A) and (B), re-

spectively. Even if the compositions among the differ-

ent strategies for each month differ significantly, it is 

interesting to notice that the selection via binary vari-

ables on average is concentrated on the same indices of 

the pre-selection procedure when we consider simu-

lated scenarios. In contract, the composition of the 

optimal portfolios via binary variables with historical 

scenarios leads to a completely different selection of 

long and short portfolios. Three of the hedge fund 

indices (GM, MULTI, MULTI1) classified as winners 

according to the momentum strategy are always se-

lected in the short portfolios and two hedge fund indi-

ces (CA, FIA), classified as losers, are always in the 

long portfolio.  

Table 5. Average compositions and standard deviation of the optimal portfolios 

Panel A. Average compositions and standard deviation of the optimal portfolios for the two-step model. The 
indices are classified as winners and losers 

 Historical scenarios Simulated scenarios  Historical scenarios Simulated scenarios 

Winner Mean Std. dev. Mean Std. dev. Loser Mean Std. dev. Mean Std. dev. 

EMN 35.00% - 11.19% 14.19% CA -0.53% 1.84% -11.28% 15.05% 

DIS 19.65% 12.77% 15.47% 15.73% RA -34.99% 0.03% -22.35% 16.31% 

ED - - 11.98% 15.12% FIA -35.00% - -31.06% 8.39% 

GM 20.41% 4.03% 31.33% 6.48% EM -7.00% 0.99% -15.22% 13.19% 

LSE 11.99% 6.91% 3.05% 10.07% MF -6.27% 1.10% -9.65% 10.68% 

MULTI 12.94% 9.95% 6.09% 12.13% DSB -16.20% 1.29% -10.43% 5.36% 

MULTI1 - - 20.90% 15.04%      
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Panel B. Average compositions and standard deviation of the optimal portfolios for the single-step model 

Historical scenarios Simulated scenarios  Historical scenarios Simulated scenarios 

Winner Mean Std. dev. Mean Std. dev. Loser Mean Std. dev. Mean Std. dev. 

EMN 35.00% - 11.19% 14.19% CA -0.53% 1.84% -11.28% 15.05% 

DIS 19.65% 12.77% 15.47% 15.73% RA -34.99% 0.03% -22.35% 16.31% 

ED - - 11.98% 15.12% FIA -35.00% - -31.06% 8.39% 

GM 20.41% 4.03% 31.33% 6.48% EM -7.00% 0.99% -15.22% 13.19% 

LSE 11.99% 6.91% 3.05% 10.07% MF -6.27% 1.10% -9.65% 10.68% 

MULTI 12.94% 9.95% 6.09% 12.13% DSB -16.20% 1.29% -10.43% 5.36% 

MULTI1 - - 20.90% 15.04%      

Table 6 shows the performance of the four strate-
gies in terms of expected return and risk. The ex 
ante STARR ratios are significantly smaller in the 
case of the two-step model with historical scenar-
ios due to a considerably higher value for the op-
timal AVaR.  

In order to evaluate each strategies’ performance 

on the basis of an ex post analysis, we solved the 

programming problems (1) and (2) using the his-

torical and simulated scenarios for 12 consecutive 

months, from November 2006 to October 2007, 

rebalancing each period. We solve the problems 

using Gams [3], a high-level modeling system for 

mathematical programming and optimization, and 

in particular the CPLEX solver for the mixed pro-

gramming problems. 

Table 6. Ex ante expected return and risk of the optimal portfolios 

 Two-step model Single-step model 

Historical scenarios Simulated scenarios Historical scenarios Simulated scenarios

 Return AVaR Return AVaR Return AVaR Return AVaR 

Nov 2006 0.50% 2.439% 1.70% 0.573% 0.70% 0.250% 0.60% 1.863% 

Dec 2006 0.50% 2.424% 1.60% 0.525% 0.40% 0.067% 0.40% 1.823% 

Jan 2007 0.50% 2.383% 1.70% 0.555% 0.70% 1.112% 0.50% 0.803% 

Feb 2007 0.50% 2.353% 1.70% 0.549% 0.90% 0.748% 0.80% 0.666% 

Mar 2007 0.50% 2.337% 1.70% 0.427% 0.70% 0.079% 0.70% 2.094% 

Apr 2007 0.50% 2.275% 1.70% 0.410% 0.80% 0.863% 0.50% 0.661% 

May 2007 0.50% 2.250% 1.70% 0.378% 0.50% 0.385% 0.40% 0.997% 

Jun 2007 0.50% 2.146% 1.70% 0.368% 1.20% 0.979% 1.00% 1.720% 

Jul 2007 0.60% 2.602% 1.80% 0.389% 0.60% 0.214% 0.70% 0.748% 

Aug 2007 0.60% 2.604% 1.70% 0.368% 1.20% 0.871% 1.00% 0.844% 

Sep 2007 0.60% 2.652% 1.70% 0.368% 0.80% 0.317% 0.70% 0.842% 

Oct 2007 0.50% 2.264% 1.70% 0.424% 0.50% 0.466% 0.40% 1.892% 

We computed cumulative returns for the different 
strategies, the Sharpe ratio, and the aggregated wealth 
per unit capital invested at the end of the holding 
period. From a practical point of view a margin ac-
count of 50% on the short part must be paid to the 
broker for short selling activities.

In Table 7 we report the net return and the cumulative 
net return for the different strategies and for the Tre-
mont AllHedge index, the geometric mean, the vola-

tility, the Sharpe ratio, and  considering the Tremont 
index as the market benchmark. The Tremont Index  

is an asset-weighted hedge fund index derived from 

the market leading Credit Suisse/Tremont Hedge 

Fund Index. In order to compare the strategies, we 

consider the final net cumulative return and the vola-

tility of the return. Unfortunately, we do not have a 

sufficient number of data points to compute the ex-

post STARR ratio. We observe that the best strategy 

is the two-step model with historical scenarios and 

the worst is the one-step model, with historical sce-

narios. The simulated scenarios for both models lead 

to very good results. 
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Table 7. Net returns and cumulative returns for the four strategies and for the Tremont AllHedge Index 

  Two-step model Single-step model Tremont index 

  Historical scenarios Simulated scenarios Historical scenarios Simulated scenarios   

Monthly Cum Monthly Cum Monthly Cum Monthly Cum Monthly Cum Month 

Return Return Return Return Return Return Return Return Return Return 

Nov-06 1.20% 1.20% 1.53% 1.53% -1.24% -1.24% -0.08% -0.08% 2.07% 2.07% 

Dec-06 1.22% 2.43% -0.60% 0.92% 0.83% -0.42% -0.88% -0.96% 1.83% 3.94% 

Jan-07 2.19% 4.68% 3.67% 4.62% -0.13% -0.55% 2.56% 1.58% 1.33% 3.19% 

Feb-07 0.01% 4.69% 1.16% 5.84% -0.71% -1.26% 0.38% 1.96% 0.74% 2.08% 

Mar-07 2.57% 7.38% 3.95% 10.02% -0.14% -1.39% 3.19% 5.21% 1.24% 1.98% 

Apr-07 1.76% 9.27% 1.25% 11.39% -0.93% -2.31% -0.30% 4.90% 2.02% 3.28% 

May-07 4.70% 14.40% 1.63% 13.21% 2.86% 0.48% 3.33% 8.39% 2.31% 4.38% 

Jun-07 -0.05% 14.35% 0.62% 13.91% 0.79% 1.28% -0.73% 7.60% 0.78% 3.11% 

Jul-07 -1.57% 12.55% -4.50% 8.79% 1.80% 3.10% 2.75% 10.56% 0.00% 0.77% 

Aug-07 0.68% 13.32% -0.17% 8.60% -0.90% 2.17% -1.29% 9.13% -1.53% -1.53% 

Sep-07 1.75% 15.30% 0.51% 9.15% -2.97% -0.86% 0.40% 9.57% 2.71% 1.13% 

Oct-07 3.82% 19.70% 2.72% 12.12% 0.82% -0.05% 3.56% 13.47% 3.16% 5.95% 

            

Geometric 
 mean 

 1.51%  0.96%  0.00%  1.06%  0.48% 

Volatility  1.71%  2.22%  1.54%  1.85%  1.28% 

Sharpe ratio  0.83  0.39  -0.05  0.53  0.31 

 0.79  0.68  -0.04  0.44  1 

Note: We assume an annual risk free rate of 1%. 

Figure 1 shows the computed cumulative returns. 
We find that, apart from the single-step model with 
historical simulation, the other strategies have a 
similar behavior and all outperform the Tremont 
index. Up until the subprime crisis, the two-step 
model with simulated scenarios outperforms the 
other strategies, but the forecasting procedure fails 
as the market volatility dramatically increases. This 
call for a more accurate modelling of the innovation 
in order to capture extreme movements in the mar-

ket [8, 9, 10, 16]. These extreme movements are 
present in the historical data which include many 
financial crises (the failure of Granite Partners, a 
hedge fund also known as Askin Capital Manage-
ment in 1994, and the major problems in the collat-
eralized mortgage obligations market that followed 
the 1997 Bhat crisis, and the Russian ruble crisis in 
August 1998 followed by the collapse of a major 
hedge fund (Long-term capital management) in 
September 1998. 
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Finally, we perform the Fama decomposition [5] in 
Table 8. That is, we decompose the excess realized 
return in the risk premium that the portfolio should 
have earned given its beta, market return, and risk-free 
rate and the risk premium due to the manager's skill. 
The manager’s skill is the sum of two components: 
diversification and pure selectivity. The diversification 
premium is the difference between the return ex-
plained by the total risk of the portfolio and the sys-
tematic risk of the portfolio. This will be zero for per-

fectly diversified portfolios. The pure selectivity pre-
mium is the difference between the risk premium due 
to selectivity and diversification. We observe that the 
single-step model using historical scenarios com-
pletely fails in the selection of the losers and the win-
ners. We can confirm that the two-step model is the 
model with the best behaviors performance using both 
historical and simulated data, while the single-step 
model is not able to properly select the winner/loser 
hedging at least on historical scenarios. 

Table 8. Fama decomposition  

Inputs Return decomposition 

Average
return

Standard 
deviation 

Portfolio 
beta 

Risk pre-
mium

Risk premium due to 
Risk premium due to selectivity is the 

sum of 

Strategy     beta selectivity diversification net selectivity 

1. Two-step model with 
historical scenarios 

1.51% 1.71% 0.79 1.43% 0.31% 1.11% 0.22% 0.90% 

2. Two-step model with 
simulated scenarios 

0.96% 2.22% 0.68 0.88% 0.27% 0.61% 0.42% 0.19% 

3. One-step model with 
historical scenarios 

0.00% 1.54% -0.04 -0.08% -0.02% -0.07% 0.49% -0.56% 

4. One-step model with 
simulated scenarios 

1.06% 1.85% 0.44 0.98% 0.18% 0.80% 0.40% 0.40% 

Note: We assume an annual risk free rate of 1%. 

We compute the aggregated wealth at the end of the 
holding period per unit of invested capital, consider-
ing a margin account of 50% to be deposited with the 
broker for short selling activity. We do not consider 
the influence of the transaction costs for monthly 
rebalancing since they affect pretty much all strate-
gies in the same way, resulting in no change in the 
final ranking of the best approaches.  

If we look at the net realized returns, the two-step 
model with historical scenarios offers the best per-
formance with a final wealth per unit of invested 
capital1 of 39.39%. The single-step model with simu-
lated scenarios provides a return of 26.94%, followed 
by the 24.22% return offered by the two-step model
with simulated scenarios. Finally, the single-step 
model with historical scenarios basically offers a 
return of close to zero (-0.10%).  

Conclusions

In this paper we quantified and analyzed the results 
of two different optimization models: one is based 
on an ex ante ranking of the best and worst hedge 
funds, while the other introduces binary variables
avoiding the pre-selection prior to any optimization. 
Both models seek to find the optimal hedge fund 
allocation of a zero-investment portfolio strategies 

                                                     
1 The return of the strategy over the period is computed assuming that 
the size of the short portfolio is S, and that 0.30% S is the initial invest-
ment. After 12 months, the margin is refunded and the final wealth is: 

5,0

rnCumNetRetu

5,0

5,05,0)rnCumNetRetu(

S

SSS
R .

for a funds of hedge funds indices. The solution to 
both models requires the generation of scenarios in 
order to predict the future. We solved the two opti-
mization problems using two scenario generation 
techniques: (1) assuming that the past could be con-
sidered as a good forecast of the future (historical 
scenarios), and (2) using principal component 
analysis via an ARMA-GARCH model, we simu-
lated the future scenarios (simulated scenarios). 

With the exception of the single-step model using his-
torical scenarios, the other strategies considerably over-
performed the Tremont index. The single-step model 
using simulated scenarios selects the same set of win-
ners and losers for the short and long portfolios that 
were explicitly selected by the ex ante ranking proce-
dure. These results suggest that the introduction of bi-
nary variables and the related complex mixed integer 
programming does not lead to an improvement in the 
performance over the two-step model. The two-step 
model is the best performing model and furthermore (I) 
for the first period the one solved on simulated scenarios 
(see (2) has the best performance, but (II) after the sub-
prime crisis, as soon as a dramatic increase in the mar-
ket volatility occurs, the historical method (see (1) out-
performed (2). The GARCH model with normal inno-
vations seems to be incapable of adequately capturing 
the changes in volatility that are present in the historical 
dataset which includes the Russian crisis, as shown by 
the high value of the STARR ratio. These results sug-
gest the line for future researches with the introduction 
of non Gaussian innovation. 
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