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GARCH option-pricing model with analytical solution when 

interest rate and risk premium change randomly 

Abstract 

We investigate the GARCH option-pricing model with random interest rate and random risk premium. The developed 

analytical solution generalizes the formula of Black & Scholes (1973) adjusted with skewness and kurtosis of 

standardized cumulative returns. In fact, the hypothesis of constant interest rate and risk premium considered in the 

GARCH option-pricing framework seems unrealistic. It becomes indispensable to solve this weakness of GARCH 

option-pricing models by lifting that hypothesis. The study of numerical and empirical effects of new state variables 

completes this work. 
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Introduction

The family of GARCH models occupied an im-

portant place in the empirical asset pricing and the 

financial risk management. The success of 

GARCH models in fitting asset returns, and the 

failure of deterministic volatility models in fitting 

option prices, leaded the searchers to think about 

introducing the GARCH model in option-pricing 

framework. The first application in this domain 

was the one of Duan (1995) that established the 

foundation of option-pricing under GARCH. 

Duan, Ritchken & Sun (2005) derived an option-

pricing theory extending the standard GARCH 

models to include jumps. 

The success of GARCH models in option-pricing 

is due to the fact that the option-pricing theory is 

flexible, because it can be adapted to any GARCH 

specification. Also, the GARCH processes are 

linked up with stochastic volatility models1. In-

deed, Nelson (1990) showed that univariate 

GARCH processes can be used to approximate 

stochastic volatility models. Duan (1996) general-

ized this established fact proving that the existing 

bivariate diffusion models are limits of the 

GARCH models2.

In reality, the totality of studied GARCH specifica-

tions considered a constant risk free interest rate and 

constant risk premium. This hypothesis appears 

unrealistic, given the results of empirical studies 

elaborated to study the dynamics of interest rate and 

                                                     

© Noureddine Lahouel, Mokhtar Kouki, 2008. 
1 Hull & White (1987), Stein & Stein (1991), Heston (1993), Bakshi, 

Cao & Chen (1997) and Schöbel & Zhu (1999) are examples of stochas-

tic volatility option valuation models. 
2 Other searchers, like Heston & Nandi (2000), Duan, Ritchken & Sun 

(2005) and Christoffersen, Heston & Jacobs (2003), established the 

same observation. 

risk premium3. A natural extension can concern the 

violation of the two hypotheses. In this paper, we 

propose addressing a possible response to this ques-

tion turning to the GARCH-M processes of Engle, 

Lilien & Robins (1987) to describe the new random 

variables (interest rate and risk premium). This new 

approach considers the GARCH option-pricing 

model when interest rate and risk premium are two 

stochastic state variables governed by a GARCH-M 

process, in which the relationship between the con-

ditional mean and variance is nonlinear. The factors 

motivating the interest of this search are: on the one 

hand, the stochastic volatility models consider more 

than one state variable in the valuation process, 

while in the GARCH models framework we con-

sider a single state variable (the underlying asset 

return). This can make up a limit of GARCH models 

comparatively to stochastic volatility models. On 

the other hand, the use of nonlinear processes to 

describe the new state variables is justified by sev-

eral works like Lahouel (2007) for the description of 

interest rate, and Linton & Perron (1999) for the 

description of risk premium.  

In this work, we estimate the dynamic relationships 

between the state variables, looking for a suitable 

formulation allowing studying the mechanisms of 

correlations between those variables in a multivari-

ate framework. This procedure allows the use of 

VAR model with multivariate GARCH error (VAR-

MGARCH). Indeed, the multivariate approach was 

expanded with the VAR models (Engle & Kroener, 

1995). The multivariate approach of GARCH mod-

els becomes the more widespread, in financial 

econometric, to analyze the shock transmissions and 

to study the simultaneous variability of volatilities 

of different variables. 

                                                     
3 The behavior of the interest rate was examined by Kambhu & Mosser 

(2001), Jones (2003) and Lahouel (2007), among others. The risk 

premium was taken into account by Perron (1999) and Linton & Perron 

(1999), among others. 
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The calculation of option price in the GARCH 

model framework is carried out using numerical 

methods, which need an important time of applica-

tion1. For this reason, the empirical studies on the 

GARCH option-pricing models are limited. In fact, 

the limitation can be caused by the difficulty of cal-

culations or, perhaps, by the unique specification of 

the dynamic of underlying returns. Therefore, the 

search of alternative procedures becomes necessary. 

Hanke (1997) proposed an approximation of the 

GARCH option-pricing model by neural networks. 

A concurrent approach proposed by Heston & 

Nandi (2000)2, consists in developing an analytical 

solution for the European options under GARCH. 

This method is based on the characteristic function 

of cumulative returns. It is an interesting approach, 

but it needs to resolve the characteristic function 

analytically, which not always possible with all 

GARCH specifications. More generally, Duan, 

Gauthier, Sasseville & Simonato (2006) developed 

an analytical approximation for the GARCH option-

pricing model, using the Edgeworth expansion of 

the risk-neutral normal density function. We sug-

gest, in the next, to adapt this approach to the pro-

posed model. The obtained formula is similar to the 

one of Black & Scholes (1973), adjusted by skew-

ness and kurtosis of standardized cumulative returns 

under GSIRSRP process.

The obtained analytic approximation allows getting 

hedging parameters favoring the effective neutraliza-

tion of risks attached to option portfolios. Indeed, 

with the model of Black & Scholes (1973), we can 

talk only about a static signification, since this for-

mula assumes that volatility and interest rate are con-

stant. Such a hypothesis doesn’t permit to have real 

hedging parameters but only some static comparisons 

on these variables. Also, with GARCH models, we 

can not obtain real measures of risk of optional port-

folio. This fact is often allocated to the non-

appropriation between the theoretical foundation of 

valuation model and the market reality.  

We organize the rest of the paper as follows: in sec-

tion one, we present the analytical framework of the 

GSIRSRP model that permits to result in establish-

ing an approximated formula to valuate the Euro-

pean calls (section two). In the third section, we 

make the numerical study of the obtained model. 

The study of empirical performance will be treated 

in section four. In this section, we compare the 

GSIRSRP model and the GJR-GARCH of Glosten, 

                                                     
1 Among the numerical studies in existence, we quote Duan & Simonato 

(1999) and Ritchken & Trevor (1999). 
2 Su, Chen & Huang (2007) applied this approach on FTSE 100 

index options. 

Jagannathan & Runkle (1993) using data on 

S&P500 index observed on the CBOE. Finally, the 

last section concludes. 

1. Specification of the GSIRSRP model 

Since Black & Scholes (1973), the search on the 

modelling of the underlying asset return dynamic 

was very intensive. The more important develop-

ments in this sense concern especially continuous-

time option-pricing models. Concerning the dis-

crete-time option valuation, we always quote the 

GARCH models. Searches that investigated the 

empirical aspects of GARCH model performance 

are not numerous. The more known are Amin & Ng 

(1993), Engle & Mustafa (1992), Duan (1996), 

Hardle & Hafner (2000), Heston & Nandi (2000) 

and Christoffersen & Jacobs (2004). The proposed 

GARCH option-pricing models consider that the 

compound conditional returns, Rt=Log(St / St-1),

where St is the underlying asset price at time t, can 

be modelled as: 

tt rR                                                        (1) 

with r is the risk-free interest rate,  is the constant 

price of risk, ttt zh with 1,0Nzt  and th is 

the conditional variance of returns, time varying and 

governed by a GARCH processes. 

In this paper, with the new form of tR , we obtain a 

vector of stochastic processes ',, tttt rRy  whose 

specification can employ a multivariate GARCH 
model (MGARCH) in order to capture the dynamic 
evolution of the variance-covariance matrix. There 
exist a large number of MGARCH specifications 
but, in the next, we will use the one of Engle (2002). 
We choose this model because it can be estimated 
from a sequence of univariate GARCH models. It is 
also relatively easy to implement for the practitioner 
or the professional, because it doesn’t impose heavy 
hypothesis of distributions as in the MGARCH 
model of Bollerslev (1990), for instance.

Hypothesis 1. Discrete-time perfect market 

We consider a discrete-time economy with possible 
bear sale of assets and with null transaction costs 
and taxes. The uncertainty is characterized by a 

probability space P,, , where  is the set of 

real numbers,  is a tribe and P  is an objective 

probability measure. This probability space 
equipped with a filtration 

,...2,1,0ttF that follows a 

standard Brownian movement. 

We try to specify the price of a European call option 

with strike K, maturity T and writing on an underly-

ing asset that doesn’t pay any dividend. The price to 

specify is so function of a set of state variables of 
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: the price the underlying asset, St; the risk pre-

mium, t  and the interest rate tr . Consequently, the 

equation (1), describing the conditional returns, 

becomes:

Rtttt rR .                                                   (2) 

If we notice tC the premium of a European call op-

tion, the knowledge of tC is closely bound to the one 

of the vector of state variables 
'

,, tttt rSx , and 

tC will be accordingly more plausible as tx . How-

ever, to define the process that describes the time 

varying of each state variable, we move towards the 

discrete-time processes of Markov. Consequently, we 

can consider a class of GARCH models. These proc-

esses seem thus to be more adapted to describe the 

volatility influence on the asset returns. 

1.1. The model of the interest rate. In this model, 

we postulate that the interest rate curve is function 

of an alone state variable which is the short-term 

interest rate1. However, the short-term interest rates 

are characterized by a high persistence and by the 

presence of a conditional heteroskedasticity. Conse-

quently, a realistic modelling of interest rates must 

consider these two essential features.  

Hypothesis 2. The interest rates 

The interest rates on the periods corresponding to 

option maturities are governed by a volatility proc-

ess of the form: 

,...2,1; tr rtrt                                            (3)

with r  is a constant positive which is the mean 

level of interest rate, ;rtrtrt zh  where rtz  forms 

a sequence of independently and identically distrib-

uted variables (iid) with unit variance. 

In2this model, where to a single underlying asset we 

correspond several sources of hazard that are not 

perfectly correlated (the dimension of the vector of 

white noises is not equal to the number of risky 

assets), the market is thus incomplete. However, the 

interest rate considered as a random variable is not 

clearly the cause of this market incompleteness. In 

                                                     
1 Concerning the long-term interest rates, we can build for them a term 

structure of interest rates by considering a particular dynamic for the 

short-term interest rates. This question was studied in the work of 

Lahouel (2007). 
2 Merton (1973) generalizes the continuous-time model of Black & 

Scholes (1973) by assuming that the interest rate is stochastic. He calls 

in a state variable which is the zero-coupon bond price, whose incre-

ments are correlated with those of underlying price, to diversify the risk 

bound to stochastic character of the interest rate. 

fact, the uncertainty generated by the randomness of 

this variable can be diversified by a zero-coupon 

bond2. In this way, having assumed that the interest 

rate curve is function of a single state variable (the 

short-term interest rate, tr ), we consider that prices 

of bonds of different maturity present a correlated 

evolution when the short-term interest rate fluctu-

ates. Otherwise, these prices can be likened to the 

rate of a short-term zero-coupon bond tB . Conse-

quently, tB  is specified by the instantaneous short-

term interest rate during all the maturity of the bond, 

Ttiir ,
. In fact, since the sensitivity of the option 

price to the variations of the interest rate is relatively 

weak, we suppose that the term structure of interest 

rate depends on a single state variable as follows: 

ttt rBB , .                                                         (4) 

To determine the analytical expression of tB , we 

suggest the following proposition: 

Proposition 1. Price of a zero-coupon bond 

Let a zero-coupon bond with final flow equal 1 at 

expiry date T. If the short-term interest rate tr  is 

modelled by equation (3), the price tt rB ,  of the 

zero-coupon bond, which is function of the maturity 

and interest rate tr , is given by:  

trtt rrB 5.0exp, .                              (5)

Proof: see Appendix A. 

1.2. The risk-premium bound to the volatility of 

returns. The hypothesis of constant risk-aversion 

coefficient , considered in the equation (1) of 

underlying asset returns, should be violated. How-

ever, the question that should be resolved is to spec-

ify the dynamic of this new state variable. In this 

respect, we postulate to stay always in the autore-

gressive model framework with error conditionally 

heteroskedastic. In fact, Lahouel (2006) considered 

the following hypothesis:  

Hypothesis 3. The risk-premium of returns 

The risk-premium bound to the volatility of underly-

ing asset prices is governed by a GARCH process of 

the form: 

;tt ttt zh                                 (6)

with  is a constant parameter and tz  is a sequence 

of random variables having an iid distribution. 

The vector of state variables xt can be likened to a 

VAR specification with multivariate GARCH error.  
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1.3. Econometric specification. Consider a vector 

ty  of stochastic processes with N components. We 

can consider that the vector ty  depends on the past 

information constructed by its delayed values until 

the instant t-1. In the following, giving the vector of 

unknown parameters , we can write: 

ttty   with ttt zH 2/1                           (7) 

with t  is a vector of conditional mean of ty ,

iidz t  and 2/1
tH  is a positive definite matrix of 

dimension NxN such as tH  is the conditional vari-

ance matrix of ty . We can, following Engle (2002), 

decompose the matrix tH  as follows: 

tttt DRDH  with 2/12/1
11 ,..., NNttt hhdiagD ,        (8) 

where tR is the matrix of time-varying conditional 

correlations given by: 

2/12/1
tttt diagQQdiagQR ,                          (9) 

where tQ  is a symmetric positive definite matrix of 

dimension NxN, defined by: 

12
'

111211 tttt QQQ .             (10) 

tdiagQ  is a diagonal matrix containing the elements 

on the diagonal of tQ , Q is the unconditional vari-

ance-covariance matrix, and 1  and 2  are non-

negative parameters satisfying 121 .

Concerning the estimation of the parameters, Engle 

& Sheppard (2001) and Engle (2002) use a Pseudo 

Maximum Likelihood (or Quasi Maximum Likeli-

hood: QML) as an estimation method which is a 

two-step estimation approach. In the first step, we 

find the value of ˆ  that maximizes the function 

VL , given as: 

T

t
tttV DLogL

1

'2
2

1
.                          (11) 

In the first estimation, we apply a univariate 

GARCH model to the conditional variance of each 

variable1. In this way, we obtain the volatility coef-

ficients of each variable taken individually. 

                                                     
1 We adopt the univariate GJR-GARCH specification of Glosten, 

Jagannathan & Runkle (1993) in the rest of the work. In this model, the 

conditional variance is given by: 

..
2

113

2

112110 ,0max tttttt zhzhhh

In the second phase of estimation, the volatility coef-

ficients obtained in the first step, ˆ , are maintained 

constants and serve to condition the likelihood func-

tion ,CL  used to estimate the parameters of the 

correlations, ˆ . This function is given by:  

T

t
ttttttC RRLogL

1

'1'

2

1
, .     (12) 

2. The analytical approximation formula of the 

European call  

Jarrow & Rudd (1982) elaborated a general theoreti-

cal framework to develop an option valuation ana-

lytical approximation formula. They proposed a 

technique to approximate the probability distribu-

tion, called the true distribution, to an alternative 

distribution, called the approximating distribution. 

In the statistical literature, this technique is called 

the generalized Edgeworth series expansion. Using 

a similar approach, we can derive an analytical ap-

proximating formula to valuate the European call 

option under the GSIRSRP model. 

Proposition 2. Analytical approximation of a Euro-

pean call option 

Let tT SSLog / , the cumulative return shav-

ing a mean m  and a standard deviation . Let 

/mu  the standardized cumulative 

returns. In the proposed GSIRSRP framework, the 

premium of a European call option, with strike price 

K and maturity T, can be approximated with the 

following formula: 

34231 3 CCCCapprox ,                         (13) 

where

UNKBUNmBSC ttt
2

1 5.0exp ,    (14) 

2
2 5.0exp6/1 mBSC tt

UNUnU 2 ,                (15)

2
3 5.0exp24/1 mBSC tt

UNUnUU 322 1 , (16)

with tT  and // mKSLogU t ,

n(.) and N(.) represent, respectively, the density and 

the cumulative functions of a standard normal ran-

dom variable. The terms 3  and 4  are, respec-

tively, the skewness and kurtosis of the standardized 

cumulative returns u .

Proof: see Appendix B. 
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The application of this analytical approximation 

needs knowing the expressions of the four first mo-

ments of the cumulative return, , for all maturity 

T . The question is to obtain these moments as func-

tions of the model parameters and the maturity. 

However, for all entire m {1, 2, 3, 4}, we have1:

m
tT

P
t

mP
t SSLogEE /

             
m

T

ti
Ri

T

ti
i

T

ti
i

P
t rE

111

             
m

T

ti
i

P
tE

1

,                         (17) 

with r ; 1,1,1 ; iii zH
2/1

and

tT .

3. Numerical performance of the GSIRSRP 

model

3.1. Simulation of underlying asset price. To 
simulate the process of returns and after that the 
underlying asset price, we need to fix values for 
the GSIRSRP model parameters2. We assume that 

r = 1.37E-04 and = -0.005, and we fix the 
same values for the conditional variance parame-
ters with all state variables (return, interest rate 

and risk premium): i0 = 1.0E-05, i1 = 0.7, i2 =

0.02 and i3 = 0.005, for Ri  or r  or . The 

parameters of shocks and correlations between 

state variables are fixed as: 1 = 0.1, 2 = 0.8, Rr =

0.01, R = 0.7 and r = -0.5. We obtain finally 
underlying asset prices fixing the initial value at 
S0 = 100. The obtained results are reported in Fig-
ure1 below: 
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Fig. 1. Underlying asset price simulated with the GSIRSRP model

It1 is clear that the GSIRSRP model is a good ap-

proximation of the asset prices dynamic. Particu-

larly, the analytical prices tend to confuse those of 

Monte Carlo. 

3.2. Approximation of the European call price 

with the GSIRSRP model. As shown by equa-

tion (13), the analytical approximation of the 

European call option price is composed of a term 

similar to the Black & Scholes formula and two 

adjustment terms for the skewness and kurtosis of 

standardized cumulative returns. However, it is 

necessary to examine the influence of the parame-

ters on the European calls.

3.2.1. Influence of skewness and kurtosis on the 

call prices. It is a matter of study to analyze the 

influence of skewness and kurtosis on the Euro-

                                                     
1 The analytical expressions of the moments under the GSIRSRP model 

are available from authors upon request: noureddinelahouel@yahoo.fr. 

pean call prices through a comparison with term 

C1
2of formula (14). We consider the difference 

between the underlying asset price St and the 

strike price K. We represent the difference of 

prices (adjusted price – non adjusted price (C1))

as function of the moneyness and maturity. We 

ask the following question: which is the influence 

of parameters 3 and 4  on the call option 

prices? Using the parameter values fixed at the 

top, we obtain the following simulations:  

                                                     
2 The first-order conditional variance h1 is equal to the stationary vari-

ance, given by: epersistencvolatility1/
0

h . The quantities 

0
 and 

0
R  are nulls. 
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Fig. 2. Difference between corrected price, by skewness and kurtosis, and non corrected price

Figure 2 allows to come out again the following 

remarks: 

The difference between corrected and non-

corrected prices is positive for the in-the-money 

and out-of-the-money European call options. 

The option prices are over-estimated, and the 

over-estimation is more important for the out-

of-the-money options. 

The near-the-money call prices are under-

estimated because the premium difference is 

negative.

The difference, as function of the maturity level, 
is an increasing function for in-the-money and 
out-of-the-money options and a decreasing 
function for near-the money options. 

The premium difference becomes null for in-
the-money and out-of-the-money options when 
the maturity decreases. 

3.2.2. The typical European call price under the 
GSIRSRP model. It is possible now to provide an idea on 
the appearance of the option price given by GSIRSRP 
model as function of moneyness. Figure 3 draws the 
evolution of this price for different values of the maturity: 
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Fig. 3. Evolution of the European call option price under the GSIRSRP model

The examination of Figure 3 allows to deduce that 

the GSIRSRP European call price is an increasing 

function of moneyness and maturity. 

4. Study of the GSIRSRP empirical performance 

on the CBOE 

The objective of this section is to study the compara-

tive empirical performance of the GSIRSRP valua-

tion model and the GARCH model with constant 

interest rate and constant risk premium. The compari-

son of the valuation model performances allows im-

proving the market dynamic knowledge because this 

analysis uses real market data. However, given that 

the performance of a valuation model depends on the 

correct specification of returns dynamic, the interest 

of this study consists in testing the internal accor-

dance and coherence of the process parameters. It’s a 

matter of establishing a relation between the condi-

tional volatility parameters reflected implicitly in the 

option prices and the characteristics of the time-series 

of underlying asset returns. In this context, we can 

carry out the tests of model performance in valuation 
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(static performance) and in hedging (dynamic per-

formance). We focus the empirical study on the S&P 

500 index options negotiated on the CBOE (Chicago 

Board Options Exchange). 

4.1. Data. We use data on S&P500 index prices 

collected every 10 minutes covering the period from 

06/19/2006 to 08/03/2006. The interest rate is ap-

proximated by the rate on the “Treasury-Bills” of 

the same maturity as the studied options (1 month, 2 

months and 6 months). Table 1 summarizes the 

principal descriptive statistics of S&P 500 index 

returns during the period under study. 

Table 1. Statistics of S&P500 index returns (06/18/2003 – 08/05/2003) 

Mean Standard deviation Skewness Kurtosis Q(20) Q²(20) JB 

0.0069 0.0173 -0.0123 6.6492 58.0940 523.2450 641.8673 

Q(20) and Q²(20) are statistics of autocorrelation 
Ljung-Box test of order 20 of returns and square 
returns, respectively. JB is the Jarque-Bera statistic 
testing the null hypothesis of normal distribution of 
returns. The descriptive analysis results don’t allow 
to affirm that the empirical distribution of S&P500 
index returns is assimilated to a normal distribution. 

This conclusion is justified by the values of skew-
ness and kurtosis. 

4.2. Estimation of the DCC-GARCH model. We 

estimate a DCC-GARCH model in which the variables 

Rt rt and t appear as endogenous variables. The esti-

mated parameters are regrouped in Table 2. 

Table 2. Estimation of structural parameters of GSIRSRP and GJR-GARCH models 

GSIRSRP GJR-GARCH Parameters 

<30 30 60 60< 180 <30 30 60 60< 180

r 0.0412 

(0.0005) 

0.0406 

(0.0003) 

0.0408 

(0.0002) 
0.0412 0.0406 0.0408 

-0.0401 

(0.0005) 

-0.0410 

(0.0002) 

-0.0420 

(0.0001) 

-0.0432 

(0.0007) 

-0.0431 

(0.0007) 

-0.0502 

(0.0008) 

Interest 1.34E-07 

(1.27E-08) 

1.49E-07 

(2.66E-07) 

1.77E-07 

(2.08E-07) 

-

(-)

-

(-)

-

(-)

Risk premium 1.55E-07 

(3.12E-08) 

1.84E-07 

(2.62E-07) 

1.44E-07 

(2.20E-07) 

-

(-)

-

(-)

-

(-)
,0

Return 6.63E-08 

(1.44E-10) 

6.79E-08 

(1.28E-09) 

6.82E-08 

(1.18E-09) 

6.51E-08 

(1.20E-08) 

6.44E-08 

(1.51E-08) 

5.18E-08 

(1.65E-08) 

Interest 0.8055 

(0.0273) 

0.8122 

(0.0396) 

0.8110 

(0.0378) 

-

(-)

-

(-)

-

(-)

Risk premium 0.7992 

(0.0304) 

0.7984 

(0.0466) 

0.8074 

(0.0276) 

-

(-)

-

(-)

-

(-)
1

Return 0.7982 

(0.0344) 

0.8231 

(0.0297) 

0.8003 

(0.0404) 

0.7956 

(0.0375) 

0.8214 

(0.0464) 

0.8031 

(0.0433) 

Interest 0.1113 

(0.0391) 

0.1220 

(0.0333) 

0.1207 

(0.0336) 

-

(-)

-

(-)

-

(-)

Risk premium 0.1400 

(0.0288) 

0.1322 

(0.0307) 

0.1455 

(0.0319) 

-

(-)

-

(-)

-

(-)
2

Return 0.1398 

(0.0225) 

0.1388 

(0.0258) 

0.1421 

(0.0588) 

0.1202 

(0.0228) 

0.1143 

(0.0300) 

0.1185 

(0.0202) 

Interest 0.0100 

(0.0828) 

0.0101 

(0.0888) 

0.0102 

(0.0876) 

-

(-)

-

(-)

-

(-)

Risk premium 0.0140 

(0.0622) 

0.0139 

(0.0568) 

0.0137 

(0.0600) 

-

(-)

-

(-)

-

(-)
3

Return 0.0092 

(0.0221) 

0.0095 

(0.0274) 

0.0103 

(0.0294) 

0.0682 

(0.0450) 

0.0681 

(0.0403) 

0.0644 

(0.0399) 
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Table 2 (cont.). Estimation of structural parameters of GSIRSRP and GJR-GARCH models 

GSIRSRP GJR-GARCH Parameters 

<30 30 60 60< 180 <30 30 60 60< 180

1 0.1224 

(0.0017) 

0.1278 

(0.0011) 

0.1107 

(0.0016) 

-

(-)

-

(-)

-

(-)

2 0.8826 

(0.0166) 

0.8765 

(0.0125) 

0.8658 

(0.0132) 

-

(-)

-

(-)

-

(-)

Rr 0.0207 

(0.0019) 

0.0192 

(0.0022) 

0.0199 

(0.0011) 

-

(-)

-

(-)

-

(-)

 R 0.7620 

(0.0255) 

0.7321 

(0.0193) 

0.7440 

(0.0226) 

-

(-)

-

(-)

-

(-)

r -0.5998 

(0.0188) 

-0.5983 

(0.0176) 

-0.6236 

(0.0188) 

-

(-)

-

(-)

-

(-)

LogL 5346 5787 5776 6399 6200 6106 

The GJR-GARCH model is estimated using the one-

step maximum likelihood method. We fix for the 

interest rate the value obtained by the GSIRSRP 

model for the corresponding class of maturity. 

The results obtained in Table 2 are comparable with 

the standard conclusions in the literature on 

GARCH processes. Estimations of the parameters 

1 , 2  and 3  have approximately the same im-

portance as in the existing literature. The volatility 

persistence deducted from the estimated parameters 

is also important in accordance with the literature. 

The standard errors (values in parentheses) indicate 

that estimated parameters are significant. The errors 

of the GSIRSRP model are smaller than those of the 

GJR-GARCH model except for the parameter 1

for a maturity between 60 and 180 days. The LogL 

value (obtained at the optimum of the log-likelihood 

function) indicates that the GJR-GARCH model is 

more efficient than the GSIRSRP model. The risk 

premium is correlated negatively with the interest 

rate ( r < 0) what is logical because the risk pre-

mium is decreasing with interest rate.  

4.3. Study of GSIRSRP static performance in 

valuation. 4.3.1. In-sample approach. This ap-
proach consists, given the parameters estimations, in 
testing the internal coherence of the models. How-
ever, we adopt the following method: we inject the 
structural parameter estimators, obtained at time t-1,
in the volatility process. The repetition of this opera-
tion for all observations of the studied period gives 
us an implied volatility series. After, we calculate 
the variation of the obtained series, and the correla-
tion between the reconstructed implied volatility 
variations and the underlying asset returns. The 
found value for the coefficient of variation is com-

pared to the parameter 1 , and the second coeffi-

cient value is compared to zero because the correla-
tion between volatility and returns is assumed to be 
null in the GARCH model framework. When we 
have a weak difference between these values, the 
considered specification for the model is correct. 

Table 3. Internal coherence of correlation and variance parameters 

 Parameters estimated from returns Parameters obtained from implied volatility of returns 

 GSIRSRP GJR-GARCH GSIRSRP GJR-GARCH 

Maturity 1 1 1 1

 < 30 0.7982 0 0.7956 0 0.8663 0.0267 0.7654 -0.0263 

30-60 0.8231 0 0.8214 0 0.9230 -0.0322 0.8213 -0.0239 

60-180 0.8003 0 0.8031 0 0.8205 -0.0120 0.8472 -0.0270 

Table 3 shows clearly the internal incoherence of 

parameters in the studied models. This incoherence 

appears evident for the implied correlation between 

shocks of variance and S&P 500 returns. But, com-

paring the values of the coefficient of the implied 

volatility in observed prices to the values of recon-

structed variances lightens the incoherence. How-

ever, the GSIRSRP model proves more coherent 

especially when it is a matter of estimation of the 

implied variances. 
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4.3.2. Out-of-sample approach. In this approach, the 
important question is: given the structural parameter 
estimations and those of the variance, what is the 
degree of the model performance in the option price 
forecasts? To answer this question, we use parame-
ters estimated at t-1 to calculate the price, at t, of the 
option belonging to the same category of maturity 
from which we estimated the parameters values. In 
fact, the market operators are not capable to know the 
parameter values instantaneously, for that they use 
the estimations calculated at the previous date. The 

underlying asset price used to calculate the option 
premium is that of the current instant. The calculated 
price will be compared to the one observed at the 
same time and having the same maturity. The differ-
ence between the two prices is the forecasting error of 
the adopted model. By repetition of the procedure for 
each observation during the studied period, for three 
types of maturity, we calculate the root of the mean-
squared errors (RMSE), the mean of the standardized 
absolute errors (MSAE) and mean of the percentage 
of valuation errors (MPE). The obtained results are: 

Table 4. Out-of-sample forecasting errors 

 GSIRSRP GJR-GARCH 

<30 30 60 60< 180  <30 30  60 60< 180

RMSE 3.1687 2.7706 2.4726 6.9657 5.6743 5.4466 

MSAE 2.243 2.5121 2.1108 6.6784 5.0562 4.7689 

MPE 0.0273 0.0238 0.0224 0.0843 0.0851 -0.0805 

The forecasting performance of the models im-

proves with maturity, given that the errors turn 

down when maturity increases. The absolute 

valuation error (MSAE) is stable for all categories 

of maturity, which indicates the absence of valua-

tion bias tied to the maturity. The mean of the 

percentage of valuation errors (MPE) shows that 

the two considered models tend to over-estimate 

the options for all maturity levels, except for the 

GJR-GARCH model for a maturity superior to 60 

days. Concerning the comparison of the two mod-

els, it is clear that the GSIRSRP model is more 

efficient for option valuation. In fact, the intro-

duction of a random interest rate and a random 

risk premium in the GARCH model improves its 

performance for return adjustment and option 

valuation. This result is expected because of the 

unrealistic hypothesis of constant interest rate and 

constant risk premium1.

4.4. Dynamical performance in optional portfo-

lio hedging. 4.4.1. The hedging strategy. To test 

the capacity of the GSIRSRP model to hedge op-

tion positions, we adopt a delta-neutral hedging 

strategy. We study the case of a trader trying to 

hedge a short position on a call option (target 

option, Ct) of maturity  and strike price K. The 

logic of hedging strategy forces the trader to take 

position on the underlying asset in a proportion 

Pt,S at the date t to wrap up against the risk of the 

price. The delta-neutral hedging principle and the 

randomness of the volatility lead the trader to take 

                                                     
1 Figures drawing the time-variation of calculated and observed call prices, 

as well as figures drawing the time-variation of the valuation relative errors, 

are available from author upon request: noureddinelahouel@yahoo.fr 

position, at time t, on a call option 1,tC  in a pro-

portion
1

,CtP . This call option has a maturity iden-

tical to the target option Ct, but with strike price 

1K K . Furthermore, the randomness of the 

interest rate leads the trader to take position on a 

zero-coupon bond tB , in a proportion BtP ,  at time 

t, to wrap up against the interest rate risk. The 

replication portfolio value of the target option at 

the date t is given by: 

tBttCttSttt BPCPSPP ,1,,,0,
1

                 (18) 

with 0,tP  is the remainder of liquidities (cash) to the 

trader at the date t. Different proportions can be 

obtained using the following formulae: 

tBttCttSttt BPCPSPCP ,1,,,0, 1
,               (19) 

1,,,, ,,,,
1

KxPKxP tStCttStSt ,        (20) 

1,,, ,,,,
1

KxKxP tVttVtCt ,               (21) 

ttrttrtCtBt BKxKxPP ,,,, ,1,,, 1
.  (22) 

4.4.2. Variance minimum of hedging portfolio. 

The variance minimum criterion of the hedging 

portfolio returns is borrowed from Nandi (1996). 

According to this logic, the hedging portfolio is 

periodically adjusted in order to neutralize the 

sensitivity to the first order variations (delta). In 

Table 5, we regroup the mean variances of hedg-

ing portfolio value changes on the studied period 

according to BS, GJR-GARCH and GSIRSRP 

models: 
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Table 5. Mean variances of hedged portfolio value changes under the  

GSISRP, GJR-GARCH and BS models 

 GSIRSRP GJR-GARCH BS 

Maturity OTM ATM ITM OTM ATM ITM OTM ATM ITM 

< 30 0.2156 0.3402 0.0673 0.2614 0.3698 0.0775 0.6596 0.8347 0.2865 

30-60
0.0110 0.0012 0.0009 0.0127 0.0022 0.0019 0.0204 0.0061 0.0052 

30-180
0.0092 0.0011 0.0008 0.0121 0.0012 0.0010 0.0176 0.0059 0.0029 

Comparing the models, we note that the GSIRSRP 

model has the more little variance for all categories 

of maturity and moneyness1. The mean variance of 

the portfolio value changes decreases with the ma-

turity. It also decreases with the moneyness, except 

when maturity is less than 30 days it is more impor-

tant for ATM options. For the BS model and with 

maturity between 30 and 60 days, the ATM option 

portfolio variance is weaker. The reduction percent-

age of variance is more important when we compare 

GSIRSRP with BS, than when we compare 

GSIRSRP with GJR-GARCH. 

Conclusion 

In this paper, we proposed a European option-pricing 

model (GARCH-Stochastic Interest Rate, Stochastic 

Risk Premium: GSIRSRP) which generalizes the GJR-

GARCH model of Glosten, Jagannathan & Runkle 

(1993). This model allows capturing, as well as nega-

tive skewness and excess of kurtosis of return distribu-

tion, the non stationary character of interest rate and 

risk premium. In fact, all existing GARCH option-

pricing models consider constant interest rate and con-

stant risk premium hypothesis. Several authors, such 

as Christoffersen & Jacobs (2004), suggest the viola-

tion of this unrealistic hypothesis. In this way, to reply 

to those prospects, the GSIRSRP model considers that 

all state variables are governed by GARCH processes. 

To take correlations between different state variables 

into account, we considered the multivariate GARCH 

model of Engle (2002) (DCC-GARCH) to describe the 

conditional variance-covariance matrix. 

To have an analytical option-pricing formula, we 

used the general theoretical framework elaborated 

by Jarrow & Rudd (1982). This technique allows to 

approximate an unknown probability distribution 

(true distribution) using an alternative distribution 

(approximating distribution). However, doing the 

approximation of the standardized cumulative return 

distribution by the normal distribution, we managed 

to establish the analytical approximation of the 

European call option premium. 

                                                     
1 The moneyness value is given by: Log(St/K). For the ATM options, we 

considered moneyness between -0.05 and 0.05.  

In the following, the path of the process describing 
the underlying asset price dynamic was confronted 
with the Monte Carlo simulation. Results show that 
the process calling in random interest rate and ran-
dom risk premium seems well adapted to describe 
the financial return distribution, having a leptokur-
tocity. We also studied the numerical performance 
of the analytical approximation formula valuing the 
European call option, elaborated under GSIRSRP 
model. However, since this formula is corrected by 
skewness and kurtosis of cumulative returns, we 
tested the impact of the adjustment parameters on 
the European call prices. The two adjustment terms 
influence significantly European call values even if 
we vary the moneyness and the maturity.   

The confrontation of the proposed GSIRSRP model 
with the one considering constant interest rate and 
constant risk premium showed the pertinence of 
these state variables in the underlying asset return 
process. In fact, the study of empirical and compara-
tive performance of models, in option valuation and 
hedging, favors GSIRSRP model compared with the 
GJR-GARCH model of Glosten, Jagannathan & 
Runkle (1993).  

Looking forward, the effort made in this article can 
be followed. We can quote some subsequent re-
search prospects: 

The first development concerns applying the 
proposed GSIRSRP model on other data (for in-
stance, data on the MONEP).  

The second direction can concern comparing the 
GSIRSRP model with continuous-time models 
like Bakshi, Cao & Chen (1997).  

Other alternative suggests including the transac-
tion costs. However, the market reality shows 
the existence of transaction costs joined to op-
erations between the traders. The considered 
difficulty concerns resolving the proposed mod-
els. It is therefore recommended to turn to nu-
merical methods of resolution. 

Finally, it is important to consider applying the 
GSIRSRP model to other options. We can study 
the American options, the exotic options, the ex-
change options or barrier options. However, the 
majority of options exchanged on the markets are 
American options.  
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Appendix A. Proof of the proposition 1 

In general, the price of zero-coupon bond is calculated by updating its expected value under a physical probability 

measure P as follows: 
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Appendix B. Proof of the proposition 2 

From the equation /mu , we can have:  

umSS tT exp .

It follows that: 

KST UmKSLogu t // .

Under the physical probability measure P, the call price is a martingale: 

KSEBKSEBKxC T
P
ttT

P
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It follows that: 
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Following Jarrow & Rudd (1982), the true density of probability of u can be approximated by: 
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we obtain finally: 
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To calculate the three terms I1, I2 and I3, we must use the properties concerning the standard normal random variable. 

We obtain: 

.5.0exp

5.0exp
2

1
5.0exp

5.0exp
2

1
expexp

1211

2

22

2
1

II

UU
t

UU
t

UU
t

UU
t

duunKduunmS

duunKduumS

duunKduuumSduuKnduunumSI

Making the change of variable, uY  for the first term I11, and exploiting the standard normal random variable, 

we obtain: 

UNI11  and UNI12 .

In the following: 

UKNUNmSI t
2

1 5.0exp .

Using results of appendixes A and B, the same type of calculation allows writing I2 and I3 as: 
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3 15.0exp .
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