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Mean variance optimization via factor models in the emerging  

markets: evidence on the Istanbul Stock Exchange  

Abstract 

Markowitz’s mean-variance analysis, a well known financial optimization technique, has a crucial role for the financial 

decision makers. This quadratic programming method determines the optimal portfolios within the risk-return perspec-

tive. Estimation of the expected returns and the covariances for the financial assets has a significant importance in 

quantitative portfolio management. The famous financial models used in estimating the input parameters are CAPM, 

Three Factor Model and Characteristic Model. The goal of this study is to investigate the significance of asset pricing 

models in the Markowitz’s mean-variance optimization technique for the different Turkish benchmark indices. The 

optimized risky financial assets have demonstrated higher portfolio risks rather than risky portfolios with risk-free 

assets. Portfolio risk is found lower for CAPM, Three Factor Model and Characteristics Model, however higher for 

naive returns. The performances of optimized CAPM portfolios are higher than multi-factor models. Consequently, 

asset pricing models have significant role in the Markowitz’s mean-variance optimization technique since they provide 

higher portfolio performances with lower risks than the optimized portfolios of naive returns.  

Keywords: financial optimization, mean-variance optimization, asset pricing models, Turkey.  

JEL Classification: C60, C61, G11, G12, G10, C22, C32, C13. 

Introduction  

The quantitative investment analysis has widely 

studied a portfolio theory. For the last 50 years the 

financial decision makers have interested in the 

portfolio risk, asset return and the optimal way of 

combining the risky and risk-free assets in a particu-

lar portfolio or fund (DeFusco et al., 2007). 

Optimization procedure has a great deal of impor-

tance in financial engineering and financial decision 

making since this technique harmonizes the finan-

cial modeling with the finance theory in the frame-

work of risk and return. However, the optimization 

is mainly engaged with the mathematics and models 

so that, in this respect the optimal portfolios are 

investigated for the individual and institutional in-

vestors (Zenios, 2007). 

Markowitz (1952) had proposed a widely used 

method
1
 in quantitative portfolio management, the 

mean-variance optimization. At first, mean-variance 

analysis could not be able to appeal a great interest, 

however the financial practitioners have applied this 

technique after a time. The goal of the mean-

variance analysis is to determine the efficient set 

and to reveal the portfolio structure of optimal port-

folios within the framework of risk versus return. 

Therefore, the technique employed in this analysis is 

the quadratic programming approach. 

                                                      

© Fazil Gökgöz, 2009. 
Author would like to thank referees for their suggestions to make this 

paper more comprehensible. All evaluations and mistakes, if ever, 
belong to the author. 

1 In 1990, H. Markowitz, M. Miller and W. Sharpe were awarded the 
Nobel Prize for their frontier studies regarding the quantitative finance. 

Besides, mean-variance analysis has a deep influ-

ence in the practical portfolio management since this 

well-known optimization technique provides a risk-

return framework for the most of financial managers 

in their asset selection procedures. Currently, the 

investment firms are exercising with the mean-

variance optimization theory throughout their opti-

mal portfolio selection procedure. 

Estimating the inputs of the mean-variance optimi-

zation is of great importance. However, in the litera-

ture there are considerable approaches to determine 

the input parameters before the financial optimiza-

tion. The main approaches for input estimations are 

made according to the historical means, variances, 

and correlation, and to the historical beta estimation 

using market models (DeFusco et al., 2007). 

In the finance literature, there are competing finan-
cial asset pricing models since these models can be 
relevant alternatives in the input estimation for the 
mean-variance optimization. The Capital Asset 
Pricing Model (CAPM), a widely used financial 
model in finance for calculating the cost of capital 
and portfolio performance, identifies the riskiness 
of the assets. The CAPM is developed by Sharpe 
(1964), Lintner (1965) and Mossin (1966) and the 
model has achieved a considerable popularity in 
pricing the risky financial assets. In this model, the 
asset risk is measured by means of beta coefficient 
(market beta) and the risk premium per unit of 
riskiness is constant across the entire assets. Be-
sides, the CAPM has a linear relationship between 
expected risk premium of the assets and their market 
beta that can be defined as systematic risk. And the 
CAPM affirms that the expected returns on assets 
may vary since the market beta values of the assets 
are not similar. 
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Besides, there exist some studies which criticize the 

CAPM approach. Jagannathan and Wang (1996) 

argued that in many studies, attempting to find out 

the performance of the CAPM, this method was not 

entirely explaining the returns on the assets. In this 

respect, Fama and French (1992) and Fama and 

French (1996) underlined the critical evidence with 

regard to the insufficiencies of CAPM, so that they 

tested CAPM on the basis of return data of assets 

and observed a non-linear relationship between av-

erage return and the beta coefficient. 

In further, Fama and French (1993, 1996) had criti-

cized that the CAPM was insufficient to explain the 

stock returns and they developed a multifactor asset 

pricing model which is called Three Factor Model. 

Fama and French (1992) found out that neither beta 

nor the earnings-to-price ratio give additional ex-

planatory power to a pricing model for security re-

turns which utilizes only the size and BE/ME ratio 

as the explanatory variables (Fant and Peterson, 

1995).  

The Three Factor Model is an improved version 

of conventional static CAPM. The main advan-

tage of these factor models is their simplicity of 

interpreting the factor values on the basis of time 

series. However, both the CAPM and the Three 

Factor Model depended upon the linear regression 

which can be established among the excess stock 

returns and a single factor of the set of factors. 

Fama and French (1993, 1996) argued that the 

Three-Factor Model is superior to CAPM in ex-

plaining the variability of the portfolio or stock 

returns according to their regression results. Be-

sides, Gaunt (2004) affirms that the Three Factor 

Model can give more significant results in com-

parison to CAPM applications. 

Daniel and Titman (1997) proposed an alternative 

financial model to the Fama and French’s Three 

Factor Model which is called the “Characteristics 

Model”. However, Daniel and Titman refused the 

factor risk assumption and they defined a new book-

to-market ratio. According to their approach, apart 

from the risk the characteristics of the large firms 

may produce low financial asset return. In their 

characteristics-based approach, Daniel and Titman 

(1997) found out that company characteristics for 

behavioral reasons may result in higher returns for 

small and value stocks, and they investigated this 

hypothesis by characteristic-balanced1
 portfolios. 

                                                      
1 These are zero-investment portfolios with long (short) securities with 

high (low) weights on each of the three factors, market excess return, 

SMB, and HML while having similar stock characteristics in the long 

and short weights. 

Asset pricing theory has a critical role in estimating 

the returns of financial assets. Single-factor and 

multi-factor asset pricing models such as CAPM, 

Three Factor Model and Characteristics Model have 

become significant in determining the security re-

turns for a given period. Besides, estimating return 

inputs for mean-variance analysis is a critical factor 

for the financial optimization process. However, 

asset pricing models are successful in estimating the 

mentioned return inputs.  

Within this framework, the goal of this study is to 

analyze the effects of asset pricing models onto the 

Markowitz’s mean-variance optimization. In this 

respect, it has given the approaches regarding the 

mean-variance optimization. And then, the results of 

the optimization studies under asset pricing return 

estimations and the performance measurements have 

been evaluated. 

1. Literature 

1.1. Mean-variance analysis technique in modern 

portfolio theory. Markowitz’s mean-variance opti-

mization has a great deal of importance in deter-

mining the optimal portfolio weights. The optimal 

portfolio weights have significant effects on the 

financial decision making since they can provide 

rational investment opportunity set to the investor. 

The mean-variance portfolio theory is mainly based 

upon the notion of measuring the investment oppor-

tunities in expected return and variance of asset 

return. The assumptions of the mean-variance analy-

sis are based on the following issues (DeFusco et 

al., 2007): 

all investors are risk averse so that they prefer 

less risk to more for the same level of expected 

return; 

investors have the information regarding the 

expected returns, variances and covariances of 

all assets; 

the investors need only to know the expected 

returns, variances and the covariances of returns 

to determine optimal portfolios; and 

there exist no transaction costs or taxes limita-

tion. 

According to Zenios (2007), mean-variance 

analysis is considered as a positive and a norma-

tive tool. On this basis, for the positive tool ap-

proach, this technique supports the hypotheses 

regarding how the financial markets and investors 

behave. The CAPM is the most famous outcome 

of positive mean-variance analysis. Besides, as a 

normative tool mean-variance analysis investi-

gates the framework for developing suggestions 

on how investors should behave. However, the effi-
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cient portfolios
1
 of the financial assets in mean-

variance analysis are regarded as a prosperous appli-

cation of normative tool for optimization models. The 

mean-variance analysis supports the decision making 

of financial engineers. 

1.2. Mathematical models of the mean-variance 

analysis. The main issue for the basic mean-variance 

optimization models is the optimal proportional allo-

cation “xi” to the i
th.

 financial asset. The sum of the 

particular weights of the financial assets in a portfolio 

corresponds to “1”. Within the Markowitz’s Mean-

Variance analysis, there are two identical optimiza-

tion formulations regarding the two equivalent state-

ments for the efficient portfolios in the literature. 

These approaches are the maximization of the portfo-

lio expected return and the minimization of the port-

folio risk which is measured by variance of the ex-

pected returns (Zenios, 2007; DeFusco et al., 2007; 

Cornuejols and Tütüncü, 2007). 

1.2.1. Maximization of the expected returns of the 

financial asset. The expected return for a particular 

portfolio can be expressed as: 

n

i

ix
1

1 ,       (1)

besides, the portfolio has an expected return which 

is calculated as follows: 

i

n

i

i xrr:xR
1

,      (2) 

however, the risk level of the portfolio or the portfo-

lio variance can be defined as: 

22
r:xRr:xRx ,    (3) 
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In order to achieve a portfolio which has maximum 

expected return for a given upper bound on risk 

level, Markowitz (1952) proposed the following 

optimization model. 

r:xRMaximize       (5) 

xtosubject
2

       (6) 

1
1

n

i

ix .       (7) 

                                                      
1 The efficient portfolio can be considered within two dimensions. The 

portfolio which has maximal expected asset return for a given upper 

bound on risk or the portfolio that has a minimal risk for a given ex-

pected rate of return on assets. 

In this maximization problem, corresponds to the 

upper allowed level of the portfolio risk where there 

is nonlinear constraint in the model since the vari-

ance of a given portfolio has a quadratic function of 

the vector x.  

1.2.2. Minimization of the portfolio risk of the finan-

cial assets. According to Zenios (2007), formulating 

nonlinearity constraint for the optimization prob-

lems is not recommended due to the difficulties in 

solving procedure and then, the variance minimiza-

tion approach has been advised for the formulation 

of the optimization. 

xMinimize
2

2

1
,      (8) 

r:xRtosubject ,     (9) 

n

i

ix
1

1 .     (10) 

The minimization problem follows a classical quad-

ratic programming of an objective function
2
 under 

linear constraints. Whereas,  is the desired level 

of expected return for the financial assets. Large 

number of variables can be involved in this minimi-

zation model. On the other hand, the constraint re-

garding the expected return may be modified as 

r:xR  if  is considered as the lower bound 

for the portfolio return. 

1.2.3. Minimization of the portfolio risk with risk-

free asset. The investors may prefer to hold risky 

securities and risk-free asset
3
 in their portfolios 

since the standard deviation of this asset corre-

sponds to null. As we denote xf as the weight of the 

risk-free asset within the portfolio, and by inserting 
n

i

if xx
1

1  into the variance minimization 

model given in Equations (8), (9) and (10) then the 

model may be expressed as follows (Zenios, 2007; 

DeFusco et al., 2007):  

xMinimize
2

2

1
,    (11) 

n

i

fifi rxrrtosubject
1

.  (12) 

                                                      
2 In order to make a simplification in the calculation of derivatives, the 

scaling factor is taken as ½ within the objective function. 
3 Risk-free asset may be considered as the secure financial assets (Gov-

ernment’s securities) which do not carry any interest rate risk such as 

Treasury bills.  
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Besides, risk-free asset is an effective option in or-

der to minimize the risk level of the portfolio. How-

ever, risk-free asset may facilitate to diminish poten-

tial residual or can be utilized to finance purchases 

throughout borrowing. 

1.3. Estimating return inputs for mean-variance 

optimization. The Markowitz’s model provides an 

optimal portfolio assumed that we have perfect in-

formation on the expected returns and covariances 

for the assets under consideration. For this reason, 

an important practical issue is the estimation of the 

expected returns and the covariances (Cornuejols 

and Tütüncü, 2007). 

Determining the inputs for the mean-variance optimi-

zation has a major importance. There are several 

approaches regarding the input estimation for this 

optimization procedure (DeFusco et al., 2007). 

It is worthy to examine the economic importance of 

financial asset pricing models from an investor’s 

portfolio optimization perspective. It is in contrast to 

the conventional cross-sectional analysis of stock 

returns that focuses on the comparison of expected 

returns of the financial assets. Chou et al. (2004) 

investigated the asset pricing anomalies on the vari-

ances and the covariances of the expected returns 

for Japanese market. Besides, Chan et al. (1999) had 

focused only on estimating the covariances of the 

stock returns for the optimization.  

1.3.1. Historical estimation of the optimization in-

puts. The approach involves calculating means, 

variances, and correlations of the financial asset 

returns from the historical data perspective. This 

method needs to estimate a considerable number of 

parameters as we optimize larger portfolios which 

contain numerous financial assets. The quantity of 

estimates needed and the quality of historical esti-

mates of inputs are the main limitations for the his-

torical estimation approach. The required quantity of 

estimates can easily be in huge number so that, the 

number of covariances increases in the square of the 

number of securities (Defusco et al., 2007; Wolf, 

2004; Chan et al., 1999). 

According to Chan et al. (1999), the second constraint 

for the historical estimation approach is that historical 

estimates of portfolio return parameters typically have 

substantial estimation error and this problem is least 

severe for the estimates of variances. The problem is 

due to historical estimation of the mean portfolio re-

turns since the variability of risky asset returns is high 

in comparison to mean, and this problem is unable to 

be solved by increasing the observation number. Be-

sides, estimation error is a considerable issue within 

historical estimates of covariances.  

1.3.2. Market model estimations for the optimization 

inputs. The historical beta estimations are more 

smoother in computing the variances and covari-

ances of the financial asset returns since these re-

turns are assumed to correlate with a limited set of 

independent variables or factors. The market mod-

els
1
 are used to estimate the variances and covari-

ances of the asset returns.  

After having linear regression for each financial 

asset, the intercepts (ai) and the beta values ( i) can 

be estimated in the framework of historical data on 

asset returns and market returns. However, these 

estimates are then utilized to compute the expected 

returns and the variances and covariances of those 

returns for the mean-variance optimization. Besides, 

it is beneficial for the investor to select the appropri-

ate market index to represent the financial market in 

the beta estimation procedure (Defusco et al., 2007). 

2. Data and methodology  

The aim of this study is to investigate the signifi-

cance of estimated asset returns of asset pricing 

models (CAPM, Three Factor Model, and Charac-

teristics Model) in comparison to the naive returns 

onto the Markowitz’s mean-variance optimization.  

Secondarily, the fund performances of the optimized 

portfolios are found out via risk-adjusted perform-

ance evaluation measures in order to analyze the 

effects of the factor models on the optimization 

process. In this respect, the stocks having continu-

ous returns within last 390 weekly period (January 

2
nd

, 2001- June 30
th
, 2008) data in stanbul Stock 

Exchange (ISE)-National 100, 50 and 30 indices 

have been selected.  

However, daily data were used in the input return 

estimation studies which were carried out by asset 

pricing models. The daily returns of the portfolios 

and securities were evaluated in harmony with the 

equation given below. 

1t

1tt

p
V

VV
R .    (13) 

The parameters for the portfolio and security returns 

are as follows: 

Rp = Daily return (%) on portfolio (security) p at t 

period; 

Vt = Daily closing value (YTL) of the portfo-

lio/security p at t period; 

                                                      
1 Market models may be evaluated as the asset pricing models such as 

CAPM, Three Factor Model and Characteristics Model. 



Investment Management and Financial Innovations, Volume 6, Issue 3, 2009 

47 

Vt-1= Daily closing value (YTL) of the portfo-

lio/security p at t-1 period. 

The Turkish Government Internal Loan (GIL) Per-

formance Index (30 day based) data have been used 

for the risk free assets. 

Empirical study includes three sequential processes. 

Firstly, the returns of the stocks within the ISE indi-

ces with asset pricing factor models have been esti-

mated. In this step, the naive, and factor model re-

turns are determined.  

Afterwards, the variance-covariance matrices have 

been prepared for the naive (original) returns and 

the returns estimated by the factor models. The 

mean-variance optimization studies are then carried 

out via the variance-covariance and the time series 

output data of the mentioned asset pricing models. 

In the last section, the fund performances of the 

optimized portfolios according to the naive, and the 

asset pricing models have been determined by the 

risk-adjusted performance measurement approaches. 

2.1. The market models used in the estimations 

for optimization inputs. The returns according to 

factor models have been estimated in order to apply 

mean-variance optimization procedure on the asset 

pricing model data. In single and multi-factor asset 

pricing model tests, the returns of ISE indices’ secu-

rities have been estimated according to Equation (1) 

so that, the variance-covariance matrices have been 

established by the estimated CAPM, Three Factor 

Model and CAR portfolio returns. 

The static CAPM model, introduced by Sharpe 

(1964), Lintner (1965) and Mossin (1966), has been 

applied in single factor estimations for pricing the 

risky financial assets. 

E(Ri) = Rf + i [Rm - Rf],    (14) 

where Rf  – risk-free rate of return (GIL performance 

index); E(Ri) – expected return of asset i; E(Rm) – 

expected return on the value-weight market portfo-

lio; i – beta coefficient of asset i. 

Initially, in the tests regarding CAPM, the expected 

returns for each ISE index have been estimated ac-

cording to Equation (14). However, I have fore-

casted the beta coefficients ( ˆ
j) by single serial 

regressions. Then, the returns inputs have been cal-

culated according to the estimated CAPM returns. 

Besides, Fama and French (1993, 1996) developed 

the Three Factor Model for estimating the expected 

returns by multi-factor asset pricing. In this model, 

expected returns are explained by their sensitivities 

to the excess market rate of return, the difference 

between the return on a portfolio of small stocks and 

the return on a portfolio of large stocks (SMB) and 

the difference between the return on a portfolio of 

high BE/ME stocks and the return on a portfolio of 

low BE/ME (HML).  

The Three Factor Model has been considered as a 

notable approach in estimating the returns of the 

financial assets. The parameters of this model are 

given below. 

E(Ri) - Rf = im [E(Rm) - Rf] + is E(SMB) +  

+ ih E(HML),      (15) 

where E(Ri)-Rf – expected excess return of the stock 

over riskless interest rate; E(Rm)-Rf – expected ex-

cess return of the market over riskless interest rate; 

SML – difference of the returns on small and big 

stocks; HML – difference of the returns on high and 

low BE/ME ratio stocks; im – sensitivity of portfo-

lios’ excess return onto the market’s excess return; 

is  – sensitivity of excess return of the portfolio onto 

the SMB returns; ih – sensitivity of excess return of 

the portfolio onto the HML returns. 

And then, in order to establish the Three Factor 

Model construction, the SMB and HML portfolios 

have been primarily composed in accordance with 

the portfolio performing approach developed by 

Fama and French (1993, 1996). After performing 

the SML and HML portfolios according to the ap-

proach developed by Fama and French (1993, 

1996), the rate of returns of these portfolios was 

calculated as stated in subsection 2.2. 

However, in Three Factor Model, the beta coeffi-

cients are the slopes that have been estimated by 

applying the multiple regression of E(Rit) - Rft on 

E(Rmt) - Rft and SMLt and HMLt. In other words, for 

each ISE index securities, the beta coefficients were 

estimated by serial regressions pursuant to Equation 

(15) and the betas 
jjj ĥ,ŝ,ˆ  according to Three 

Factor Model were forecasted. 

The Characteristics Model is an alternative financial 

asset pricing model either for CAPM or the Three 

Factor Model. On this basis, Daniel et al. (2001) and 

Daniel and Titman (1997) notify that the Character-

istics Model can provide better results to the Three 

Factor Model in explaining the cross-sectional 

variations in expected returns.  

Daniel and Titman assumed expected returns are a 

function of the observable, slowly varying firm 

characteristic which is defined as it

~
. 

E (Rit) = a + b it

~
,    (16) 

where E(Rit) – expected return of the stock i for t 

period; a – intercept value for the linear regression; 

b – sensitivity of return of the portfolio onto the   
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Model, the changes in the returns on the stock and 

in firm characteristics 
~

are negatively correlated 

and there is no direct relation between firm charac-

teristics 
~

 and loadings on the distressed factors. 

To establish the CAR benchmark portfolio, the CAR 

portfolios have been composed in accordance with 

the portfolio performing approach proposed by 

Daniel and Titman (1997) and Daniel et al. (1997). 

The rate of returns of CAR portfolios were calcu-

lated as stated in subsection 2.3.  

Besides, after performing the CAR portfolios for each 

ISE indices’ securities, the sensitivity of return of the 

portfolio onto the returns of the firm characteristics 

portfolio (factor b) has been estimated by serial re-

gressions pursuant to Equation (16) for the Character-

istics Model. The rate of returns of the CAR portfo-

lios have been estimated in accordance with Daniel 

and Titman (1997) and Daniel et al.. (1997). 

2.2. Composing the benchmark portfolios for the 

Three Factor Model. The Three Factor Model portfo-

lios have been composed according to the approach 

proposed by Fama and French (1993, 1996). 

2.2.1. Portfolios composed according to the market 

values (SMB) for Three Factor Model. The SMB 

portfolios in ISE are composed primarily for the 

subsequent multiple regression analyzes. In this 

respect, the securities having the largest market 

equity (ME) in ISE were selected on the basis of 

portfolio size and then, these assets were classified 

in the four different subsequent portfolios within the 

criterion as explained below. 

B composed of 23 security that has ME > 1,000 

million YTL; 

BS1 composed of the first 12 security that has 

1,000 > ME > 580 million YTL; 

BS2 composed of the last 12 security that has 

1,000 > ME > 580 million YTL; 

S composed of 24 security that has ME < 580 

million YTL; 

Thereafter, the daily returns of the SMB portfolio 

were calculated as: 

SMB = ½(S+BS2)-½(BS1+B).    (17) 

In other words, the returns of SMB portfolio were 

determined by subtracting the average returns of the 

securities that have small ME’s from the securities 

having big ME’s. 

2.2.2. Portfolios composed according to the market 

value/book value (HML) for Three Factor Model. 

Another input for multiple regression operation is 

the daily HML portfolio returns. In this case, the 

securities that have highest BE/ME ratio were 

selected and then separated into four subsequent 

portfolios according to the criterion as given: 

H composed of 18 security that has BE/ME > 1.9; 

HL1 composed of the first 18 security that has 

1.9 > BE/ME > 0.6; 

HL2 composed of the last 18 security that has 

1.9 > BE/ME > 0.6; 

L composed of 17 security that has BE/ME < 0.6; 

Besides, the daily returns of HML portfolios were 

determined according to the following equation. 

HML = ½(H+HL1) - ½ (HL2 + L).  (18) 

On the other side, the HML portfolio returns have 

been calculated as deducting the average returns of 

the securities that had high BE/ME ratios from the 

securities having small BE/ME ratios. 

2.3. Composing the benchmark model for the 

Characteristics Model. The Characteristics Model 

(CAR) portfolios have been performed with respect 

to the approach developed by Daniel and Titman 

(1997) and Daniel et al.. (1997). 

2.3.1. Portfolios composed according to the size 

values and book-to-market ratios for Characteris-

tics Model. The CAR portfolios in ISE indices were 

performed to carry out the multiple regression ana-

lyzes. In this respect, a sequential process has been 

followed. Initially, I made a classification according 

to the size of the securities and then separated the 

portfolios into three sub-portfolios. Afterwards, nine 

sub-portfolios have been selected in respect to 

BE/ME ratios of the securities.  

Finally, these nine portfolios are divided into 27 

sub-portfolios according to the return perform-

ances for last 12 months. Finally, after having 

completed the mentioned grouping operation, the 

value-weighted returns for the subsequent 12 

months for each of 27 sub-portfolios have been 

calculated. And then, Characteristics portfolios 

have been performed and the expected returns for 

a particular stock in a certain time have been cal-

culated as the average of the last 390 weeks’ re-

turns of Characteristics portfolio to which this 

security has involved.  

2.4. Optimization and performance measurement. 

In the optimization studies, the conventional 

mean-variance optimization approach developed 

by Markowitz (1952) both for the risky portfolios 

and risky portfolios with risk free assets has been 

followed. The data for the optimization are gath-

ered by the estimated returns of the CAPM, the 

Three Factor Model and the Characteristics 

Model. Besides, the naive returns of the financial 
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assets have also been considered within the opti-

mization data.  

The naive returns and the estimated returns of the 

mentioned factor models have been used in order 

to construct variance-covariance matrix for each 

ISE index. On this data set, the minimized portfo-

lio variances by mean-variance optimization tech-

nique have been calculated pursuant to Equation 

(8), (9), (10), (11) and (12). In this way, the effi-

cient sets for each model have been drawn. In order 

to analyze the performance of the optimized port-

folios, the risk-adjusted performance measurement 

approaches have been applied.  

3. Findings 

The input estimation for the mean-variance optimiza-

tion depends upon the different market models. How-

ever, the historical betas have been estimated using 

static CAPM as single index model as well as Three 

Factor Model and Characteristics Model as multiple 

index market models. The variance and covariance 

matrices of asset returns have been computed accord-

ing to each market model so that, the mean-variance 

optimizations were applied upon these input data in-

cluding the naive returns of the assets.  

The findings regarding the optimization studies for 

the risky portfolios and risky portfolios with riskless 

assets were given. Subsequently, the performance 

measurement scores were calculated for the opti-

mized portfolios. 

3.1. The optimization results of the risky portfo-

lios. Figure 1 illustrates the optimization results for 

ISE-100 index. 

 

Fig. 1. Efficient sets for ISE-100 index in 2001-2008  

 (2nd quarter) period 

Figure 1 points out that the efficient sets determined 

by the mean-variance optimizations of the naive and 

factor models have different characteristics. How-

ever, the efficient set of the naive portfolio  has the 

highest portfolio variance as we compare with the 

factor models. The lowest variance value for the 

efficient set belongs to CAPM.  

Three Factor Model and Characteristics Model have 

higher portfolio variances than CAPM. Besides, lower 

portfolio variances within all factor models in com-

parison to portfolios with naive returns have been de-

termined. Besides, the factor models give parallel risk 

structure, since it has determined a sharp increase in 

risk above ~2.5% return level. Figure 2 shows the 

efficient sets for the optimization of ISE-50 index. 

 

Fig. 2. Efficient sets for ISE-50 index in 2001-2008  

 (2nd quarter) period 

In Figure 2, the variance level for the efficient set of 

the naive portfolio has the highest portfolio variance 

in comparison to the factor models. The CAPM 

estimates reveal smaller portfolio variances than 

Three Factor Model and Characteristics Model.  

On the other side, the efficient sets of Three Fac-

tor Model, Characteristics Model and naive port-

folio have the similar structure since their portfo-

lio variance level decreases to a minimum point as 

the returns increase (above ~1.5%) whereas these 

variance values increase afterwards. However, on 

the contrary, the variance level of the efficient set 

of the CAPM returns are quite stable and do not 

increase in significant manner.  

Figure 3 illustrates the efficient sets for the optimi-

zation of ISE-30 index as risky portfolios. 

As can be seen in Figure 3, exactly the same effi-

cient sets for the CAPM and the Characteristics 

Model for ISE-30 index have been determined. The 

naive portfolio performs a sharp increase in portfo-

lio risk above ~1.0% return level. The CAPM, 

Characteristics and Three Factor Model have the 

similar efficient set up to ~1.6%, however above 

this level the portfolio risk for the Three Factor 

Model increases significantly. 
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Fig. 3. Efficient sets for ISE-30 index in 2001-2008  

 (2nd quarter) period 

3.2. The optimization results of the risky portfolios 
with risk-free asset. Figure 4 illustrates the optimi-
zation results for ISE-100 index with risk-free asset. 

 
Fig. 4. Efficient sets for ISE-100 index with risk-free asset  

in 2001-2008 (2nd quarter) period 

Figure 4 shows that the portfolio risk levels for factor 
models and naive portfolio have diminished due to the 
involvement of the risk-free asset into the asset mix. 
The variance level of CAPM is smaller than Three Fac-
tor Model, Characteristics Model and the naive returns.  

However, the factor models demonstrate a parallel 
risk structure and above 2.5% return level a signifi-
cant increase in portfolio variance has been deter-
mined. Figure 5 demonstrates the efficient sets for 
the optimization of ISE-50 index with risky assets. 

 

Fig. 5. Efficient sets for ISE-50 index with risk-free asset  

in 2001- 2008 (2nd quarter) period 

Figure 5 demonstrates that all portfolio risks have 

been stabilized and diminished since the risk-free 

asset was inserted into the asset mix. However, the 

portfolio risk of the efficient set for the CAPM is 

smaller than the Three Factor Model, the Character-

istics Model and the naive returns.  

Besides, the factor models follow a parallel structure 

in terms of risk increase up to %2.5 return level, a 

significant increase in portfolio variance has been 

determined. The optimization results under ISE-30 

index with risk-free asset are given in Figure 6. 

 

Fig. 6. Efficient sets for ISE-30 index with risk-free  

in 2001-2008 (2nd quarter) period

In Figure 6, the portfolio risk levels have been stabi-

lized and diminished due to the risk-free asset. The 

portfolio variance of the efficient set for the CAPM 

is smaller than Three Factor Model, Characteristics 

Model and the naive returns. The risk level increases 

dramatically above ~1.5% return level not only for 

the factor models but also for the naive portfolio.  

3.3. The performance measurement results of the 

optimized risky portfolios. The results regarding 

the risk-adjusted performance appraisal measures of 

the optimized risky portfolios for the ISE indices are 

illustrated in Table 1.  

Table 1. The results of the performance 

measurement for optimized risky portfolios in 2001-

2008 (2
nd

 quarter) period 

Portfolio performance scores 

Portfolio Model 
Sharpe 

ratio
Treynor  
measure 

Jensen’s 
alpha 

Naive -0.0265 -0.0005 -0.0001 

CAPM 5.2456 0.0545 0.0225 

Three Factor Model 3.3587 0.0368 0.0184 

ISE - 100 

Characteristics Model 3.3962 0.0562 0.0173 

Naïve 0.1066 0.0022 0.0009 

CAPM 2.1920 0.0226 0.0153 

Three Factor Model 1.9527 0.0196 0.0132 

ISE - 50 

Characteristics Model 2.1695 0.0251 0.0142 



Investment Management and Financial Innovations, Volume 6, Issue 3, 2009 

51 

Table 1 (cont.). The results of the performance 

measurement for optimized risky portfolios in 2001-

2008 (2
nd

 quarter) period 

Portfolio performance scores 

Portfolio Model 
Sharpe 

ratio
Treynor  
measure 

Jensen’s 
alpha 

Naive -0.0277 -0.0006 -0.0002 

CAPM 1.3967 0.0144 0.0102 

Three Factor Model 1.3920 0.0144 0.0102 

ISE - 30 

Characteristics Model 1.4143 0.0178 0.0102 

In Table 1, the optimized CAPM portfolios have the 

highest performances for ISE-100 and ISE-50 ac-

cording to the Sharpe Ratio, whereas Characteristics 

Model is superior to other models for ISE-30 portfo-

lio.  

In terms of Treynor measure, Characteristics Model 

demonstrates high performance for each portfolio. 

On the other hand, in the framework of Jensen’s 

alpha figures, the CAPM portfolios have demon-

strated higher performances in comparison to the 

other asset pricing models. However, CAPM, Char-

acteristics and Three Factor Models have the same 

Jensen’s alpha value for ISE-30. 

3.4. The performance measurement results of the 

optimized risky portfolios with risk-free asset. 

The results for the risk-adjusted performance ap-

praisal measures of the optimized risky portfolios 

with risk-free asset are illustrated in Table 2.  

Table 2. The results of the performance 

measurement for optimized risky portfolios with 

risk-free assets in 2001-2008 (2
nd 

quarter) period 

Portfolio performance scores 

Portfolio Model 
Sharpe  

ratio
Treynor 

 measure 
Jensen’s 

alpha 

Naive 0.0107 0.2302 0.0001 

CAPM 5.4844 0.1654 0.0097 

Three Factor Model 3.6308 0.2476 0.0096 

ISE - 100 

Characteristics Model 3.3925 0.1489 0.0096 

Naive 0.1461 0.2108 0.0008 

CAPM 3.3590 0.2717 0.0096 

Three Factor Model 2.6783 0.3501 0.0095 

ISE - 50 

Characteristics Model 2.3372 0.3660 0.0094 

Naive 0.0628 0.1988 0.0003 

CAPM 3.3590 0.2717 0.0096 

Three Factor Model 2.6784 0.3501 0.0095 

ISE - 30 

Characteristics Model 2.2219 0.1373 0.0094 

In Table 2, the CAPM has the best performance for 

ISE-100 and ISE-50 on the basis of Sharpe Ratio. 

According to Treynor measure, Three Factor Model 

demonstrates higher performance for each portfolio. 

Besides, in terms of Jensen’s alpha figures, the 

CAPM has higher performance than the other mod-

els. However, CAPM, Characteristics and Three 

Factor Models have the similar Jensen’s alpha value 

for each ISE portfolio. 

Discussion and conclusion 

This paper investigates the significance of the single 

and multi-factor asset pricing models on the Marko-

witz’s (1952) well-known mean-variance optimiza-

tion technique for the different basic Turkish bench-

mark indices. In order to implement Markowitz’s 

mean-variance optimization, the stock returns which 

were considered as inputs, have been estimated by 

CAPM, Three Factor Model and Characteristics 

Model. The variance-covariance matrices have been 

established according to the results of the multi factor 

model estimations for the Turkish asset prices. 

The optimization results have revealed that the risky 

assets constructed from ISE indices have higher port-

folio risks when compared to risky portfolios with 

risk-free assets. It has been evaluated that the risk-

free assets have assisted to neutralize the total portfo-

lio risk. Besides, either in the risky portfolios or in the 

risky portfolios with risk-free assets, similar risk 

ranking for the naive returns and the single and multi-

factor asset pricing models has been realized.  

After implementing the optimization procedures for 

both portfolios, it has been found out that the portfo-

lio risk would increase as in the following sequence: 

the CAPM, the Three Factor Model, the Character-

istics Model and the naive model. In other words, 

inputs estimated by the CAPM could give lower 

portfolio variances than the mentioned multi-factor 

asset pricing models.  

For the risky portfolios, significant increases in the 

portfolio risk above ~2.5%, ~1.5% and ~1% return 

levels for ISE-100, ISE-50 and ISE-30 indices have 

been determined respectively. Besides, distinctive 

portfolio risk increases above ~2.5% return level for 

ISE-100 and above ~2.0% return level for ISE-50 

and ISE-30 indices have been recorded for the risky 

portfolios with risk-free assets.  

Moreover, as the number of the financial assets in 

the portfolio increases, the mean-variance optimiza-

tion could give more significant results and better 

mean-variance frontier since it is able to achieve 

smaller portfolio risk with the diversification. 

As we evaluate the portfolio performances for the 

optimization procedure, the optimized CAPM port-

folio could demonstrate higher performance than the 

optimized portfolios of the multi-factor models. 

Besides, it has also been realized that as the assets 
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number in the portfolio increases, the portfolio per-

formance could reach higher values. We may also 

state that the performances of Three Factor Model 

and Characteristics Model are found similar for each 

ISE indices. Further, the naive returns have given 

higher portfolio risks during the mean-variance op-

timization and the optimized naive portfolio has also 

exposed worse portfolio performances.  

The main finding of the empirical study is the men-

tioned asset pricing models that have significant role 

in the Markowitz’s mean variance optimization 

technique since they can provide higher portfolio 

performances than the optimized portfolios of naive 

returns. In other words, estimating the expected 

returns and the covariances of the financial assets by 

means of single and multi-factor asset pricing mod-

els have substantial importance within the financial 

optimization process.  

Finally, according to the optimization results and 

portfolio performance figures for the basic ISE 

indices, we may conclude that the asset pricing 

models have a positive impact on the mean-

variance optimization process. In this framework, 

we not only might diminish the portfolio risk levels 

and reach better mean-variance frontiers but also 

raise the portfolio performances by applying the 

mentioned asset pricing models in the Turkish 

stock markets. 
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