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R ratio optimization with heterogeneous assets  

using genetic algorithm 

Abstract 

This paper presents a framework to portfolio optimization that is superior to the mean-variance approaches utilized for 

asset allocation. We show how a portfolio with heavily differing asset types in various market phases can be managed 

efficiently by using a ratio-based portfolio optimization approach and provide a general solution to related optimization 

problems and the technical challenges arising from them. Portfolio optimization is done by using a modified version of 

the R ratio in a benchmark-free setting for real estate funds of funds (FoFs). We use a genetic algorithm to solve the 

non-quasi-convex optimization problem and propose the use of genetic algorithms for related ratio-based optimization 

problems. Our results show the appropriateness of both the modified R ratio and the genetic algorithm used to optimize 

the fund portfolios in the benchmark-free environment. The algorithm efficiently solves the non-quasi-convex type of 

problem and related approaches of portfolio optimization are outperformed by the R ratio focused approach. 

Keywords: portfolio optimization, genetic algorithm, R ratio, funds of funds, real estate funds, expected tail loss, non-

quasi-convex. 

JEL Classification: G11, C61. 

Introduction  

In this paper, we propose a framework to portfolio 

optimization that is superior to the mean-variance 

approaches utilized for asset allocation. We show 

how a portfolio with heavily differing asset types in 

various market phases can be managed efficiently 

by using a ratio-based portfolio optimization ap-

proach and provide a general solution to related 

optimization problems and the technical challenges 

arising from them. 

Since the formulation of the portfolio selection the-
ory, as formulated by Markowitz (1952), portfolio 
selection has been among the most discussed fi-
nance topics in both the theory and practice of fi-
nance. As a result, a large body of research work has 
emerged. Although the mean-variance approach 
allows a portfolio manager to identify the efficient 
frontier, risk-reward measures must be utilized to 
select the optimal portfolio given the investor’s risk 
aversion. The most commonly used measure is the 
Sharpe ratio proposed by Sharpe (1964) and its ex-
tension (Sharpe, 1994). The Sharpe ratio focuses on 
portfolio compositions of assets that maximize the 
ratio of expected portfolio returns to the variability 
of the returns. 

While the combination of the basic objectives of 

investing – maximizing reward and minimizing 

return variability or risk – is still the baseline for 

portfolio optimization approaches and frameworks, 

the measures and tools employed have changed. The 
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mean-variance framework and the Sharpe ratio gen-

erally refer to the trade-off between reward and 

uncertainty (or variability); however, measures that 

try to capture risk instead of uncertainty have be-

come increasingly popular. While there is still con-

siderable debate on the most desirable and important 

properties of risk measures in portfolio theory
1
, 

recent approaches mainly share the same crucial 

characteristic, namely a focus on the tails of the 

return distributions. Among those measures, ratios 

that relate portfolio reward to portfolio (tail) risk 

have gained greater attention
2
.  

In this paper, we contribute to the existing literature 

by providing a portfolio optimization method that is 

both independent of any distributional assumptions 

and may be used with any combination of assets, not 

being limited to benchmark-related problems. These 

properties are especially important when consider-

ing flexible and complex financial market products 

and the active management of portfolios containing 

them. One example is the funds of funds (FoFs) 

product because it requires careful allocation of 

capital by FoF managers in order to achieve value 

added for investors
3
. This stems from the fact that 

for FoFs normally a very large universe of target 

funds may be available, depending on the products’ 

specification. If the universe of possible fund in-

vestments is very heterogeneous, the task of portfo-

lio management is even more complicated. We use 

such a heterogeneous set of target funds with a sam-

ple of two very different types of real estate invest-

                                                      
1 See Rachev et al. (2007) for an extensive study of risk and reward 

measures in portfolio management. 
2 See Farinelli et al. (2009) for applications and comparisons of tail ratio 

measures.  
3 See Stein et al. (2008) for a general introduction to funds of funds. 
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ment funds that are highly suitable for our study. 

The framework presented in this paper may be ap-

plied to any combination of assets though, for ex-

ample, for bond and equity portfolios or even for 

direct investments rather than fund investments. 

We use a modified version of the Rachev ratio (R 

ratio hereafter), which is a reward-to-risk ratio that 

is free from distributional assumptions. However, 

optimizing this ratio makes the solution of a non-

quasi-convex optimization problem necessary. As 

this technical issue is very general and applies to all 

ratio problems which may have a negative denomi-

nator, we propose genetic algorithms as a general 

solution method for all ratio problems being non-

quasi-convex. We show that although the span of 

possible solutions is very large due to the heteroge-

neous fund types that are candidates for inclusion in 

the portfolio, genetic algorithm solves the optimiza-

tion problem efficiently and for all periods without 

the problem of numerical instability for the solution. 

The paper is organized as follows. In section 1 we 

explain the methodology used in our study, namely 

the statistical measures, the optimization approach, 

and the genetic algorithm for solving the problem at 

hand. We introduce the data and the implications of 

the differing fund type properties in section 2. The 

portfolio optimization results are presented in section 

3 and our findings are summarized in the last section.  

1. Rachev ratio, portfolio optimization and the 

genetic algorithm 

We begin with the R ratio
1
. This return-risk measure 

uses the expected tail loss (equivalent to the condi-

tional value at risk, CVaR for continuous distribu-

tions), generally being defined as: 

pppp rVaRrrErETL 11 0,max)( ,  

where prETL1  is the expected tail loss with tail 

probability  for portfolio returns pr . Common 

choices for  are 1% or 5% in accordance with 

common choices of the confidence levels 99% and 

95% used for value-at-risk (VaR) and other risk 

measures. ETL goes beyond traditional VaR by 

providing information on the expected loss in the 

case of a tail event instead of furnishing information 

only on the loss not be exceeded with the respective 

confidence level
2
. 

                                                      
1 For extensive discussions and applications concerning the R ratio and 

related risk and performance measures see Biglova et al. (2004), Rachev 

et al. (2005), Okuyama and Francis (2007), Rachev et al. (2008) and 

Farinelli et al. (2009). 
2 See Sortino and Sachell (2001) and Rockafellar (2002) among others 

concerning VaR and CVaR / ETL.  

For the R ratio, the measure of expected tail loss is 

used in the following way: The nominator is defined 

as the ETL with probability  of the negative of the 

excess return of a portfolio over the benchmark. 

Conversely, the denominator is the ETL with prob-

ability  of the excess return of a portfolio over the 

benchmark. Defining the ratio this way, one obtains 

a measure of the estimated outperformance con-

trolled for the severity of underperformances of a 

portfolio against the benchmark:  

bp

pb

p
rrETL

rrETL
rR

1

1
)( . 

In this study, we do not use a benchmark because 

we combine very different fund types, so we set Br  

to zero and therefore have the modified R ratio be-

ing defined as: 

p

p

p
rETL

rETL
rR

1

1
)( . 

By using this ratio, one obtains a measure for abso-
lute expected gains at a given probability level di-
vided by the absolute expected losses at another 
probability level. Sensible percentages for probabil-

ity level  are, for example, 30-40% to get a reward 

term that focuses on the upper 30-40% of the return 

distribution, while probability level  could be cho-

sen to be 1% or 5% to take the highest expected 
losses into account and to be in accordance with 
common risk metrics. 

Having defined the ratio to optimize the FoFs, we 
need to impose sensible restrictions and bounds prior 
to solving the problem. As normally FoF is of the 
long only type, we impose the typical no short-selling 
constraint. Furthermore, we restrict the maximum 
weight of any fund to 20% to obtain sensible results 
that are in accordance with practical portfolio man-
agement and often seen regulatory or compliance 
restrictions. In addition, we impose the classical full 
investment constraint and restrict the outcomes to 
portfolios with positive expected returns

3
. 

The problem therefore takes the following form: 

rwETL

rwETL
rR

T

T

p
w

1

1)(max , 

1iw  (full investment constraint), 

                                                      
3 The decision whether to impose the restriction for positive expected 

returns of a portfolio needs to be based on the available asset types, 

since depending on the market situation no solution may be obtained if 

all or most assets had a negative return in the estimation period. In our 

case, it is always possible to obtain positive expected portfolio returns.  
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2.00 iw  (long-only constraint and upper limit 

of 20%), 

0rw
T

 (positive expected return) 

with rwr
T

p  being the portfolio returns for the 

vector of fund weights w  and the vector of fund 

returns r . We have chosen to maximize the R ratio 

with probability levels of 33% in the nominator, i.e. 

the upper third of the return distribution and 1% for 

the denominator, i.e. the lower 1% of the return 

distribution. Defining the ratio that way, we obtain a 

moderate and not very aggressive measure for the 

reward, controlled for the most severe expected 

losses during one period: 

rwETL

rwETL
rR

T

T

p
w

%99

%67)(max . 

We will contrast the results with other optimiza-

tions, for which the same restrictions and bounds 

were applied. The following optimizations were 

performed, thereby setting benchmark values as well 

as riskless rates of return to zero for achieving com-

parable results: 

Sharpe-ratio (SR) optimization: 

rw

rw
rS

T

T

p
w

)(max ; 

Expected Tail Loss (ETL) minimization: 

)(min %99 rwETL
T

w
; 

Expected Tail Gain (ETG) maximization: 

)(max %67 rwETL
T

w
. 

Optimizations, as presented above, were performed 

due to the following considerations: The Sharpe 

Ratio is used to check whether the distribution and 

tail focused measures are truly superior to their 

mean-variance counterparts. The minimization of 

the expected tail loss has become a popular ap-

proach in portfolio optimization in the recent past 

and the expected tail loss is the denominator of our 

non-benchmark related R ratio, i.e. the risk part of 

the ratio. As the risk part of the ratio is used for a 

stand-alone optimization, it is natural to use the 

reward term as a single objective too, in order to 

analyze whether it is one term or the interplay of the 

two terms that delivers the best result.  

While the SR, ETL, and ETG optimizations can be 

done using derivative based solving routines or lin-

ear programming routines (the solutions may lead to 

local minima however), the R ratio introduces more 

challenging computational issues. Generally, per-

formance ratio optimizations may cause several 

issues related to solving the problem at hand. The 

ratio may turn out to be unbounded, which is a very 

general argument that is valid for all performance 

ratios with a possibly negative denominator. 

For the R ratio in particular, there are additional 

complications because the problem is not quasi-

convex. This means it cannot be reduced to a con-

vex problem with the usual techniques, implying 

there may be many local extrema. However, even if 

problems are not quasi-convex, they can still be 

solved with traditional convex techniques (we have 

to keep in mind that the solution is only local never-

theless) but on the condition that the ratio is con-

tinuously differentiable twice. As the ETL function 

used in the R ratio does not have a first derivative 

for all portfolios as well as for small sample sizes 

and/or low tail probabilities, the issue of numerical 

instability may arise nevertheless. Thus, the optimi-

zation may not converge generally because of two 

reasons – either we have a case in which the ratio is 

unbounded, or the derivatives which the traditional 

convex optimization methods require are numeri-

cally unstable. 

We resort to the class of genetic algorithms to solve 

the optimization problem outlined above. Classified 

as heuristic methods for global search problems, 

genetic algorithms are procedures that behave like 

natural, evolutionary processes. The origin of ge-

netic algorithms dates back to the 1950s with Bar-

ricelli (1954 and 1957), Fraser (1957) and Fraser 

and Burnell (1970) heavily influencing the use of 

genetic algorithms in computer applications. Over 

the course of time, genetic algorithms have found 

their way to applications and research in finance and 

economics. For recent examples, see Dempster and 

Jones (2001), Hryshko and Downs (2004), Lai and 

Li (2008), and Lin and Liu (2008), among others. 

Generally, optimization using genetic algorithms is 

done by successively generating “populations” of 

solutions. Starting the search, random combinations 

of individuals are formed, for which all individuals 

are evaluated concerning their fitness, i.e. their 

contribution with respect to the objective function. In 

any following iteration, the current population is used 

to build the next generation. This is done by selection 

based on the fitness of individuals, randomly re-

combining populations and mutating individuals. In 

our case the fitness function is the R ratio as a 

function of the return vectors and of the weights of 

the funds in the FoF, the population is the portfolio 

composition. This means that the genetic algorithm is 

successively building fund compositions and the 

evaluation of any fund’s contribution to the fitness 
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(i.e. to the maximization of the R ratio) is indicative 

on the following compositions.  

While the use of genetic algorithms is often induced 

by computational necessities as in our case, they have 

a very beneficial side effect: The genetic algorithms 

search for global minima and therefore one obtains a 

very robust solution to the problem at hand and is not 

left with a local minimum or corner solutions.  

2. Real estate funds: data and implications for 

portfolio optimization 

In this section we describe our data sample and the 

implications of the data properties. The two types of 

funds used in this study are real estate mutual funds 

and German open-ended real estate funds. The for-

mer funds invest in companies in the real estate sector 

and in real estate-related companies. These compa-

nies need not be Real Estate Investment Trusts 

(REITs). Candidate companies are those doing busi-

ness mainly through the development, management 

or trading of real estate properties. In addition, real 

estate companies that are qualified as REITs are tax-

exempt under the requirement of an almost complete 

distribution of their capital gains. As with any type of 

stock, the stocks of real estate companies that the mu-

tual fund managers invest in are traded on exchanges 

and are therefore priced through demand and supply 

interactions in the equity market. The share value can 

trade at a premium to or discount to net asset value of 

the properties held by the company. According to the 

share price of the target stocks, the daily net asset 

value of the real estate mutual funds is derived, at 

which fund shares may be redeemed on a daily basis. 

The second asset type used in this study is the Ger-
man regulated open-ended real estate funds. Accord-
ing to German investment law, the special type of 
open-end fund must invest directly in property, and 
most funds focus on commercial real estate. As with 
U.S. open-end funds (mutual funds), the fund issues 
shares at net asset value; that is, there is no premium 
or discount as in the case of a closed-end fund and 
redemptions are also possible at net asset value on 
every trading day

1
. Daily net asset values of the funds 

are determined via rents received, re-valuations of 
property held (normally once per year for each build-
ing), sales and acquisitions of properties as well as on 
costs and fees (from property management, consult-
ing services, construction, refurbishments). In addi-
tion, the funds need to hold large amounts of liquidity 
(mainly cash, overnight money and very conservative 

                                                      
1 If any, there was only very little trading volume of these funds in 

secondary markets during normal market phases. However, the tempo-

rary suspension of redemptions by some funds (caused by large out-

flows of money and deteriorating liquidity) in October 2008 has led to 

trading activity on stock exchanges. 

bond investments) because of their investments in 
very illiquid assets and the daily fund inflows and 
outflows. Due to the German practice of valuation, 
the changes in property values are small and provide 
a stable and smooth pattern over time. This is caused 
by basing the valuations on the long-term expected 
rents to be received (a long-term sustainable rental 
income method) by holding the property and is in 
contrast with mark-to-market oriented valuation 
methods seen in many other jurisdictions. In addition, 
especially for large portfolios, the smoothing effect is 
even greater because the assets re-valuation is dis-
tributed over the year, rather than taking place at one 
time for all properties held. For these reasons, open-
ended real estate funds typically exhibit a very stable 
and non-volatile pattern over time. 

Using these two kinds of real estate investments results 
in a very heterogeneous sample what represents a 
common problem for FoF managers. The problem of 
not having a benchmark for portfolio selection is ap-
parent in this case, too. While FoFs investing in these 
two types of real estate funds (and in related fund types 
of the real estate sector) are spreading in Europe at the 
time of writing of this study, the combination of safe-
haven investments and more risky and volatile assets is 
also common for other asset classes. Balanced funds or 
mandates comprising both bonds and stocks or bond 
and equity funds are examples of related problems. 
The nature of those changes primarily with respect to 
the combination of the differing asset types and the 
respective weightings.  

As indicated above, the two types of real estate funds 

differ significantly with respect to their return charac-

teristics and statistical properties. Apart from some 

exceptions the typical open-ended real estate fund is 

returning between 3% to 6% per year with small daily 

movements in the net asset value and an annualized 

standard deviation of less than 1%. In contrast, the real 

estate mutual funds are exhibiting high volatility and 

leptokurtotic, skewed return distributions, and are 

prone to tail events that are typical for equity in-

vestments.  

For each class we have included 10 funds with Europe 

as their main investment region. Using weekly total 

return data from Thomson Financial DataStream until 

end of October 2008, we have chosen end of October 

2003 as our beginning date to have five years of data. 

As we use a rolling window of 52 weeks, we have 209 

periods and therefore four years with largely differing 

market periods for the fund portfolio optimization.  

Tables 1a and 1b show the used funds and the descrip-

tive statistics. From the statistics it is evident that the 

two fund types are very different from each other and 

that any assumption of normality of the return distribu-

tions fails.  
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Table 1a. Statistics of data for German open ended real estate funds 

German open ended 
real estate funds 

Mean 
Standard 
deviation 

WeeklyMin WeeklyMax ETL 99% Max. drawdown Jarque-Bera 

AXA Immoselect 4,78% 0,60% -0,21% 0,68% -0,16% -0,21% 2352,18*** 

Commerz Real Hausinvest Europa 4,27% 0,83% -0,19% 0,72% -0,18% -0,36% 691,43*** 

Credit Suisse Euroreal 4,21% 0,31% 0,00% 0,23% 0,00% -0,00% 59,51*** 

Deutsche Bank Grundbesitz Europa 6,59% 4,77% -6,33% 4,32% -3,19% -6,33% 26969,81*** 

DEGI Europa 3,18% 0,90% -0,08% 1,71% -0,05% -0,08% 193716,98*** 

DEKA Immobilien Europa 4,27% 0,77% -0,19% 0,72% -0,18% -0,19% 1400,83*** 

iii Euro Immoprofil -0,57% 1,66% -2,81% 0,69% -1,61% -3,61% 92949,90*** 

UBS Euroinvest Immobilien 5,89% 0,98% -0,14% 1,24% -0,11% -0,14% 5421,51*** 

Union Investment Uniimmo Deutschland 3,83% 1,66% -1,45% 2,63% -0,78% -1,45% 60209,68*** 

WestInvest 1 2,87% 1,06% -1,32% 0,66% -0,80% -1,32% 12933,74*** 

Notes: Annualized (linear) returns and standard deviation. ***, **, and * denote significance at the 1%, 5%, and 10% levels (rejec-

tion of the normal distribution). 

Source: Thomson Financial Datastream. 

Table 1b. Statistics of data for real estate equity funds 

Real estate equity funds Mean 
Standard 
deviation 

WeeklyMin WeeklyMax ETL 99% Max drawdown Jarque-Bera 

Amadeus European Real Estate Securities Fund -9,63% 22,36% -21,86% 6,60% -15,74% -72,36% 1316,72*** 

Credit Suisse European Property -4,74% 21,31% -17,60% 7,09% -14,66% -64,72% 492,47*** 

Dexia European Property Securities -4,09% 20,62% -19,00% 7,18% -15,13% -62,84% 1036,17*** 

Henderson Horizon Pan European Equities Fund -5,23% 20,33% -18,26% 5,73% -14,70% -68,86% 874,33*** 

Morgan Stanley European Property Fund -6,38% 21,62% -19,48% 5,81% -15,22% -66,67% 794,58*** 

AXA Aedificandi 0,87% 21,30% -20,92% 6,73% -15,57% -58,79% 1462,06*** 

ESPA Stock Europe Property -0,55% 18,14% -13,69% 5,49% -10,92% -58,94% 243,19*** 

Pioneer Eastern Europe Stock -2,16% 30,49% -24,56% 18,87% -19,58% -68,11% 633,07*** 

ING Invest European Real Estate -2,28% 20,93% -16,65% 6,96% -13,24% -60,57% 347,92*** 

Constantia European Property -5,14% 20,58% -12,84% 8,24% -10,65% -64,94% 84,28*** 

Notes: Annualized (linear) returns and standard deviation. ***, **, and * denote significance at the 1%, 5%, and 10% levels (rejection 

of the normal distribution). 

Source: Thomson Financial Datastream. 

Furthermore, Figure 1 is displaying the very time-

dependent performance of the real estate equity 

funds and the fairly stable return patterns of the 

German open ended real estate funds. 

3. Optimization results 

We show the results of the dynamically optimized 

fund portfolios in this section. As the algorithm is 

seeking to minimize the fitness function, we took the 

negative of the R ratio to maximize it. It is clear that 

the possible results can be very dispersed when con-

sidering the minimum (0.0587) and maximum (infi-

nite for the fund with zero ETL, 21.391 for remaining 

funds) values of the R ratio of the 20 funds during the 

testing period. Even though the imposed boundaries 

greatly reduce the span of possible results, the disper-

sion is, of course, still huge. 

First, we checked whether a common derivative-

based optimization routine would find solutions to 

the problem. In almost all periods this approach 

failed, although the maximum allowed iterations 

and function evaluations have been set to almost 

impractically high values. This comes as no surprise 

when keeping in mind the numerical problems dis-

cussed in section 1. We therefore went on with the 

analysis using the genetic algorithm to optimize 

fund portfolios with respect to the R ratio.  

Figure 2 shows an arbitrarily picked example (from 

the week ending September 15, 2006) of the 209 

optimizations. From the subplot bottom left showing 

the cause of termination we see that the algorithm 

found a solution to the problem after only 19 genera-

tions, which was within the span of maximum itera-

tions allowed (set to 100). Furthermore, one can see 
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that with the ongoing process of building fund com-

positions the algorithm approached both the mini-

mum of the fitness function (the maximum attainable 

R ratio in our case, subplot top left) as well as the 

fulfilling of the constraints by minimizing the con-

straint violations (subplot bottom right). The popula-

tion providing the best solution to the R ratio maxi-

mization problem is depicted in the subplot at top 

right, showing the composition of the expected R 

ratio-optimal FoF for the next period. For every 

period, the genetic algorithm converged to an 

optimum without exceeding the limits or con-

straints, showing the usefulness of its application 

to the problem.  

 

Fig. 1. Total returns of the 20 used funds 

 

Fig. 2. Example of genetic algorithm for solving the R ratio optimization for the estimation period  

September Week 2, 2005 until September Week 2, 2006 
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The SR optimization was done by a standard deriva-
tive-based optimization. For only a handful of peri-
ods, optimal portfolios were violating a constraint; 
we then used the previous allocation for that period, 
not significantly influencing the results. For the ETL 
and ETG optimizations, standard derivative-based 
solving methods were also sufficient and delivered 
results for all 209 periods for both approaches, we 
did not experience numerical instabilities in any of 
the rebalancing periods. 

By calculating the portfolio returns when investing 

the portfolio as indicated by the weekly ratio maxi-

mization, the performances shown in Figure 3 and 

summarized in Table 2 are obtained. The R ratio 

optimized portfolio clearly outperforms both its 

Sharpe ratio counterpart that focuses on returns to 

variability as well as the two approaches using ei-

ther the reward or the risk term. As expected, the R 

ratio FoF has a higher standard deviation than the 

Sharpe ratio portfolio, but only a slightly higher one 

than the risk reduction focused minimum ETL port-

folio (the ETG oriented FoF has the highest disper-

sion, of course, as it does not control for either vari-

ability or risk). It is particularly interesting that the 

R ratio optimal portfolio has a somewhat smaller 

ETL than the portfolio focusing exclusively on that 

measure. This means that the orientation of the R 

ratio to realize gains and thereby to control for the 

highest risks works very well for our set of hetero-

geneous assets. A reward to risk ratio as used here is 

therefore highly effective on realizing risk-adjusted 

returns. This became even more clear when calculat-

ing the R ratio for all four approaches after the op-

timizations were done. As the ratio should naturally 

be the highest for the approach focusing on it, we 

can see that indeed this outcome is obtained, with a 

42% (0.27 to 0.19) higher ratio when being com-

pared with the Sharpe and ETL portfolio and a 29% 

(0.27 to 0.21) higher ratio when being compared to 

the ETG portfolio. 

 

Fig. 3. Total returns of the four portfolio optimization approaches 

Table 2. Statistics of optimized portfolios 

Optimized funds of funds over time Mean 
Standard 
deviation 

WeeklyMin WeeklyMax ETL 99% Max drawdown 
R ratio  

(67% to 99%) 

R ratio optimized portfolio (67% to 99%) 7,61% 4,68% -2,93% 2,31% -2,76% -9,08% 0,27 

Sharpe ratio optimized portfolio 5,06% 1,69% -1,43% 1,23% -1,31% -2,38% 0,19 

Expected Tail Gain optimized portfolio (67%) 3,20% 12,59% -7,81% 4,89% -7,71% -39,53% 0,21 

Expected Tail Loss optimized portfolio (99%) 4,89% 4,36% -3,51% 2,11% -3,11% -7,91% 0,19 

Notes: Annualized (linear) returns and standard deviation. 

As the statistics of the FoFs discussed, so far, fo-

cused on the weekly measures and the distributions, 

the inter-temporal measures also deserve attention. 

As we can see from Figure 3, the four approaches 
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led to very different return patterns over time. While 

the ETG portfolio generates large returns during the 

bull phase of the real estate equity markets, the same 

portfolio took a large hit during the correction in the 

market and the ongoing financial market crisis, 

since no control for risk is implemented. On the 

other side, the large standard deviations of the real 

estate mutual funds lead to very defensive FoF allo-

cations when using the Sharpe ratio. The return pat-

tern merely resembles the ones of the German open-

ended real estate funds, i.e. the Sharpe ratio is miss-

ing the upside possibilities due to investing heavily 

in the safe-haven funds. While all three approaches 

result in a lower terminal wealth than the R ratio 

FoF, the comparison between the portfolios based 

on the R ratio and the ETL turns out to be most in-

teresting again. After the R ratio portfolio has real-

ized far more upside returns in the bull phase of the 

real estate equity markets, the drawdown in the fol-

lowing post-peak phase (which was in February 

2007) was only slightly worse than that of the ETL 

FoF (-9.08% versus -7.91%). This shows again that 

R ratio optimized portfolios may be able to realize 

upside potentials and, on the other hand, limit the 

severity of losses during downward phases as well.  

However, none of the approaches delivered a return 

pattern that realized the good performance of the 

equity markets and switched completely into safe-

haven investments during the drawdown period, but 

this is merely a fact that is due to the chosen exem-

plary estimation window of 52 weeks. Although it is 

questionable that perfectly fitting portfolios are real-

istic, shorter durations, higher frequencies, and other 

estimation methods for the tails or combinations of 

estimation periods could further enhance the return 

patterns of all four approaches.  

Conclusion 

In this paper, we propose a framework to portfolio 
optimization that is superior to the mean-variance 
approaches utilized for asset allocation. Using a very 
heterogeneous set of funds for which we used real 
estate funds as an example, we show how a portfolio 
can be managed efficiently by using a ratio-based 
portfolio optimization approach. We also provide a 
general solution to related optimization problems and 
the technical challenges arising from them. 

The modified R ratio approach used for our bench-

mark-free optimization delivers an FoF performance 

that is superior to the one obtained when performing 

a Sharpe ratio-based optimization approach as well 

as when employing other tail-dependent optimiza-

tion frameworks. Our results show the appropriate-

ness of the approach that is due to the capability of 

taking into account tail risks and simultaneously 

realizing gains on the upside.  

Arising computational challenges caused by the 

non-quasi-convex type of the optimization problem 

are addressed by using a genetic algorithm. The 

genetic algorithm solved the optimization problem 

efficiently and resulted in robust optima, while clas-

sical derivative-based algorithms, which in addition 

may result in local minima, failed to solve the prob-

lem at hand. As the problem of non-quasi-convexity 

of the optimization is apparent for all ratio-based 

optimizations to may have a negative denominator, 

we propose to use genetic algorithms for solving 

such problems in general.  
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