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Development under a concessionary agreement: a real option 

approach 

Abstract 

In this article we study the situation, where a private company is able to obtain a concession by the state to develop a 

project, and is able to return this concession at its own will, when the project becomes unprofitable. The latter may 

result in a fee that the company needs to pay to the state. We are particularly thinking about the development of state-

owned land in China and Thailand for the matter of building private schools, hospitals, factories, roads or expressways. 

To model this, we use multi stage real option theory. In particular, we discuss the cases where the project value follows 

either a geometric mean reversion process or a geometric Brownian motion. For these cases we derive the Bellman 

equations and show how the problem can be solved backwards in time. The resulting free boundary problems are 

solved numerically via the shooting method. A comparative analysis is provided. Particular emphasis is given to the 

role of uncertainty and how uncertainty affects the average time that the concessionary agreement is in action. The 

latter problem is approached by using Monte Carlo simulation.  

Keywords: investment, real options, dynamic programming. 

JEL Classification: C61, G11, G12, G31. 
 

Introduction© 

In countries such as China, Thailand, Australia or 

Russia, many sectors of the economy are or have 

initially been state owned. Such sectors include but 

are not limited to natural resources, land, 

infrastructures, services such as the postal service, 

dental care or transportation services, etc. In 

particular in the services sector full privatization has 

been taken place in many cases. For other sectors, 

say natural resources such as coal, oil or nuclear 

energy, it may not be ideal for the state to proceed to 

full privatization. In the cases mentioned, this may 

well be as the states souvereignity or security is 

endangered. On the other side, private companies 

may have developed great expertise and efficiency 

to undertake projects in specific sectors that are 

relevant for the state-economy. Further, the state 

budget may not allow sufficient investment to 

develop each and every part of the economy. For 

example, the government of Thailand has had many 

construction plans for building inter-city roads and 

expressways in order to reduce the traffic 

congestion in the city centres. The government, 

however, has been unable to undertake all projects 

mostly due to financial constraints. In these cases it 

may be worthwhile for the state government to give, 

a concession to a private company to develop a 

specific project until either the concession ends at a 

given date in the future, or the private company ends 

the concession premature, paying an appropriate 

penalty fee to the government. When the concession 

has ended, all property rights fall back to the state 

and a new concession can be arranged. In this article 

we study the situation, where the concession will 

not be given to the same private company again, if 
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this company decides to end the concessionary 

agreement prematurely. This assumption is realistic 

in many cases, where private companies compete 

for state concessions. 

Entry-exit models in the real option context have 

been discussed in the literature (see, for example, 

Mossin (1968), Brennan and Schwartz (1985), Dixit 

(1989) and Sodal (2006)). There, private companies 

retain whatever market power they had to start with, 

and do not lose the right to invest again if they 

abandon operation. Our model is different from 

these, in the way that we do not allow for re-entry, 

which is realistic under the assumptions indicated 

above. This makes the problem essentially much 

harder to solve. Also unique is our use of 

exponential utility for modeling the benefits of the 

private company when undertaking the project. 

Mathematically we model the level of development 

)(tx of the project in two different ways. In the first 

instance we assume that the level follows a 

geometric mean reverting process, while in the 

second instance we assume it follows a geometric 

Brownian motion. From the point of dynamics, 

these are standard assumptions in real option theory. 

Technically, geometric mean reversion models the 

case where the level is mean reverting in a way that 

in the long term it keeps fluctuating around a so 

called mean reversion level . In this case the level 

features bounded variance and in expectation will 

converge to a certain value, which is the mean 

reversion level minus some expectation bias (see 

Ewald and Yang (2007)). This is a good modeling 

assumption in the case of renewable resources. 

Geometric Brownian motion, on the other side, grows 

exponentially in expectation and its variance will 

eventually become arbitrary large. Both, geometric 

mean reversion and geometric Brownian motion have 



Investment Management and Financial Innovations, Volume 7, Issue 2, 2010 

120 

in common that if hypothetically the level of )(tx  

would fall to zero, it would stay there forever. This has 

implications on the value function, which have in part 

been discussed in Ewald and Wang (2010), where as 

an alternative the Cox-Ingersoll-Ross process is 

proposed for modeling in the real option context. 

The level of development )(tx  does not necessarily 

have to be a monetary value, it could be, for 

example, the level of industrialization, or the 

percentage of households that have access to 

medical treatment in the form of modern hospitals. 

During the time a private company develops the 

project under the state concession, the private 

company will accumulate utility measured in terms 

of a utility function ))((1 txF , which measures 

benefits against costs. 

Most of the classical real option models in the 

literature, including aforementioned authors, do not 

allow for a fully analytic solution. In the classical 

cases, it is possible to compute the solution of the 

dynamic programming equation analytically, but the 

threshold level for investment needs to be computed 

numerically. In our model we have to go one step 

further. Due to the fact that we do not allow for re-

entry and the fact that we use a more complex utility 

function, we are not able to solve the dynamic 

programming equation analytically, at least not for 

the part that corresponds to the period in which the 

private company is developing the project. Instead we 

use a numerical method called “shooting method” to 

deal numerically with the corresponding free 

boundary problem. A detailed discussion of the 

numerical results, including a thorough comparative 

analysis, is provided. 

The relationship between uncertainty and the expected 

time the private company develops the project under 

the concessionary agreement is an interesting aspect 

for both, the state and the private company. In other 

real option models the relationship between 

uncertainty and investment has been frequently 

discussed. Authors such as McDonald and Siegel 

(1986), Dixit (1989), Mauer and Ott (1995) as well as 

Metcalf and Hassett (1995) find that a rise in 

uncertainty leads to a larger critical value as the real 

option increases in price and it becomes more 

profitable to hold on to the option. Carr, Ewald and 

Xiao (2008) as well as Ewald and Yang (2008) 

provide examples that in case the underlying dynamic 

is more complex or in case that risk aversion is taken 

into account in a genuinely incomplete setup, these 

results do not necessarily hold in a more general 

context of real option theory. Furthermore Sarkar 

(2000) argues that the relationship between uncertainty 

and investment is not necessarily expressed in the 

relationship between volatility and threshold, as an 

increase in volatility may force the level to reach the 

threshold earlier rather than later, even though the 

threshold is higher, time until investment is undertaken 

is shorter. Instead, Sarkar proposes to study the 

expected time that passes until investment is 

undertaken in terms of the level of uncertainty. We 

will discuss both of these aspects in this article. As 

opposed to Sarkar (2000) who studies a single 

investment problem, we are facing two times, 1 , 

when the private company enters the concessionary 

agreement, and 2 , when the private company ends it. 

Our focus will be on the expected time 12E  that 

the private company is developing the project. 

The remainder of the paper is structured as follows. 

In section 1 we will set up our single entry-exit 

model while in section 2 we will discuss how to 

solve it. Section 3 is devoted to numerical results 

and their discussion, this includes a detailed 

comparative analysis. In the last section we 

summarize conclusions. The article contains two 

appendices, one which contains all figures and one 

in which we briefly illustrate the shooting method 

that is at the center of our numerical analysis. 

1. Model setup 

As indicated earlier, we study the situation where a 

project is in the first instance developed by the state, 

until a private company takes over under a 

concessionary agreement, which it can end at any 

given time under payment of a penalty fee. The 

level of the development is denoted with )(tx . The 

two main questions for the private company are: 

When is the optimal time to enter the concessionary 

agreement, and When is it optimal to end it? This 

will naturally lead us to a two stages real option 

problem which we will set up below. 

1.1. The case of geometric mean reversion. In this 

section, we describe the model where the level of 

development follows geometric mean reversion. In 

this case the dynamic optimization problem of the 

private company is given as 

,=(0)))(())((max=)( 1
2

2
1

2

12
<

1

xxIeIxSedttxFexV s

r

q

rrt
E  (1) 

s.t. ,);()()())((=)( 1ttdWtxdttxtxtdx      (2) 

.);()()())((=)( 21 ttdWtxdttxtxtdx  (3) 
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The interpretation of this is as follows. Before the 

company invests in the project at time 1  the 

dynamics of the level of the project, )(tdx , follows 

(2). During that period the development is entirely 

undertaken by the state government. The parameter  

represents the government contribution to the project 

and  is the depreciation rate. We assume 

0>> . The parameter 0>  denotes the 

volatility and )(tW  stands for a standard Wiener 

process. Once the private company decides to enter the 

concessionary agreement at time 1 , the company 

needs to pay a fee 0>sI  to the government. In 

addition, the dynamics of the development level 
changes due to the private company now running the 

business. We assume that )(tx  then follows the 

dynamics (3) until time 2  at which the private 

company decides to end the concessionary agreement. 
At that time the dynamics would go back to (2), but as 
the private company does not earn and in fact will 
never again earn any benefits from the project, this fact 
does not contribute to the private companies' 

optimization problem. Between time 1  and 2  the 

parameter  represents the private companies' 

contribution to the project and ))((1 txF  stands for the 

utility that the private company obtains from the 
development. At the time the private company decides 
to end the concessionary agreement, it will give the 
initial capital back to the government, but will be 

reimbursed ))(( 2xS  for the development 

undertaken, e.g. factory buildings that have been 
erected on state owned land etc. Additionally, the 

private company will have to pay a penalty fee of qI . 

We will solve the dynamic optimization problem (1)-
(3) backward in time as it is standard in multi-stage 

real option problems. Let )(0 xV  and )(1 xV  denote the 

value functions of the corresponding dynamic 

optimization problems before 1  and in between 1  

and 2 . After the private company ends the 

concessionary agreement it will obtain a terminal 

payoff of qIxS ))(( 2 , but there will be no option 

value left. Note that )(=)( 0 xVxV  and this function 

includes the combined option value, the one to enter 

and the one to exit, while )(1 xV  only includes the 

option value of exiting. It follows from standard real 
option theory that the private company will enter the 
concessionary agreement when a certain investment 

threshold 
*

sx  is reached. At this threshold the so called 

value matching condition (4) and smooth pasting 
condition (5) need to be satisfied. Further, the 
company will end the concessionary agreement when 

a second investment threshold 
*

qx  is reached at which 

the value matching condition (6) and smooth pasting 
condition (7) apply.  

,)(=)( *

1

*

0 sss IxVxV                                             (4) 

,)(=)(
'*

1

'*

0 ss xVxV                                              (5) 

,)(=)( **

1 qqq IxSxV                                              (6) 

.)(=)(
'*'*

1 qq xSxV                                                (7) 

1.2. The case of geometric Brownian motion. As an 
alternative to the setup based on geometric mean 
reversion we consider the following setup, which is 
geometric Brownian motion based. The private 
company aims to maximize (1) subject to  

,);()()(=)( 1ttdWtxdttxtdx              (8) 

.);()()(=)( 21 ttdWtxdttxtdx     (9) 

The parameters ,  and  are interpreted in the 

same way as before. Note that there is no depreciation 
here, and in fact (8) and (9) are special cases of (2) and 

(3) for 0= . The analysis, however, is different from 

the case of ,0  that is why we include it as a 

separate case here.  

2. Solving the problem 

In this section we derive the partial differential 
equations that will determine the solutions of the 
optimization problems (1)-(3) resp. (1), (8)-(9) and 
discuss how to solve them with a combination of 
numerical and analytical methods. As indicated before, 
we proceed backward in time. In the first step we have 

to find )(1 xV  and 
*

qx . Once )(1 xV  is determined, we 

will solve for )(0 xV  and 
*

sx . 

In our model, we use exponential utility to 

measure the benefits that accrue with the level of 

the development )(tx  as well as linear costs, 

yielding to a utility function of the type 

)())((exp1=))((1 txtxtxF . For simpli-

city we assume that the terminal payoff for the 

private company is given as )(=))(( txtxS . Note 

that the final payoff also includes the level of 

development that has been existing before a 

concessionary agreement has been set up, and that 

the private company would normally only be 

remunerated for the additional level of 

development that it has contributed. However, the 

initial level can be taken care of in the fees sI  so 

that in this case the payoff )(=))(( txtxS  still 

makes sense.  
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2.1. Geometric mean reversion. The equations (2) 

and (3) are of the geometric mean reversion type 

which is well understood. It is known that the 

equilibrium distribution of this process is a Gamma-

distribution and all of its moments have been derived 

in Ewald and Yang (2007) for example. An analytic 

expression for the non-equilibrium distribution has 

been derived in Yang and Ewald (2010). The 

dynamics of (2) and (3) are tied to the mean reversion 

level  and  respectively. The parameter  

captures how fast the value of )(tx  reacts to the 

disturbance from the mean level. 

We start with solving the problem for )(1 xV  and 
*

qx , 

21 t  by using the constraint (3) with the two 

free boundary conditions (6) and (7). Using the 

specific forms for ))((1 txF  and ))(( txS , the 

corresponding Bellman equation becomes  

xxexpVxxVxrV ))(1'
2

1
'= 1

22

11
 (10) 

subject to the following two conditions:  

,=)( **

1 qqq IxxV                                                (11) 

.1=)(
'*

1 qxV                                                         (12) 

We will solve (10) subject to (11) and (12) 

numerically. In order to do that, an additional 

boundary condition is needed. This condition, which 

applies for both geometric mean reversion and 

geometric Brownian motion, comes from the fact 

that 0=)(tx  is a fixed point of the dynamics (2), 

(3), (8) and (9). It states 

0.=(0)1V                                                             (13) 

It has been shown in Ewald and Wang (2010) that 

this condition is equivalent to the seemingly 

lessrestrictive condition <(0)V . The idea for 

solving the free boundary problem numerically is 

as follows. We first make a guess that the optimal 

threshold 
*

qx  is x̂ , and then apply the shooting 

method (see appendix for details) to solve the 

boundary value problem (10) subject to (13) and 

(11). We then check whether the solution x̂  

satisfies (12) within a certain level of tolerance, 

which we allow for. If x̂  does not satisfy (12), we 

change x̂  to x̂  where  is a small number. 

This procedure is repeated until an approximation 

to the solution 
*

qx  is found. 

Once we have )(1 xV , we will then solve for )(0 xV  

and 
*

sx , by using the constraint (2) with the two free 

boundary conditions (4) and (5). The Bellman 

equation for this problem is  

.'
2

1
'= 0

22

00 VxxVxrV                         (14) 

This problem is essentially the same as the classical 

real option problem discussed in Dixit and Pindyck 

(1994), except that the value matching conditions are 

coming from )(1 xV , which makes it more 

complicated. Nevertheless the way to derive the 

general form of the value function before 1  is in 

complete analogy to Dixit and Pindyck. To make this 

article as self-contained as possible, we include this 

derivation here. 

It is not difficult to see that an elementary solution 

of (14) is given by  

).(=)(0 xhAxxV  

By substitution in (14) and after rearranging terms, 

we obtain 

0.=)()()()(
2

1
1)(

2

1
)( 2212

xhxhxxhxxrxhx  (15) 

Equation (15) needs to hold for all values of x , 

therefore the coefficients for both )(xhx  and 
1

x  

must be equal to zero. From the first term of (15), 

we get  

0=1)(
2

1 2
r  which has two roots:  

,

2)
2

1
()

2

1
(

=
2

2222

1

r

 (16) 

.

2)
2

1
()

2

1
(

=
2

2222

2

r

   (17) 

This leads to  

)()(=)( 2
2

21
1

10 xhxAxhxAxV  

with 1,2=);( ixhi  satisfying  

).()(')()('
2

1 22
xhxhxxxh iiiii  (18) 
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Substituting 
2

2
=

x
z  and )(=)( zmxh ii , we obtain 

)('
2

=)('
2

zmxh ii  and )('
2

=)('

2

2
zmxh ii . 

The equation (18) then becomes  

,0=)()(')()(' zmzmzbzzm iiii             (19) 

where .2
2

=
2

b  

Equation (19) is known as the Kummer equation and 

its solution is given by the Kummer’s M  functions, 

denoted as M  in the following. The Kummer M  

function is also known as confluent hyper geometric 

function. Details on the Kummer M  function can 

be obtained from Abramovitz and Stegun (1972). As 

2  is negative and the Kummer M  function takes 

the value 1 for the argument 0=x  we therefore 

need to impose the condition 0=2A  so as to get a 

finite value of the project at 0=x . The solution of 

(14) is therefore  

,
2

,2
2

,=)(
220 xMAxxV                 (20) 

where 1= AA  is a constant that is yet to be 

determined, 1=  and ),,( zbaM  denotes the 

Kummer’s M  function. 

The free boundary conditions (4) and (5) become  

ssss IxVxMAx )(=
2

,2
2

, *

1

*

22

*
     (21) 

and  

.
2

,2
2

,

2
1,2

2
1,

22

2

*

1

*

22

1*

*

222

*

sss

ss

xVxMAx

xMAx

  (22) 

Because )(1 xV  does not exist in analytic form, we 

have to replace it by the corresponding finite 

difference  

.
)()(

)( 11'

1
h

xVhxV
xV  

To obtain )(0 xV  and 
*

sx  we now proceed as 

follows: )(1 xV  has been obtained in the previous 

step numerically and we know the value of )(1 xV  at 

each 
*

210 =,,,0,= qn xxxxxx . We first make 

a guess that 1

* = xxs  and then use (21) to find out 

A . We then substitute 1x  and A  in (22). If 1x  and 

the corresponding A  satisfy (22) up to a certain 

level of tolerance; i.e. the difference between LHS 

and RHS of (22) is less than a given small number 

 (we use 
410=  here), we take 1

* = xxs . 

Otherwise we move to 2x  and carry on. The 

procedure is repeated until 
*

sx  is found. 

2.2. Geometric Brownian motion. We are using 
the same procedure as in the previous subsection. 

We start with solving the problem for )(1 xV  and 
*

qx  

using the dynamic constraint (9) with the two free 
boundary conditions (6) and (7). With the chosen 

form of ))((1 txF  and ))(( txS  we obtain the 

following Bellman equation  

xxVxxVrV )(exp1'
2

1
'= 1

22

11   (23) 

with the same boundary conditions as in the case of 
geometric mean reversion, (11) and (12). We solve 
this free boundary value problem numerically in a 
similar manner as before. 

Once )(1 xV  is obtained, we proceed to find )(0 xV  

and 
*

sx  under the dynamic constraint (8) and the two 

free boundary conditions (4) and (5). This problem 
leads to the following Bellman equation  

.'
2

1
'= 0

22

00 VxxVrV                                   (24) 

Equation (24) is the same as in the classical real 
option problem with geometric Brownian motion 
describing the project value (see Dixit and Pindyck 
(1994)) except that the free boundary conditions are 
changed. 

The elementary solution of (24) is of the type  

.=)(0 AxxV  

By substitution in (24), we obtain  

0=1)(
2

1 2
rAxAxAx  

and hence we can identify  as the solution of the 

following quadratic equation  

0.=1)(
2

1 2
r  

The two solutions are  

,

2)
2

1
()

2

1
(

=
2

2222

1

r

 (25) 
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.

2)
2

1
()

2

1
(

=
2

2222

2

r

    (26) 

This leads to a general form  

.=)( 2
2

1
10 xAxAxV  

It is obvious that 2  is negative and for the same 

reason as before, i.e. to ensure the finite value of the 

project at 0=x , we must have 0=2A . The 

solution of (24) is therefore  

,=)(0 AxxV                                                      (27) 

where 1= AA  is a constant that is yet to be 

determined and 1= . 

The two free boundary conditions (4) and (5) are 

translated to  

,)(= *

1

*

sss IxVAx                                           (28) 

and .)(= *

1

1)*(

ss xVAx                                    (29) 

To solve for )(0 xV  and 
*

sx  we proceed in the same 

way as before. Note that in (29) )(1 xV  is once more 

replaced by the corresponding finite difference. 

3. Numerical results 

In this section we discuss the results of our 

numerical computations which are based on the 

previous two sections. We also undertake a 

comparative analysis and discuss in particular how 

the threshold levels 
*

sx  and 
*

qx  are affected by 

changes in the parameters. In addition, we 

investigate the relationship between uncertainty and 

the expected time the private company will develop 

the project under the concessionary agreement.  

3.1. Geometric mean reversion. In the following 
we discuss the geometric mean reversion based 

model (1)-(3) with parameters  = 0.4, r = 0.2,  = 

0.05,  = 0.2,  = 0.1,  = 0.2, and 0.7=sI . The 

numerical results obtained for )(0 xV , 
*

sx  as well as 

)(1 xV , 
*

qx  are displayed in Figure 1 and Figure 2 in 

the appendix. 

Figure 1 displays the value functions, )(0 xV  and 

)(1 xV , as a function of the level of development x . 

The dashed line in the figure represents the private 
company's value function before entering the 

concessionary agreement, i.e. )(0 xV , whereas the 

thick line represents the company's value function 
after investing in the project minus the sunk costs 

the company needs to pay when the company adopts 

the project, i.e. sIxV )(1 . Our computation shows 

that it is optimal for the company to invest in the 

project at the threshold of 1.2182=*

sx . 

Figure 2 displays the value function of the private 

company before ending the concessionary 

agreement, i.e. )(1 xV  (thick line) as well as the 

terminal payoff qIx  (dashed line), as functions of 

the level of development x . Our numerical results 

show that it is optimal for the private company to 

end the concessionary agreement once the level of 

development reaches the threshold, 2.7104=*

qx . 

3.1.1. Comparative analysis and effects on the 

thresholds. There are several parameters in the 
model that could affect the private company's value 

function, )(xV , and thus the thresholds, 
*

sx  and 
*

qx . 

For each case, we investigate the changes in the 

thresholds and value functions, )(0 xV  and )(1 xV  

with three different values for each parameter while 
the remainder of parameters are fixed. The results 
are displayed in Figures 3-10. The parameters that 
we consider are: 

uncertainty measured in terms of the 

instantaneous volatility ,  

the private company contribution ,  

the depreciation parameter , and  

the penalty fee qI .  

Figure 3 and Figure 4 show how  affects the 

value functions and the thresholds whereas Figure 5 

and Figure 6 demonstrate the impacts of  on the 

results. Figure 7 and Figure 8 illustrate the change in 
the value functions and thresholds as a consequence 

of changes in . The penalty fee the private 

company needs to pay if it decides to end the 

concessionary agreement, i.e. qI , also affects the 

results as shown in Figure 9 and Figure 10. 

It can be seen in Figures 3 and 4 that the thresholds, 
*

sx  and 
*

qx , are both increasing in . The larger  

is, the greater is the uncertainty component in the 

level of development. The effects of  on the 

thresholds can be observed in Figures 5 and 6. Our 

results show that  positively impacts 
*

sx  but 

negatively 
*

qx . This is intuitive as  represents the 

money the firm contributes to development, which 
positively affects the growth in development, but 
negatively the costs carried by the private company, 
part of which is recovered in the terminal payoff. 
The higher the costs, the less attractive is it to 
initially enter the concessionary agreement. 
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The impact of depreciation, , on the thresholds is 

displayed in Figures 7 and 8. The threshold to enter 

the concessionary agreement, 
*

sx , is increasing in  

while the threshold for ending, 
*

qx , is decreasing. As 

depreciation is essentially a cost that needs to be 

carried by the private company under the 

concessionary agreement, the intuition behind this 

result is essentially the same as in the previous 

paragraph. 

Figures 9 and 10 display the effect of the penalty fee 

qI  the firm needs to pay if it would like to end the 

concessionary agreement. In Figure 9, we observe 

that the amount of the penalty does not have any 

significant effect on the threshold for entering but 

does affect the value function, )(0 xV . This is 

intuitive as the penalty fee is also a kind of cost that 

the private company has to carry. In Figure 10 we 

observe that the higher the penalty fee, the longer 

the firm developing under the concessionary 

agreement. This is because the firm needs to wait 

for higher terminal benefits )( *

qxS  in order to 

compensate for the higher penalty fees. 

Let us now consider the effect of the government 

contribution to development, , as well as the sunk 

costs the company needs to pay once the company 

adopts the project, sI . Figure 11 demonstrates that 

the threshold, 
*

sx , is increasing in . The larger , 

the larger the drift term in the level of development 

x , which will increase x  in average and, hence, 

positively affect the value function )(1 xV . The 

increase in 
*

sx  should not be interpreted that the 

private company becomes more cautious to entering 

the agreement, but simply that it expects the 

government to push up the level of development 

quickly to a higher level, at which it becomes more 

profitable for the private company to enter. 

It is observed in Figure 12 that the critical value to 

adopt the project, 
*

sx , has a positive relation to sunk 

costs, sI . This can be understood as follows. The 

higher the sunk costs that the firm needs to pay once 

it enters the concessionary agreement, the less 

incentives it has to do so. The private company 

needs to wait longer to guarantee that the value of 

the project is high enough to cover the sunk costs 

once it adopts the project. 

3.1.2. The effect of uncertainty on the expected 

length of the concessionary agreement. In the 

previous section, we examined the effects of each 

parameter on the thresholds, 
*

sx  and 
*

qx . In this 

analysis we also included the uncertainty parameter 

. A related, but conceptually different question is 

to ask for how long on average will the 

concessionary agreement last. In this section we will 

determine the expected value of the difference 2  

and 1  when optimal thresholds are applied under 

different levels of uncertainty. The complexity of 

our model prevents us to use analytic results about 

exit times, such as in Sarkar (2000), and instead we 

apply Monte Carlo simulation. As our problem is 

path-dependent, particular care has to be taken, on 

the problem of generating paths. Standard theory on 

numerical simulation of stochastic differential 

equations suggests the Euler-Milstein schemes, 

which features a strong convergence rate of 1. 

Using Euler-Milstein, the discrete approximations of 

)(tx  following (2) for 1<t  and (3) for 1t  are 

,=(0)],))[((
2

1
)()())(()(=1)( 0

22
xxtWtxWtxttxtxtxtx                             (30) 

and ,]))[((
2

1
)()())(()(=1)( 22

tWtxWtxttxtxtxtx  respectively.                  (31) 

Given the two thresholds for entry and exit 
*

sx  and 

*

qx , and an initial value of the project 
*

0 < sxx , we 

simulate the level of development of the project, 

)(tx , using (30) and (31) above for many times and 

take the average value of the time the concessionary 

agreement lasts, i.e. the time the paths have spent 

between 
*

sx  and 
*

qx , as an approximate for the 

expected value 12E . 

For the purpose of illustration, the following 

parameter values have been chosen:  = 0.6, r = 0.2, 

 = 0.3,  = 0.1,  = 0.3, Iq = 1 and Is = 0.7. In our 

simulation, we consider eleven different values of 

 which are ,0.2.12,0.1,0.11,0 . Figure 13 

displays  and the expected value 12E . In 

the analysis in the previous section we have 

observed that the larger  is, the higher 
*

sx  and 
*

qx . 

Our results now show that 12E  appears to be 

increasing in , meaning that concessionary 

agreements are likely to last longer, the higher the 

uncertainty is. 

3.2. The case of geometric Brownian motion. We 

now consider the case (1), (8)-(9) where the level of 

development is modeled as a geometric Brownian 
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motion. In our numerical anlyisis we use the 

following parameter values:  = 0.4, r = 0.2,  = 

0.17,  = 0.1,  = 0.17, Iq = 1 and Is = 0.7. and 

0.7=sI . The results are shown in Figure 14 and 

Figure 15, respectively. 

Figure 14 displays the value functions, )(0 xV  and 

)(1 xV , as a function of the level of development x  

when x  follows a geometric Brownian motion. In 

the figure the dashed line illustrates the company's 
value function before entering the agreement, 

)(0 xV , whereas the thick line illustrates the 

company's value function after entering the 
agreement minus the sunk costs the company has to 

pay when entering, sIxV )(1 . Our results shows 

that it is optimal for the company to enter the 
concessionary agreement if the threshold 

0.8422=*

sx  is reached. 

Figure 15 displays the value function, )(1 xV  and 

terminal payoff, as a function of the level of 
development x . In the figure the thick line 

represents the value function of the company 

before ending the agreement, )(1 xV , while the 

dashed line represents the terminal payoff qIx . 

Our results show that it is optimal for the 
company to end the agreement if the threshold 

5.5876=*

qx  is reached. 

3.2.1. Comparative analysis and effects on the 

thresholds. In this section, we vary the same 
parameters as in the geometric mean reversion case 
(except that there is no depreciation here) and study 

how the company’s value function )(xV  and 

threshold levels 
*

sx  and 
*

qx  are affected. 

Figures 16-21 show the value functions, )(0 xV , 

)(1 xV  and terminal payoff as well as thresholds, 
*

sx  

and 
*

qx  depending on the various parameters. 

Figures 16 and 17 show how  affects the value 

functions and the thresholds whereas Figures 18 and 

19 illustrate the changes in the value functions and 

the thresholds caused by changes in . The effect 

of the penalty fee that the private company needs to 

pay to the government if it decides to end the 

agreement, qI , can be seen in Figures 20 and 21. 

The effect of the government contribution  as well 

as the sunk costs the company needs to pay once the 

company enters the agreement, sI , also affect the 

results but only prior to entering, i.e. )(0 xV  and the 

threshold, 
*

sx . The effects of changes in  and sI  are 

displayed in figure 22 and figure 23. 

Comparing to the geometric mean reversion case, 

we find that the parameters, , , Iq,  and Is, have 

the same qualitative effects on the thresholds, 
*

sx  

and 
*

qx . The same intuition applies.  

3.2.2. The effect of uncertainty on the expected length 

of the concessionary agreement. As in the geometric 

mean reversion case, we are interested in the impact of 

uncertainty, measured in terms of the instantaneous 

volatility , on the time 12  the concessionary 

agreement is intact. As before the idea is to find the 

expected value of 12  using Monte Carlo 

simulation, while employing the Euler-Milstein 

method. In this case )(tx  follows (8) for 1<t  and 

(9) for 1t . The Euler-Milstein scheme is given 

as 0

22 =(0)],))[((
2

1
)()()(=1)( xxtWtxWtxttxtxtx   (32) 

and ]))[((
2

1
)()()(=1)( 22

tWtxWtxttxtxtx  respectively. (33) 

Given the two thresholds for entry and exit, 
*

sx  and 

*

qx , and an initial value for the level of 

development, 
*

0 < sxx , we use Monte-Carlo 

simulation as in the geometric mean reversion case 

in order to compute 12E . In our numerical 

example we have chosen the following set of 

parameters:  = 0.4, r = 0.2,  = 0.18,  = 0.18, Iq = 

1 and Is = 0.7. We use eleven different values for  

which are ,0.2.12,0.1,0.11,0 . Figure 24 displays 

 and the expected value of 12 . The result 

shows the same relationship between  and 

12E  as in the geometric mean reversion case, 

i.e. the higher the uncertainty is, the longer the 
concessionary agreement is expected to last.  

Conclusion 

We have studied the problem where a private 

company is given a concession by the state 

government to develop a project. The optimal time 

to enter the concessionary agreement and the 

optimal time to end it have been computed using 

different modeling assumptions, i.e. geometric mean 

reversion and geometric Brownian motion. The 

effect of various model parameters on the threshold 



Investment Management and Financial Innovations, Volume 7, Issue 2, 2010 

127 

levels for entry and exit has been analyzed with 

particular emphasis on the uncertainty parameter 

. Further, the effects of uncertainty on the 

expected time the concessionary agreement is 

expected to last have been investigated by means 

of Monte Carlo simulation. 
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Appendix A. Graphical illustration 

The case of geometric mean reversion  

    
Fig. 1. GMR: Value functions; )(0 xV  and )(1 xV , and the 

threshold 
*

sx  for entering the concessionary agreement 

 

Fig. 2. GMR: Value functions; )(1 xV , and the terminal payoff, 

and the threshold 
*

qx  for entering the concessionary agreement 
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Fig. 3. GMR: Value functions; )(0 xV  and )(1 xV , and the 

threshold 
*

sx  for entering the concessionary agreement with 

different  

 
Fig. 4. GMR: Value function; )(1 xV , and the terminal 

payoff, and the threshold 
*

qx  for ending the concessionary 

agreement with different  
 

 
Fig. 5. GMR: Value functions; )(0 xV  and )(1 xV , and the 

threshold 
*

sx  for entering the concessionary agreement with 

different  

 

Fig. 6. GMR: Value function; )(1 xV , and the terminal 

payoff, and the threshold 
*

qx  for ending the concessionary 

agreement with different  

 

 
Fig. 7. GMR: Value functions; )(0 xV  and )(1 xV , and the 

threshold 
*

sx  for entering the concessionary agreement with 

different  

 
Fig. 8. GMR: Value function; )(1 xV , and the terminal 

payoff, and the threshold 
*

qx  for ending the concessionary 

agreement with different  
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Fig. 9. GMR: Value functions; )(0 xV  and )(1 xV , and the 

threshold 
*

sx  for entering the concessionary agreement with 

different qI  

Fig. 10. GMR: Value function; )(1 xV , and the terminal 

payoff, and the threshold 
*

qx  for ending the concessionary 

agreement with different qI  

 

Fig. 11. GMR: Value functions; )(0 xV  and )(1 xV , and the 

threshold 
*

sx  for entering the concessionary agreement with 

different  

Fig. 12. GMR: Value functions; )(0 xV  and )(1 xV , and the 

threshold 
*

sx  for entering the concessionary agreement with 

different sI  

 
Fig. 13. GMR: Expected value of 12  with different  
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The case of geometric Brownian motion  

 
Fig. 14. GBM: Value functions; )(0 xV  and )(1 xV , and the 

threshold 
*

sx  for entering the concessionary agreement 

 

Fig. 15. GBM: Value function; )(1 xV , and the terminal 

payoff, and the threshold 
*

qx  for ending the 

concessionary agreement 
 

Fig. 16. GBM: Value functions; )(0 xV  and )(1 xV , and the 

threshold 
*

sx  for entering the concessionary agreement with 

different  

Fig. 17. GBM: Value function; )(1 xV , and the terminal 

payoff, and the threshold 
*

qx  for ending the concessionary 

agreement with different  
 

Fig. 18. GBM: Value functions; )(0 xV  and )(1 xV , and the 

threshold 
*

sx  for entering the concessionary agreement with 

different  

Fig. 19. GBM: Value function; )(1 xV , and the terminal 

payoff, and the threshold 
*

qx  for ending the concessionary 

agreement with different  
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Fig. 20. GBM: Value functions; )(0 xV  and )(1 xV , and the 

threshold 
*

sx  for entering the concessionary agreement with 

different qI  

 

Fig. 21. GBM: Value function; )(1 xV , and the terminal 

payoff, and the threshold 
*

qx  for ending the concessionary 

agreement with different qI  

 

Fig. 22. GBM: Value functions; )(0 xV  and )(1 xV , and 

the threshold 
*

sx  for the concessionary agreement with 

 different  

Fig. 23. GBM: Value functions; )(0 xV  and )(1 xV , and 

the threshold 
*

sx  for entering the concessionary agreement 

with different sI  

 

 
Fig. 24. GBM: Expected value of 12  with different  

Appendix B. Shooting method 

In this appendix, we summarize the idea of the so called “Shooting Method”. Details can be found, for example, in 

Mathews and Fink (2004). The shooting method is a numerical method for solving a boundary value problem (BVP) 

by transforming it to an initial value problem (IVP) by making an initial guess for the first order condition. We then 
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solve the IVP by applying the time discretized numerical method like finite different method for example. Once the 

calculation is completed, we can verify whether it satisfies the desired boundary condition at the other endpoint or not. 

If not, the procedure is repeated after guessing a new first order condition. This proceeds until the boundary condition 

at the endpoint is ultimately satisfied up to an appropriate level of accuracy. 

For the case of linear BVP, this procedure is simplified as closed-form solution of the BVP in terms of the solutions of 

the two corresponding IVPs can be obtained as shown in the following proposition. Note that the corresponding IVPs 

in general still have to be solved numerically. 

Proposition let )(tx  denote the solution of the following linear BVP  

.=)(,=)(;)()()()()(=)( bxaxtrtxtqtxtptx  (34) 

Then )(tx  satisfies  

,)(
)(

)(
)(=)( tv

bv

bu
tutx   (35) 

where )(tu  and )(tv  are solutions of the IVPs (36) and (37) respectively:  

,0=)(,=)();()()()()(=)( auautrtutqtutptu  (36) 

1.=)(0,=)();()()()(=)( avavtvtqtvtptv   (37) 

Proof: Since )(tu  and )(tv  are solutions of the IVPs (36) and (37) the linear combination  

)()(=)( tCvtutx   (38) 

is a solution of )()()()()(=)( trtxtqtxtptx  with boundary values  

=0=)()(=)( aCvauax  

).()(=)( bCvbubx  

Choosing 
)(

)(
=

bv

bu
C  gives =)(bx . Hence, the solution of (34) is given by  

)(
)(

)(
)(=)( tv

bv

bu
tutx            (39) 

assuming that 0)(bv . 
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