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Joel R. Barber (USA), Mark L. Copper (USA) 

The measurement and control of interest rate risk 

Abstract 

This paper develops a general measure of interest rate risk in an infinite factor model. We show that interest rate risk 
measures developed by Fong and Vasicek (M2), by Bowden (Direction X), and by Nawalkha and Chambers (|M|) are 
special cases derived by placing different restrictions on term structure changes. Futher, we extend Bowden's meas-
urement to the case of an arbitrary time horizon. This extension has theoretical advantages when long-term interest 
rate volatility is small and has computational advantages inherent in positive quadratic forms. 

Keywords: immunization, duration, interest rate risk, term structure of interest rates. 

Introduction  

Traditional immunization theory (Redington, 1952; 
Fisher and Weil, 1971) assumes that a single factor 
determines the evolution of interest rates. Fong and 
Vasicek (1984) examined immunization risk in an 
infinite factor model. They considered the effect of 
an arbitrary change in the instantaneous forward 
rates, subject to a restriction on the maximum 
slope of the forward rate curve. They found that 
the classically immunized portfolio has a negative 
lower bound that depends upon the magnitude of 
the rate change and a portfolio dispersion meas-
ured, which they call M-squared (M2). 

Fong and Vasicek’s work has received consider-
able attention. Two promising variations on the 
same theme have appeared. Barber and Copper 
(1998) and Bowden (1997) obtained a lower 
bound based upon a restriction on the root-mean 
square of the interest rate innovation. Nawalkha 
and Chambers (1996) obtained a lower bound 
based upon a restriction on the maximum forward 
rate change. 

The contribution of this paper is to show how the 
ideas are related, and how they may all be devel-
oped off the same platform. In the process, we gen-
eralize Fong and Vasicek’s M2 risk measure, and 
recast and extend Bowden's risk measure. In fact, 
both Nawalkha and Chamber’s risk measure and 
Bowden’s are seen to be special members of a 
large family of possible risk measures. 

1. Interest rate risk 

We will examine the interest rate risk of an account 
A consisting of a schedule of future cash flows. Let 
a(t) denote the cumulative cash flow into account A 
from time 0 to a future time t  0. Although cash 
flows typically are discrete, we will allow cash to 
continuously flow in or out of A. A discrete cash 
flow  at time t0 means the cumulative cash flow 
will have discrete jump at time t0 of . For any two 
successive times, t1 and t2, ([t1, t2]) will be the 
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measure of net cash flows credited into A from 
time t1 to t2. Any cash flows occurring precisely at 
t1 and t2 are also included1. 

Next, let P(t1, t2) be a function that provides the 
value at time t1 of a dollar promised at time t2. If t 
= 0 is the present, P(0, t2) would be the present 
value of a dollar promised at t2, while P(T, t2) is the 
value at horizon date T of a dollar promised at t2. 
Now, let V(T) denote the value of A at time T, 
based upon the current term structure (spot yield 
curve) observed at time 0. In other words, V(T) is 
the future value of the portfolio at the horizon T 
assuming that term structure does not change. 
Our goal is to examine how the value at the hori-
zon date changes when the term structure shifts in 
some manner. 

The future value of account A under the current term 
structure is determined by the following Stieltjes 
integral: 

tdtTPTV a, .     (1) 

If the set of cash flows is a discrete set, say C1,..., CN 
occurring at times t1,..., tN, then (1) can be ex-
pressed in the usual form as: 

N

i
ii tTPCTV

1

, . 

If the cash flow stream is continuous, then d (t) = 
'(t)dt and 

dtttTPTV , . 

In this case '(t) is usually called the continuous cash 
flow stream. The advantages of the Stieltjes integral 
are: (1) the integrals can easily be manipulated using 
well-known formulas from the calculus, and (2) the 
integral form of the present value allows us to examine 
both the continuous and discrete (and mixtures of 
both) cash flow streams at the same time2. 

                                                      
1 Technically, we are assuming that  be of finite variation in finite 
intervals of time so that  denotes the corresponding Lebesgue-
Stieltjes measure (cf. Hewitt and Stromberg, 1965). 
2 Bowden (1997), for example, separately derives his interest rate risk 
measure for continuous and discrete cash flow streams. 
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We assume there exists an instantaneous forward 
rate function r that explains the time value of 
money: 

2

1
21 ,log

t

t
duurttP .     (2) 

The forward rates are determined from the cur-
rent term structure. Since our goal here is to ana-
lyze how the future value of A might change, we 
write V(r, T) to indicate the dependence of V on the 
particular array of bond prices given by r. In fact, 
let us consider the transition from one pricing re-
gime r to another r + h. Here h is the function, 
whose value at t is simply the difference in regimes 
as it pertains to the time t forward rate. If  is a 
parameter that ranges in value from 0 to 1, then 
V(r + h, T) ranges from the value of A under the 
old regime to the new. Under the assumption that 
h is “small” in an appropriate sense, we can safely 
use the derivative: 

0

,, ThrVTrVDh     (3) 

to estimate the change V(r, T) to V(r + h,T). In fact, 

this derivative, when h  -1 or 1 and V(r, T) is 
scaled to 1, is the standard duration. Following Fong 
and Vasicek, Nawalkha and Chambers, and Bow-
den, we relax the requirement that h is known ex-
plicitly and consider what then can be said regard-
ing the interest rate risk of A. Even with h un-
known, we will follow Fabozzi (1996) and refer to 
(3) as the dollar duration of account A. Note that 
the immunization condition requires that the dol-
lar duration equals zero. 

Incorporating the forward rate (2) and differentiat-
ing under the integral sign, we can formulate the 
dollar duration as: 

tdtTduPuh
t

T
, . 

Furthermore, by letting (T, t) denote the T value 
of all cash flows attributed to account A up to and 
including time t and by integrating by parts, we may 
express this same dollar duration as1: 

T
h dtthTVdttTthtrVD ,, .   (4) 

2. A Fong-Vasicek-type inequality 

In this section, we derive the analog of the Fong and 
Vasicek (1984) inequality appropriate to our con-
text. In our notation, their restriction on changes 

                                                      
1 It is necessary to place some restriction on h; say, that h be inte-
grable. 

in the forward rate curve means that the magnitude 
of the slope of the change in forward rate curve |h'(t)| 
is bounded by positive number K: |h'(t)| <  for all t. 
It will help our exposition to assume that the hori-
zon T is fixed and to write (t) = (T, t) and 

dTPd , . 

Integrating the right hand side of (4) by parts, leads 
to the expression: 

dtssdtth
T

a

t

a
 

dttbTtsTdsth
t

T

b

T
 

sdTsbhsdsTTh
b

T

T

a
. 

Now assume that |h'(t)| <  for some fixed con-
stant  and all t. Furthermore, assume that  > 0. 
Under these assumptions, the expression we have 
just obtained will always dominate the quantity 

sdsbTsKsdTsK
b

T

b

a

2

sdTsbhsdsTTh
b

T

T

a
. 

Unfortunately, this expression still depends on h. 
However, if we assume that account A is immu-
nized to time horizon T in the sense that 

0tdTt , 

then, by virtue of the mean value theorem, h drops 
out and 

sdTsKTrVD
b

a
h

2

2

3
, . 

Finally, by using – h as well as h and letting the limits 
of integration include all cash flows, we obtain 

sdsTPTshTrVDh ,
2

3
,

2
.   (5) 

The integral in this expression evaluates to Fong 
and Vasicek’s M2 whenever cash flows are finite 
in number and discrete. The extra factor of 3 re-
sults from the linearization implicit in differentia-
tion and the resultant neglect of the convexity of 
present value of positive cash flows. Nevertheless 
the use of this inequality in controlling interest 
rate is exactly the same as detailed in (Fong and 
Vasicek, 1984): If one knows a bound for h' or, 
better, a confidence interval for that bound, then 
the interest rate risk inherent in using account A 
to fund a single liability at time T is given by M2. 
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3. Bowden-type inequalities 

Let us now return to the expression for dollar dura-
tion (4). Just as we used (T, t) to represent the time 
T value of all cash flows attributed to account A up to 

and including time t, now let tT ,  denote the time 

T value of all cash flows attributed thereafter, 

TVtTtT ,, . Thus, for example, if T is 

taken before any cash flow, then dollar duration is 
compactly expressed 

dttTth , . 

Continuing with this assumption, we have, by 
Holder’s inequality: 

qqpp

h dttTdtthTrVD

11

,, ,      (6) 

whenever p and q are nonnegative extended real 
numbers, whose reciprocals total to one. 

In particular, if we specialize to the case p = 2, then 
(6) becomes the Cauchy inequality, 

2

1
2

2
,, dttThTrVD h . 

Bowden has observed that since Cauchy's inequal-

ity becomes an equality when ,Th ,  that 

,T  represents the “direction” of interest rate 

shift to which the T-value of account A is most sen-
sitive (Bowden’s (1997), “Direction X”). 

4. Inequalities for arbitrary time horizon 

The logic of Fong and Vasicek’s derivation of their 
inequality underlines the importance of being able to 
measure interest rate risk relative to horizons other 
than the present. This suggests a generalization of 
Bowden’s inequalities. If we place no restriction on T 
and work directly from (4), then (6) generalizes to 

pp

h dtthTrVD
1

,  

.,,

11

q

T

qqT q
dttTdttT    (7) 

Now, if we take the extreme case q = 1 in (7) we 
obtain1 

sdsTPTshTrVDh ,, ,   (8) 

an inequality quite similar to the Fong and Vasicek 
inequality, except that the second moment M2 is re-
placed by the first moment of T-valued cash flows and 
the maximum of h' is replaced by the maximum of h 
itself. This inequality generalizes that obtained by 
Nawalkha and Chambers in (1996). 

In fact, the manager of account A who feels that in-
terest rate risk arises from term structure shifts that 
are "close" to parallel might consider this rough and 
ready strategy to control the interest rate risk result-
ing from funding a single liability with a variety of 
instruments with different maturities: Minimize both 
the horizon “duration” (8) and the horizon “convex-
ity” (5). The importance of minimizing “duration” 
increases with the magnitude of the interest shift 
expected while the importance of minimizing “con-
vexity” increases with the magnitude of the “twist” in 
the term structure anticipated. 

Bowden’s version of assumption (7) has computa-
tional tractability. In fact, if we take p = 2 in (7), 
we may express it as 

TrVDh ,  

2

1

2
,,,

22
vdudvTPuTP

vu
T

vu
h

Here we have used the notation x+ as shorthand for 

max(0, x). This inequality shows that, with 
2

h  

fixed, the risk of the portfolio is given by a positive 
quadratic form evaluated at the portfolio vector. 
Such forms have several attractive properties. Here 
we mention the minimum value of such a form 
constrained to a linear manifold may be found by 
solving the appropriate linear equations using La-
grange multiplier (Fleming, 1977). 

Conclusion 

We show that interest rate risk measures developed 
by Fong and Vasicek, by Bowden, and by Nawalkha 
and Chambers are special cases derived by placing 
different restrictions on term structure changes. 
Futher, we extend Bowden's measurement to the 
case of an arbitrary time horizon. This extension has 
theoretical advantages when long term interest rate 
volatility is small and has computational advantages 
inherent in positive quadratic forms. 
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