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Ping Hsiao (USA), Ming Li (USA) 

Implied volatility and future market return 

Abstract 

This study examines the predictability of the implied volatility (IV) of stock option contracts on the future market re-
turn. Using return and options data of the S&P 100 index between 1996 and 2008, we find that when the market return 
drops significantly, a high IV strongly predicts a future market reversal. On the other hand, when the market return 
drops only modestly, a high IV actually predicts a continuing market loss. We, then, develop and explore two trading 
strategies based on our findings, which yield much higher risk-adjusted returns than the S&P 500 index. 

Keywords: implied volatility, predictability, contrarian trading strategy, momentum trading strategy.

Introduction  

Does the implied volatility (IV) of stock options pre-
dict stock returns? The answer to this question particu-
larly pertains to a strand of trading strategy called vola-
tility timing, and could potentially help investors to 
make more accurate asset allocation in the portfolio. 

Previous studies (e.g. Giot, 2005; Doran et al., 2010) 
found that IV was a weak predictor of the future mar-
ket return1, although many practitioners suspect that a 
stronger relation exists between current IV and future 
return. In addition, it is widely accepted that volatility 
timing can improve portfolio returns (see Eraker et 
al., 2003; Fleming, Kirby and Ostdiek, 1999; and 
Johnnes et al., 2001). These studies have shown that 
current state of the conditional volatility is very in-
formative about future daily or weekly returns. Given 
that IV is a natural measure of the conditional volatil-
ity, there may be a stronger correlation between IV 
and future returns.  

However, the current literature has mixed results re-
garding this issue. Backus and Gregory (1993) report a 
decreasing or zero relation between future market risk 
premium and conditional variance of market return. 
Whitelaw (1997) also calibrated reasonable parameters 
for a negative relation in a single factor model. But 
Scruggs (1998) shows that there could be a positive 
relation, if more factors are included in the model.  

In this paper, we investigate the relation between fu-
ture market return and market’s conditional variance 
based on a different approach. Using a standard dy-
namic factor model of return proposed by Campbell 
and Yogo (2006), and Fama and French (1988), we 
show analytically that the sign of the relationship is 
nonlinear, i.e., the prediction of IV is not universal 
across all states of the market, instead it depends on 

                                                      
 Ping Hsiao, Ming Li, 2010. 

1 Giot (2005) reported high level of VIX predicted of future market 
return reversal weakly. Doran et al. (2010) showed that a specific type 
of skewness in implied volatility predicted future returns. Other related 
research include: Copeland and Copeland (1999) reports strong negative 
correlation between contemporaneous market return and implied volatil-
ity. Banerjee et al. (2007) reported that VIX is negatively correlated 
with stock market returns, a risk factor affecting the stock market. But 
these results did not establish clear predicting direction of implied 
volatility as they are about the contemporaneous relationship.   

current market return. We attribute this nonlinear rela-
tion to the fact that market will change its course when 
it reaches a reference point, otherwise, it will continue 
its trend2. We show analytically that such reference 
point depends on the level of IV. Therefore, identical 
IV value may forecast future return differently depend-
ing on how the market is currently performing. 

Our method of empirical analysis is inspired by the 
regime-switching3 method that is used extensively in 
modeling nonlinearity. Using return and options data 
of the S&P 100 from 1996-2008, we examined the 
relationship between future weekly market return and 
the IV on S&P 100 for both near- or at- the money call 
and put options. We ran simple OLS regressions of 
future market return onto the current IV conditional on 
immediate return of the S&P 100 index. Our regres-
sion results confirm the theoretical hypothesis of 
nonlinearity. To be specific, when current weekly 
return on S&P 100 is below -2%, the regression coef-
ficient is positive, implying that a high IV predicts a 
possible future market reversal when current weekly 
return on S&P 100 is between -1% and -2%, the re-
gression coefficient is negative, implying that a high 
IV predicts a continuing future market loss; when 
current weekly return on S&P 100 declines by less 
than 1% or rises, there is no clear relationship between 
level of the IV and the subsequent market return. In 
contrast to the previous papers, these results suggest 
there is not a simple, uniform relationship between the 
future market return and the conditional volatility 
across all market conditions.  

Our result reaffirms that market timing decision based 
on options implied volatility is profitable, but it differs 
from previous studies in two important aspects. First, 
in contrast to Giot (2005) and Doran et al. (2010), our 
result strongly supports the notion that the conditional 
volatility derived from options predicts future returns. 
Timing based on the IV is potentially profitable. Sec-
ond, levels of the IV point to different directions of 
movement in the future return under different state of 
the market. It implies that under specific conditions, 

                                                      
2 Models in behavioral finance, such as Daniel et al. (1998) and Hong 
and Stein (1999), found that stock market return may behave differently 
depending on the state of the market. 
3 See, for example, James Hamilton (2008). 
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reducing market exposure when the market volatility 
increases could be detrimental to investors. A smart 
investor should in fact add exposure to market when it 
just had a big loss even the volatility is high. 

Based on our finding, we explore two trading strate-
gies conditional on current market returns and levels 
of the IV of S&P 100 options. Given a high level of 
the IV, a Contrarian Trading Strategy (CTS) bets the 
market is about to revert itself after it was crashed in 
the previous week and thus initiates a long position 
in the market. On the other hand, given the same 
high current level of the IV, a Momentum Trading 
Strategy (MTS) indicates that the market will con-
tinue to decline after its moderate drop recently, 
thus a short position in the market is established. 
Our performance test shows that both strategies 
generate very impressive (risk-adjusted) profits. Our 
finding indicates that traders, who desire to explore 
temperate market inefficiency, could benefit from 
trading signal provided by high levels of the IV. We 
provide a theoretical justification for these trading 
strategies as well.  

1. Data and methodology 

1.1. Data. We constructed our sample by using the 
S&P 100 index1 in the CRSP database and the cor-
responding option data from Option Metrics. We 
calculated the weighted average of implied volatility 
on each Wednesday from June 5, 1996 to Sep 10, 
2008 (634 data points overall). We investigated the 
relationship between this measure of IV and the 
weekly holding period return of the S&P 100. We 
dropped index options that trade for $0.05 or less.  
All options in the analysis had to have 100 or more 
contracts in the open interests. To avoid noise from 
far-term options and short-term options, we used 
only options that expired in 10-60 days. 

1.2. Implied volatility. For all options, we used the 
implied volatility of at-the-money and near-the-money 
calls and puts as well as the volume of the open inter-
est to construct the weighted average IV. The weight-
ing scheme is suggested by Latane and Rendleman 
(1976), and Stewart (1995).  

1
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i

w IV
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1 We find similar results from S&P 500 index and its options. We do not 
supply these results here, but they are available upon request. In this 
sense, we believe our results reflect the genuine behaviors of market 
return and its related options. We use IV of the index options instead of 
VIX index as our predicting variable. VIX is a symmetrical volatility 
measure in that it treats sharp movement in both directions equally. Our 
interest is mainly to explore the asymmetrical response to past IV in 
conjunction with previous market movement. 

where the weights wi are the volume of open interests 
and IVi is the implied volatility of a given option.  

We define the moneyness of an option by the strike-
to-spot ratio, mi = Ei / s. An ATM option has a 
strike-to-spot ratio between and including 98% and 
102%, while a near-the-money option has a ratio 
following in either 90%, 98% or 102%, 110%. We 
deleted the observations if the strike-to-spot ratio is 
outside these ranges.  

1.3. Regression model. In this section, we show 
analytically that a nonlinear relation exists between 
the future market return and conditional variance. 
The nonlinearity comes from the state-dependent 
nature of the regression coefficient. For this reason, 
we justify that the empirical analysis of the relation 
must also be state-dependent.  

We start with the following basic predictive re-
gression: 

2
1 1t t tr ,      (1) 

where rt+1 is the future market return. The predict-

ing variable 2 |t t tVar r I is the conditional 

variance of market return rt, where It denotes 
available information up to time t. In our empiri-
cal analysis the measure of the conditional vari-
ance is the IV.  

The coefficient  in equation (1) measures the mar-
ginal effect of the conditional variance on the future 
market return. A positive (negative)  indicates a posi-
tive (negative) relation. The estimation of  is not per-
formed on the whole sample. Instead, we separate our 
sample into several sub-samples according to current 
market returns rt. To justify this procedure, we cite a 
standard information updating process as in Fama and 
French (1988), Pertoba et al. (1987), Timmermann, A. 
(1996) and Campbell and Yogo (2006). Following the 
above authors, we postulate that the market return 
follows a dynamic factor model: 

rt = xt + vt,  vt  N(0,
2
v ),

    (2)
 

xt = axt-1+wt-1,  wt-1  N(0, 2
w ),  

where xt is the unobservable latent factor, that drives 
the return process. The parameter a measures the 
persistency of the return process. In an equilibrium 
model, the conditional variance will affect the future 
market return rt+1 through market participants’ up-
dating mechanism. A typical updating process will 
include the past estimates of market return and the 
conditional volatility through a non-linear functional 
form. To see this, we compute the expected future 
market return conditional on information available 
at time t using a recursive Bayesian updating for-
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mula. We define the expected return conditional on 

time t information as ˆ
t t tx E x . Then we have 

the following recursive formula: 

,ˆ
1 ttt xarE  

ttttttt rkxakx
2

1
2 ˆ1ˆ ,     

(3)
 

where 
2 2 2/

t t t t v
k k  is called the Kalman 

filter gain and the conditional variance itself fol-

lows a recursive formula 

2 2 2 2
12

2 2 2 2
1

t w v

t

t w v

a

a
. 

Equations (3) are the Kalman filtering that are 
derived from the Bayesian updating. The formula 
indicates that the expected market return is a 
weighted average of the observed return and pre-
vious estimation of the factor1. Thus, the coeffi-
cient  in equation (1) is the derivative of market 

return with respect to the conditional variance 2
t

:  

1 1
2 2 2

ˆ 1t t t
t t

t v v

E r ax
g k r ,   (4) 

where 2 2
1 1

2 2
1t t

t

t t

a
g

a ak

 is mostly a 

positive number.  

The value of the Kalman filter gain kt lies between 
0 and 1. Based on equation (4), it is now straight-
forward to observe that the sign of  depends on 
the sign of the observed market return rt.  tends to 

be positive when 1
ˆ

tx  (or rt) is a large positive (or 

negative) number, and  tends to be negative or 
zero, otherwise. For instance, given a negative 

value of 1
ˆ

tx , the sign of  will become positive if 

the current return rt  is a large loss, otherwise it 
will be negative. Similarly, the sign of  can be 
analyzed analogously when given a positive value 

of 1
ˆ

tx . We recognize that 1
2

ˆ
t

v

ax
 plays a reference 

point for the sign of 2. Hence, simply running a 

regression of rt+1 onto the conditional variance 2
t

 

would generate a spurious relation between the 
future market return and the conditional variance. 

It follows that we should run simple regressions 
of equation (1) conditional on the value of current 

                                                      
1 For detailed derivation, please referred to Hamilton (1994) or 
Green (2008). 
2 We term this phenomenon the reference effect. 

market return rt. Similar to the regime-switching 
models, we therefore sorted weekly market re-

turns into the following brackets
3
 (- , -2%), [-

2%, -1%), [-1%, 0), [0, 1%), [1%, 2%) and [2%, 
+  ). We term each bracket as one state of the 
return, which we denote as si. We perform analy-
sis conditional on each state of return. Specifi-
cally, equation (1) is slightly modified into the 
following conditional regression: 

,111 ttt IVr if rt  si 

for i = 1,2,…,6, where s1 = (- , -2%), s2 = [-2%,-
1%), etc. Here, we use the implied volatility IVt as 

the measurement of the conditional variance 2
t

. 

In addition, the regression is performed across all 
moneyness (OTM, ATM and ITM), types of op-
tions (i.e. call and put), and six states of return. A 
total of 36 OLS regressions is performed. 

2. Empirical results 

Our empirical results include descriptive statistics, 
regression results, and performance of trading strate-
gies based on state of the index return and the IV. 

2.1. Descriptive results. Table 1 shows the sum-
mary statistics for the sample sorted by the state of 
weekly returns in the current week. The first col-
umn lists six groups (states) of current returns. 
Within each group we report the average of returns 
on Panel A and implied volatiles on Panel B. Aver-
age IV is reported according to the type of options 
(call put) in different moneyness as well as the 
number of observations. 

Panel A shows that the average market return is about 
0.89% (-0.06%) following a large negative (positive) 
return of less (more) than -2% (2%) in the previous 
week, which indicates a return reversal. In contrast, the 
market return generally shows momentum when the 
return is between [-2%, -1%) or [1%, 2%), because the 
return in the next week carries the same sign as that in 
the past week. We did not find clear direction in future 
return following a return between -1% and 1% in the 
current week. 

The volatility statistics in Panel B show that a put 
option has higher IV than a call option with the 
same strike price all the time. For example, when 
the return is below -2%, the IV of an out-of-
money call option is 21.55% in the same week, 
while the IV of an in-the-money put option is 
23.62%. This finding is consistent with previous 
works on implied volatility skew (e.g., Doran and 
Kreger 2010).  

                                                      
3 These brackets are selected through trials and errors. 
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Table 1. Summary statistics, June 1996-September 2008 

 Panel A Panel B. Average IV in the current week 

If return in current week is Return in the next week OTM call ITM put ATM call ATM put ITM call OTM put 

<-2% Average 0.89% 21.55% 23.62% 24.40% 25.11% 27.33% 28.69% 

 n 91 91 89 89 91 71 91 

[-2%,-1%) Average -0.23% 16.70% 18.88% 18.69% 19.67% 22.02% 22.99% 

 n 75 75 62 73 75 61 75 

[-1%,0) Average 0.12% 15.12% 18.08% 17.24% 17.98% 20.42% 21.39% 

 n 117 116 80 115 116 100 116 

[0%,1%) Average -0.07% 14.25% 17.89% 16.23% 17.14% 19.33% 20.64% 

 n 125 125 76 122 125 116 125 

[1%,2%) Average 0.15% 15.51% 18.62% 17.53% 18.14% 20.96% 21.62% 

 n 117 117 63 116 116 113 117 

>2% Average -0.06% 19.48% 22.41% 22.19% 22.57% 25.52% 26.19% 

 n 102 103 72 102 102 98 103 

Total Average 0.13% 16.86% 20.06% 19.12% 19.83% 22.25% 23.32% 

 n 627 627 442 617 625 559 627 

Note: Panel A shows the average return in the following week for each sample. Panel B shows the average IV for each group. The 
size of each sample is indicated by n. 

There is a common pattern of IV along the dimen-
sion of current return for all options. The IV is the 
highest when the current return is below -2%. It 
declines as the current return increases to between 
0% and 1%, and then it starts to go up. For exam-
ple, the volatility has its highest value of 28.69% 
for the out-of-money put option when the return is 
below -2%. The same IV drops to 20.63% when 
the current return is between 0 to 1%, and it 
creeps back to 26.18% when the market had a 
return of more than 2%. This U-shape movement 
of the IV along the dimension of return indicates 
that the IV is high when the market has more ex-
treme returns, where investors may reflect on 
more uncertainty. 

2.2. The relation between IV and market re-

turn. We are interested in finding how the IV 
predicts the future index return. We conditioned 
our OLS regression on each of the six different 
states of the market return. We report the results 
for both call and put options in separate tables.

Since there are three types of moneyness for each 
option, we have 18 regressions in each table.  

Table 2 reports estimation results for the 18 condi-
tional regressions for call options. Each non-
parenthesized number represents the estimate of slope 
for one type of moneyness conditional on one state of 
return. We suppress estimates of intercepts. Column A 
indicates that the subsequent return would start to in-
crease if the return has dropped more than -2%. The 
size of increase is proportional to the IV because the 
regressions generate a positive coefficient with more 
than 99% of confidence level. The IV of out-of-money 
calls has the largest coefficient with a value of 0.188. 
Since the average IV is about 20%, it would add about 
3.76% to the next return. 

Surprisingly, column B shows that the subsequent 
return will continue to decrease if the current week’s 
return has dropped by more than 1% but not greater 
than 2%. The IV of out-of-money calls predicts 
most decline with a negative coefficient of -0.131.  

Table 2. Regression coefficients of call option IV on S&P 100 index return. 

IVt A. rt (- ,-2%) B. rt [-2%,-1%) C. rt [-1%,0) D. rt [0,1%) E. rt  [1%,2%) F. rt [2%, ) 

OTM call 0.188*** -0.131*** 0.0566 -0.0428 -0.0381 0.0300 

 (0.0508) (0.0478) (0.0385) (0.0362) (0.0416) (0.0476) 

ATM call 0.152*** -0.110** 0.0402 -0.0265 -0.0315 0.0281 

 (0.0457) (0.0449) (0.0340) (0.0317) (0.0369) (0.0441) 

ITM call 0.144** -0.100* 0.0497 0.00658 -0.0359 0.0294 

 (0.0555) (0.0546) (0.0346) (0.0305) (0.0381) (0.0402) 

Note: The model is 1t t
r c IV , where IVt is the implied volatility from one of the following call options: out-of-the-money, at-the-

money and in-the-money calls. Each number without parentheses is an estimate of  for one of the 18 OLS regressions for call option. The 
numbers in parentheses under estimates are the standard deviations of the indicated variable. The sample of each regression is selected 
according to the return in previous week. The significance level of estimates is indicated by the number of asterisks: 1% (***), 5% (**) and 
10% (*). All sample size of each regression varies from 61 to 124. Intercepts are not reported here. The suppressed intercepts are statistically 
negative related to column A and statistically positive related to column B with at least 10% significance level. All other intercepts are 
statistically insignificant.  
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Another contrasting result is that when the market 
return is greater than -1%, the IV has no predictive 
power across all types of moneyness because all esti-
mates in column C-F are insignificant at even 90% 
confidence level.  

The results indicate that information contained in op-
tions is useful for predicting the future return only when 
the weekly market return has dropped by more than 1%, 
but the predicted direction is completely opposite de-
pending on whether the loss is more than 2% or not. 

Table 3. Regression coefficients of put option IV on S&P 100 index return. 

IVt A. rt (- ,-2%) B. rt [-2%,-1%) C. rt [-1%,0) D. rt [0,1%) E. rt [1%,2%) F. rt [2%, ) 

OTM put 0.162*** -0.120*** 0.0324 -0.0211 -0.0250 0.0402 

 (0.0475) (0.0431) (0.0331) (0.0325) (0.0367) (0.0455) 

ATM put 0.162*** -0.117*** 0.0421 -0.0276 -0.0204 0.0407 

 (0.0496) (0.0437) (0.0342) (0.0330) (0.0370) (0.0469) 

ITM put 0.162*** -0.158*** 0.0713 -0.108* 0.0102 0.0647 

 (0.0527) (0.0510) (0.0447) (0.0645) (0.0625) (0.0709) 

Note: See the notes to earlier tables for variable definition and model information. Sample size of each regression varies from 62 to 124. 

Table 3 reports estimates of the 18 OLS regressions 
for put options. They are similar to those for the call 
options. Column A reports that if the S&P 100 index 
drops by more than 2% in current week, the IV pre-
dicts an increase in the index next week by a rate of 
0.162 for each moneyness. Column B shows that when 
the index loses are between 1% and 2%, the IV pre-
dicts that the market will continue the losing streak for 
the next week because the regression coefficients are 
negative for all IV across different moneyness. All 
these estimates are significantly different from zero at 
a 99% confidence level. Similar to the results for call 
options, the IV does not have significant predicting 
power on the future return when the market return is 
greater than -1% in the current week. The estimates are 
reported in columns C to F.  

2.3. Performance of contrarian and momentum 

trading strategies. According to our findings, the 
natural portfolio strategy will be timing buy or sell 
based on the market return and the level of the IV. 
One implication of the finding is that there is a sig-
nificant positive return indicated by the IV after a 
more than 2% drop in the market return. A con-
trarian strategy could buy at this market downturn 
and profit on the subsequent reversal. On the other 
hand, the momentum strategy should short the mar-
ket index when the market return drops more than 
1%, but no greater than 2%. But both strategies 
should be executed only when the IV is high. Here, 
we provide an analytical argument why the strate-
gies would profit under high IV. 

2.4. Intuition for the strategies. Imagine that an in-
vestor wants to maximize her standard utility function 

1t tE U R , 

where 1 1 1
1

n

t t t i i t

i

R w r r  is the port-

folio return, which includes the equity market return 
rt. Under standard assumptions and the mean-
variance analysis, the optimal weight to the equity 

market is equal to 1

2

t t

t

t

E r
w , which depends 

on the conditional variance 
2
t . Since obviously the 

weight to the equity market has a positive correla-
tion with the market index, the conditional volatility 

2
t  will affect the market index too. 

We first examine how the conditional variance affects 
the investor’s allocation in the equity market. Utilizing 
the definition of  in equation (4), the partial derivative 

of optimal weight wt with regard to 2
t

 is1: 

1

2 2 2

t tt

t t t

E rw
.     (5)

 

Equation (5) shows that the adjustment of the position 

wt in equity depends on  and 1

2

t t

t

E r
. Our previous 

result indicates that  can be either positive or nega-
tive, so the investor’s change of the weight on equity 
varies depending on the sign of . When the current 
market was in a loss state of [-2%, -1%], we know that 
 is negative (from our empirical result). Applying this 

knowledge in equation (5), we find that investors will 
respond to reduce their position in equity because 

2
t

t

w
< 0 now. This implies that further price decline 

is more likely in that equity market and the best action 
is to follow the Momentum Trading Strategy, i.e., 
selling at the market mild drop to avoid further price 
decline. 

On the other hand, when the market incurred a deep 
loss (a drop of 2% or more in a week), the positive 
sign of  from the regression may lead to an increasing 
size of the weight on equity in equation (5) if  is large 

                                                      
1 Busse (1999) has a similar formula in studying the volatility timing of 
mutual funds. 
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enough to offset 1

2

t t

t

E r
, which creates a profit op-

portunity for following the Contrarian Trading Strat-
egy, i.e., buying at the market dip to exploit possible 
price reversal. 

To further examining equation (5), we found that 

the value of 1

2

t t

t

E r

 

becomes relatively small at 

high conditional volatility, which minimizes its 
impact on the investor’s adjustment of the equity 
weight.  Therefore, the change in the equity posi-
tion wt relies more on the sign of  at high market 
volatility (IV), which provides a clearer signal for 
investors to follow either MTS or CTS.   

2.5. Performance statistics. We have just shown 
that the MTS or CTS should be carried out under 
the condition of a high IV. To find a sensible 
gauge for a high level of the IV, we use the his-
torical distribution of the IV for each option1. We 
consider the IV as high if it is above the cutoff of 
its 75% percentile1 of its historical distribution. 
Table 4 displays the cutoffs of 75% percentile of 
the IV for each option. To avoid being arbitrary 
on the cutoff points, we perform  similar  analysis 

for cutoffs of other “highs” for robust check in the 
next subsection. 

Table 4. The 75% percentile of implied volatility 

OTM call ITM put ATM call ATM put ITM call OTM put 

0.20 0.23 0.23 0.24 0.26 0.27 

Table 5 reports weekly returns from contrarian trading 
conditional on return being less than -2%. The strategy 
generates a weekly return of at least 1.4% if the IV 
falls in its top quarter of its historical distribution. 
Similar result holds under other measures of the IV. 
The standard deviations of these weekly returns under 
different IV are around 3%. Given a risk-free rate of 
6% annually, the Sharpe ratio is between 2.87 and 
3.56, which is very impressive compared to any other 
asset in the market. Given the same risk-free rate of 
6%, a typical Sharpe ratio for S&P 500 is about 0.2 if 
it averages 10% return with a 25% standard deviation 
annually.  

Although the coefficient is positive, we find that the 
contrarian strategy does not generate significant profit 
when the IV is not high (below its 75% percentile 
cutoff). It may indicate the positive effect of IV on 
return is not enough to overcome the reference point, 
which would continue its downside pull on the return. 

Table 5. Time t+1 returns from contrarian trading when the time t market return was in (- , -2%) 

 IVt  high IVt not high 

Type of option Mean Standard dev Sharpe ratio Sample size Mean Standard dev Sharpe ratio Sample size 

OTM call 1.71% 3.22% 3.56 57 0.48% 2.00% 1.31 34 

ATM call 1.51% 2.98% 3.37 53 0.31% 2.03% 0.70 31 

ITM call 1.42% 3.27% 2.87 44 0.14% 2.00% 0.07 19 

OTM put 1.61% 3.26% 3.30 57 0.31% 2.08% 0.67 34 

ATM put 1.53% 3.33% 3.05 57 0.17% 2.00% 0.21 34 

ITM put 1.57% 3.67% 2.87 43 -0.28% 2.12% -1.34 48 

Note: The Sharpe ratio is calculated assuming 6% risk-free rate. IVt is high if it is above its corresponding cutoff in table 4, other-
wise it is not high. 

Table 6 reports returns from momentum trading 
that is conditional on that the market return is 
between -2% and -1%. Like in Table 5, the high-
est return is achieved when the IV is in the high-
est quartile (above its 75% percentile). The return 

ranges from 1.1% to 1.45%. The standard devia-
tion ranges from 3.16% to 3.74%. The Sharpe 
ratio would range from 2 to 2.5. Again returns 
from other momentum strategies are much less 
when the IV is not high. 

Table 6. Time t+1 returns from momentum trading when the time t market return was in [-2%, -1%] 

 IVt  high IVt not high 

Type of option Mean Standard dev Sharpe ratio Sample size Mean Standard dev Sharpe ratio Sample size 

OTM call 1.10% 3.66% 2.40 14 -0.03% 1.78% -0.34 61 

ATM call 1.06% 3.61% 2.34 14 0.03% 1.78% -0.60 59 

ITM call 1.00% 3.16% 2.55 16 -0.01% 1.84% -0.40 45 

OTM put 1.39% 3.49% 3.11 16 0.08% 1.70% -0.83 59 

ATM put 1.16% 3.65% 2.51 15 0.00% 1.72% -0.48 60 

ITM put 1.45% 3.74% 3.02 12 0.01% 1.83% -0.48   52
1

 

See the notes to earlier table for definition of IVt-1 high. 

                                                      
1 The empirical distribution of historical IV is quite stable over time.  
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We also experimented on trading under other cir-
cumstances, where the return falls into other brack-
ets. The returns are all discouraging. We reported 

future returns when the current return is above -1% 
in Table 7. Returns from either strategy show insig-
nificant or ambiguous results.  

Table 7. Time t+1 returns from buy when the time t market return was greater -1% 

 IVt  high IVt not high 

Type of option Mean Standard dev Sharpe ratio Sample size Mean Standard dev Sharpe ratio Sample size 

OTM call -0.06% 3.35% -0.05 83 0.06% 1.78% -0.03 377 

ATM call 0.11% 3.26% 0.00 83 0.02% 1.82% -0.05 376 

ITM call 0.03% 3.09% -0.03 81 0.02% 1.82% -0.05 352 

OTM put -0.07% 3.28% -0.06 83 0.06% 1.81% -0.03 377 

ATM put -0.04% 3.28% -0.05 82 0.07% 1.81% -0.02 376 

ITM put 0.02% 3.79% -0.02 53 0.17% 2.04% 0.03 229 

Note: All returns come from buy position. See the notes to earlier table for definition of IVt-1 high. 

2.6. Performance under different high IVs. We 
provide results analogous to Table 5 and Table 6 
under different levels of high IV. To save space, we 
only report the results when the IV is high. We also 
suppressed standard deviations. We define IVt as 
high if it is above the corresponding cutoff points. 
They are shown in Table 8 and Table 9.  

Table 8 reports contrarian returns, when the IVt is 
high. The results resemble to those in Table 5 in that 
the weekly return is above 1% with very impressive 

Sharpe ratios. We also note that the average return 
and Sharpe ratio generally increase as we push up 
the cutoff for high IV. But the number of weeks for 
contrarian trading also decreases at the same time. 
Therefore, it is not necessary a good idea to increase 
the cutoff. A good balance between a higher average 
return and a good size of sample would need more 
investigation. A similar situation is in Table 9 com-
pared to Table 6, which reports returns from the 
momentum trading. 

Table 8. Time t+1 returns from contrarian trading when the market return was in (- , -2%) at time t 

Mean Share ratio Sample size Mean Share ratio Sample size Mean Share ratio Sample size Type of 
option IV High (>50%) High (>67%) High (>80%) 

OTM call 1.04% 2.14 80 1.33% 2.69 65 1.69% 3.33 50 

ATM call 1.06% 2.21 76 1.25% 2.54 64 1.77% 3.55 48 

ITM call 1.07% 2.25 59 1.19% 2.45 52 1.36% 2.60 38 

OTM put 1.01% 2.04 79 1.30% 2.67 66 1.84% 3.57 48 

ATM put 1.00% 2.07 82 1.32% 2.76 98 1.65% 3.25 52 

ITM put 1.21% 2.50 72 1.40% 2.69 57 1.50% 2.55 35 

 High (>87.5%) High (>90%) High (>95%) 

OTM call 1.62% 2.77 34 1.85% 3.01 28 2.51% 3.89 19 

ATM call 1.89% 3.37 34 1.74% 2.84 28 2.64% 4.12 18 

ITM call 1.42% 2.34 26 1.69% 2.69 22 2.69% 4.19 15 

OTM put 2.06% 3.59 34 2.03% 3.40 28 2.82% 4.36 19 

ATM put 1.90% 3.24 32 2.03% 3.33 28 2.65% 3.89 17 

ITM put 2.39% 4.05 25 2.70% 4.25 20 2.47% 3.44 13 

Note: The number in each pair of parentheses is the percentage cutoff for a high volatility from the historical distribution of the IV. 

Table 9. Time t+1 returns from momentum trading when the market returns was in (-2%, -1%) at time t 

Mean Share ratio Sample size Mean Share ratio Sample size Mean Share ratio Sample size Type of 
option IV High (>50%) High (>67%) High (>80%) 

OTM call 0.40% 0.74 38 0.66% 1.27 25 1.31% 2.31 13 

ATM call 0.29% 0.46 36 1.15% 2.55 24 1.13% 1.82 11 

ITM call 0.55% 1.09 33 1.25% 2.64 21 1.81% 3.44 12 

OTM put 0.71% 1.52 34 1.28% 2.58 19 1.42% 2.65 13 

ATM put 0.74% 1.58 32 1.07% 2.12 21 1.31% 2.22 12 

ITM put 0.98% 2.08 26 1.66% 3.04 13 1.58% 2.58 9 

 High (>87.5%) High (>90%) High (>95%) 

OTM call 3.14% 7.73 7 3.51% 7.32 5 5.22% 15.21 3 

ATM call 3.38% 7.00 5 3.56% 6.43 4 5.22% 15.21 3 
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Table 9 (cont.). Time t+1 returns from momentum trading when the market returns was in (-2%, -1%) at 
time t 

Mean Share ratio Sample size Mean Share ratio Sample size Mean Share ratio Sample size Type of 
option IV High (>87.5%) High (>90%) High (>95%) 

ITM call 1.79% 2.46 6 5.22% 15.21 3 5.22% 15.21 3 

OTM put 2.46% 3.95 7 2.24% 2.94 5 6.51% 35.42 2 

ATM put 1.96% 3.15 8 4.14% 12.44 5 5.22% 15.21 3 

ITM put 3.19% 7.09 6 4.14% 12.44 5 6.51% 35.42 2 

See notes in previous tables. 

Conclusion  

In this paper, we find an asymmetric pattern for the IV 
of the S&P 100 options as a predictor of the future 
market return. Practitioners have long suspected that a 
high IV signals an oversold market. Our finding sup-
ports the validity of such claim only when the weekly 
market return drops by more than 2% and the IV is at a 
high level. We believe this reversal phenomenon is 
robust because it has occurred at least 43 weeks during 
1996-2008. In contrast to previous studies, we also 
discovered that when the loss in the market is moder-
ate (i.e., weekly loss between 1% and 2%), the IV in 
fact predicts a continual loss.  

Researchers have focused on the link between the 
implied volatility and the future realized volatility. 
Few studies deal with the possible relationship be-
tween the implied volatility and future returns. We 
hope our finding can make up some of the missing 
part in the empirical research on this aspect.  In ad-
dition, the standard finance theory cannot explain 
readily why a high IV should predict significant 
market returns. The predictability of return and ab-
normal returns from our test strategies is against the 
hypothesis of market efficiency. We hope that future 
study may reconcile this anomaly with a judicious 
theory of finance. 
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Appendix. Derivation of the regression coefficient  

The coefficient is defined as
1
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. From equation (1) we find that 
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typically interpreted as the singal-to-noise ratio in the return data. The typical value of 
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 is in the range of [100,200] 

(see Koop, 2003; Li, 2008). It can be shown that 
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 is a very large positive number. A simulation for a=0.9 shows that the range of 
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between 500 and 2000.  

Assume the first-order effect of  
2
t

 on ˆ
tx  converges to constant as time approaches the infinity, i.e. 1

2 2
1

ˆ ˆ
t t

t t

x x
. 

Collecting terms in the above equation, we arrive a simplified formula for the derivative: 
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since 

2
1

2
t

t

 is very large, g is mostly positive given that a and kt are both between 0 and 1. 


	“Implied volatility and future market return”

