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Yihui Lan (Australia), Ze Min Hu (Australia), Jackie Johnson (Australia) 

Improving accuracy and precision of value-at-risk forecasts 

Abstract 

Value-at-risk (VaR) models are intended to measure the relationships among many uncertainties. This paper focuses on 

ways to improve accuracy and precision of VaR forecasts. Unlike most previous studies that are only concerned with 

the tail behavior of predicted returns, this paper proposes a new methodology to incorporate a number of sources of 

resampling uncertainty in VaR forecasts. The study illustrates the methodology using the filtered historical simulation 

model. This new approach employs both the bootstrap and its close alternative, the jackknife method. In particular, the 

delete-d jackknife is adopted as it is specifically designed for non-smooth statistics such as the quantile. The delete-d 

jackknife has the attraction of producing unbiased statistics since it resamples from the original distribution rather than 

from the empirical distribution as in the bootstrap. Applied to five return series, the proposed technique is shown to 

provide more accurate VaR forecasts than the other eight models in terms of statistical loss measures. In addition, they 

provide reasonable improvement over the other eight models in terms of statistical and regulatory tests. In particular, 

considerable improvement is achieved in terms of forecast precision.  

Keywords: value-at-risk, forecast accuracy, forecast precision, filtered historical simulation, jackknife. 

JEL Classification: C53, C63, G10. 

“Blame for the financial crisis cannot legitimately 

be laid on the doorstep of the risk models. Models 

are designed to reflect reality and prepare us for 

anticipated future states of reality. … Blaming a 

VaR model for causing the crisis demonstrates an 

imperfect understanding of the nature of the model 

and how it’s meant to be used”.

“Don’t blame crisis on risk models” 

January 20, 2010, American Banker

Introduction©

Value-at-risk (VaR) is one of the few risk metrics 
available and the industry standard due to regulatory 
requirements. It is defined as the worst loss in the 
market value of a portfolio expected over the tar-
get time horizon under normal market conditions 
for a given level of confidence. Made public in 
1994 by J.P. Morgan, VaR had attracted increas-
ing research attention and undergone continuous 
refinement until the 2007-8 global financial crisis, 
or the Great Recession. Financial crises such as 
the recent one are highly unusual events when they 
occur. When this crisis struke, VaR has been widely 
regarded as the major culprit. On statistical grounds, 
VaR bears criticisms such as: (1) violations of 
assumptions; (2) inadequate account for extreme 
losses; (3) being a non-coherent risk measure 
(Giannopoulos and Tunaru, 2005; Szegö, 2002). 
There are now two camps in the risk management 
community: the mainstream view is that VaR is to 
blame for the recent financial crisis and should be 
consigned to the dust bin. A minority argues that 
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risk measures like VaR are expected not to fore-
tell crises, but to predict the risk of losses. They 
claim that VaR does have virtue and model risk 
and human judgment should be considered when 
any risk model is used. Regulatory responses are 
to improve upon VaR by considering periods of 
increased volatility (BCBS, 2009).

The VaR concept became popular due to its aggre-

gation of all risks of a portfolio into a single num-

ber. Though the concept of VaR is simple to under-

stand, VaR modelling is a challenging task. There 

are three categories of VaR models: parametric, 

non-parametric, and semi-parametric models. Given 

that no VaR model has been proved adequate for all 

financial assets, sampling frequencies, trading posi-

tions, confidence levels and sub-periods (Angelidis 

et al., 2007), this paper does not intend to provide a 

panacea. Instead, it focuses on two important charac-

teristics associated with VaR forecasts  accuracy and 

precision. They are not interchangeable terms as accu-

racy refers to the correctness while precision refers to 

the degree of uncertainty associated with the forecasts. 

Consider the example of weather forecasts. If it is 

forecast to be between 10 and 30 degrees at noon to-

day and the actual reading turns out to be 23, then the 

forecast is accurate, but not very precise. The fore-

caster provided a true statement but without enough 

detail for people to make plans. If the forecast is 15 

degrees and it turns out to be 23 degrees, this forecast 

was very precise, but completely inaccurate. This 

example illustrates that precision is not very useful 

without accuracy, and that accuracy with little preci-

sion does not tell much either. Although considerable 

research is devoted to producing accurate values of 

VaR forecasts, it is of tantamount importance that the 

forecasts are not only unbiased, but also accompanied 

by some uncertainty measure, which is usually 

reported in terms of variances or confidence intervals 
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of the forecasts. Providing both point estimates and 
uncertainty measures of VaR forecasts enables risk 
managers to attach a certain level of confidence to 
these estimates and thus make more cautious 
decisions, especially in a turbulent financial 
environment.  

The contributions of the paper are twofold. First, we 

propose a new methodology to incorporate a 

number of sources of resampling uncertainty in VaR 

forecasting. Instead of being only concerned with 

the tail behavior of predicted returns, as most 

studies do, we identify each potential source of 

uncertainty during the modelling procedure and 

address them simultaneously. Given the vast 

number of VaR models proposed in the literature, 

we illustrate the basic idea behind our methodology 

using the filtered historical simulation (FHS) model. 

FHS is a natural candidate as there is more than one 

source of uncertainty inherent in this model. Our 

proposed methodology can be easily extended to 

other VaR models. Second, we resurrect the delete-

d jackknife in the context of VaR forecasting. 

Proposed by Wu (1986) and widely known as an 

approximation to the bootstrap, the jackknife draws 

samples from the true distribution, whereas the boot-

strap draws samples from the empirical distri-bution. 

Hence jackknife samples resemble closer to the true 

distribution than bootstrap samples do.  

Using Australian market and industry indices data, we 

show that our proposed methodology produces more 

precise VaR forecasts. It is to be noted that our 

approach yields not only the point estimates but also 

the entire distributions of VaR forecasts. We compare 

the VaR forecasts derived from ten models including 

the two variants of our proposed approach. The results 

show that our two models provide more accurate VaR 

forecasts than the other eight models in terms of statis-

tical loss measures. In addition, they provide reason-

able improvement over the other eight models in terms 

of statistical and regulatory tests. The rest of the paper 

is structured as follows. Section 1 gives a brief review 

of VaR modelling and FHS, and in particular the 

literature on VaR accuracy and uncertainty. Section 2 

discusses our proposed method of incorporating 

various sources of resampling uncertainty and the 

details of the delete-d jackknife. We show how to 

quantify various sources of uncertainty using the 

example of the FHS model. Section 3 presents the 

empirical results of VaR forecasts, the evaluation of 

our forecasts against eight other models, and further 

analysis based on the stress VaR. Summary and 

concluding remarks are provided in the last Section.  

1. Literature review 

As it involves challenging statistical problems, VaR 

modelling had received increasing research attention 

until the recent global financial crisis. Generally 

speaking, VaR models can be classified into 

parametric, non-parametric and semi-parametric 

models. Parametric models are comprised of the 

RiskMetrics model by J.P. Morgan, the variance-

covariance approach that relies on normal distribu-

tions of returns, parametric approaches that use non-

normal distributions, GARCH-type models and 

extreme value approaches, etc. The non-parametric 

approaches include historical simulation (also known 

as bootstrapping simulation), weighted historical 

simulation, some hybrid models, the use of 

nonparametric density estimation and neural network. 

Duffie and Pan (1997), Dowd (2005), Jorion (1996b; 

2000; 2010) provide reviews of VaR models proposed 

in the last two decades.  

The early VaR models mainly belong to the 

parametric category because of the parametric 

assumptions they impose on the data. The plain 

vanilla version of VaR is based on the assumption 

of normal returns, which is widely known to be 

unrealistic. A modified version, the Cornish-Fisher 

VaR (see, e.g., Campbell et al., 2001) adjusts the 

critical values of the standard normal distribution, but 

does not react to changes in the return process. There 

is mounting research that incorporates conditional 

volatility in VaR modelling. RiskMetrics by J.P. 

Morgan assumes that the return process follows an 

integrated GARCH(1,1) model without a drift. Later 

GARCH-type VaR models are based on a mixture 

of conditional mean processes, conditional variance 

specifications and conditional distribution of 

standardised or non-standardised returns. Angelidis 

et al. (2004), So and Yu (2006) and Lee et al. (2008) 

are some examples.  

As a major non-parametric approach, historical 

simulation (HS) does not require any statistical 

assumption about return distributions. Its empirical 

performance is examined in Beder (1995) and 

Hendricks (1996) among others. One disadvantage of 

HS is that it assigns an equal probability weight to 

each historical return, which is equivalent to assuming 

returns are independently and identically distributed 

(i.i.d.) through time. This is unrealistic because return 

volatility is time-varying and tends to be clustered. The 

weighted historical simulation, proposed by Boudoukh 

et al. (1998), places more weight on recent returns and 

calculates VaR from the empirical distribution of the 

re-weighted returns.  
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Since the late 1990s the semi-parametric models 

based on a mixture of parametric and non-parametric 

methods have gained momentum, if not being the 

mainstream of VaR research. Filtered historical 

simulation (FHS), proposed by Barone-Adesi et al. 

(1998; 1999) and Barone-Adesi and Giannopoulos 

(2001), is one of the popular models in this 

category. It combines GARCH volatility forecasting 

and bootstrap simulation. Pristker (2006) reviews 

the assumptions and limitations of weighted 

historical simulation and FHS. Another semi-

parametric approach, GARCH-EVT, is different from 

FHS in that it uses extreme value theory to model the 

tails of residual distributions. Other semi-parametric 

models include Fan and Gu (2003) who estimate 

volatility and quantiles of returns, and regression 

quantile techniques such as Engel and Manganelli 

(2004) and Chernozhukov and Umantsev (2001). 

Kim and Hardy (2007), Hartz et al. (2006) and Inui 

et al. (2005) are among the small number of studies 

that examine and correct for the bias of VaR 

forecasts. However, the research on the uncertainty 

of VaR is limited. VaR uncertainty is usually 

obtained from Monte Carlo simulations and 

assumptions on the distributions of profit and loss, 

or VaR estimation parameters (see, e.g., Bams et al., 

2005). Other approaches to estimating VaR 

uncertainty include analytical derivations (see, e.g., 

Chappell and Dowd, 1999; Jorion, 1996a), the theory 

of order statistics (Dowd and Blake, 2001), and neural 

networks. Aussenegg and Miazhynskaia (2006) 

accounts for estimation uncertainty by providing VaR 

forecast distributions. Basal and Staum (2008) propose 

three methods to construct confidence intervals and 

regions for VaR and expected shortfall, the latter of 

which is the coherent alternative to VaR. Pasaran et al. 

(2009) argues that most VaR models are concerned 

with the tail behaviors of predicted returns and they 

deal with the problem of model uncertainty by model 

averaging. Kerkhof et al. (2010) propose a specific 

procedure to take model risk into account in the 

computation of capital reserves. In this paper, we do 

not intend to deal with model risk and only 

concentrate on incorporating various sources of 

resampling uncertainty inherent in VaR modelling. 

2. Methodology 

The focus of the VaR forecasting is on the condi-

tional quantile of returns r  in  

,tt IrrP

where tr  is the logarithmic return, tI  is the infor-

mation available at time t, and the probability 

is usually specified to be one or five percent. As 

mentioned in the introduction to the paper, most 
studies in the literature are only concerned with the 
tail behavior of predicted returns. We are interested 
in not only the uncertainty associated with the con-

ditional mean return )( 1ttt I|rE , but also other 

potential sources of resampling uncertainty during 
the modelling procedure. Specifically our new 
approach tries to address these sources of 
uncertainty simultaneously. In addition, we propose 
to use a resampling technique alternative to the 

bootstrap  the jackknife. Below we use the filtered 
historical simulation (FHS) model as an example to 
illustrate our proposed methodology1.

The semi-parametric approach FHS is carried out in 

two steps. In the first step, parametric GARCH-type 

models are fitted for returns: 

tttr ,                                                           (1) 

where conditional mean return t  is usually mod-

elled by ARMA models. The conditional variance 

th  of residuals t  is chosen empirically and has the 

general GARCH form 

.fh tt 1-t1 h,       (2) 

The standardised residuals ttt h/z  are i.i.d. 

random variables. Note that the above univariate 

GARCH can be easily extended to the multivariate 

case with tttz 2

1

, where ttt ICov .

The second step of FHS uses the non-parametric 

bootstrap to resample standardised GARCH residu-

als. The conditional return at time it  is simulated 

from:  

,1

b

it

b

iit

b

t ĥzˆr       (3) 

b

it

b

it

b

it ĥfĥ 11, ,      (4) 

where ,...,1i  is the ith forecast in the forecasting 

period, Bb ,...,1  with B being the total number of 

bootstrap simulation experiments, 

},...,,{ 21

bbbb zzzz  is the bootstrapped standardised 

residual vector sampled from T

b

i ẑẑẑz ,...,, 21 , and 

the circumflex denotes fitted values. Note that the 

simulated volatility, 
b

itĥ , is obtained recursively based 

on 
b

it

b

i

b

it ĥz 111 . An attractive feature of FHS 

                                                     
1 Supporting evidence for FHS is found in Angenidis and Benos (2008), 

Jayasuriya and Rissiter (2008), Angenidis et al. (2007) and Pritsker 

(2006). Giannopoulos and Tunaru (2005) first extend FHS to the calcu-

lation of expected shortfall. 
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is that the simulated return 
b

itr  takes into account 

the simulated volatility forecast 
b

itĥ  conditioning 

on their past values. The VaR forecast at horizon 

it  is the -quantile of the distribution of simu-

lated conditional returns, itr .

As can be seen, FHS has the limitation that it only 

models one source of randomness – that comes from 

the filtered returns, i.e. the standardised residuals. In 

fact, the VaR forecast obtained from the distribution 

of simulated returns, which is a quantile estimate, 

also gives rise to estimation uncertainty. Since there 

are two sources of uncertainty, our suggested ap-

proach incorporates both of them. We use different 

resampling techniques to examine two variants of 

our approach. Equation (3) shows that the VaR 

forecast is the sum of the conditional mean and con-

ditional shock, the latter of which is the product of 

the simulated standardised residuals and the simu-

lated volatility, both based on the bootstrap. In our 

proposed to approach, we employ the bootstrap as 

well as its alternative  the Jackknife, and apply the 

combinations of these resampling techniques to the 

improved FHS model.  

Future returns are simulated in FHS by bootstrap-

ping from rescaled historical shocks. A boot-

strapped sample resembles the empirical sample 

in the same way as the empirical sample resem-

bles its underlying distribution, especially when 

the sample size is large. One of the limitations of 

the bootstrap is that it resamples from the empiri-

cal data (Davison and Hinkly, 1997; Efron, 1979). 

Another limitation is associated with the total 

number of different combinations of bootstrapped 

residuals. Barone-Adesi and Giannopoulos (2001) 

claim that this number can be very large if the 

forecast horizon is ten days. This is true for the 

multiple holding period, e.g., ten days. However, 

if the forecast horizon is one day, the maximum 

number of distinct bootstrapped residuals is the 

sample size of the estimation period. Jackknifing 

largely avoids these potential problems. Jackknife 

statistics are created by systematically dropping 

subsets of data at a time and assessing the result-

ing variation in the parameter in question 

(Mooney and Duval, 1993). A distinctive feature 

of the jackknife is that its sample presents a closer 

representation to the data’s original distribution 

than the typical bootstrap sample does. The jack-

knife method is usually used for estimation, ad-

justment for bias and for derivation of robust es-

timates of standard errors and confidence inter-

vals (Efron and Tibshirani, 1993). 

The standard jackknife is known as “the method of 

leaving one out”, i.e., the delete-1 jackknife. Sup-

pose ),...,,( 21 TXXXX , the kth jackknife sample 

then consists of the dataset with the kth observation 

removed, i.e. ,,...,,,...,, 1121 Tkkk XXXXXX

for .,...,1 Tk  The jackknife is often used as a 

simple and good approximation to the bootstrap. In 

the delete-1 jackknife, only T jackknife samples are 

available for investigation. But there is no loss of 

information compared to the bootstrap. While appli-

cable to quantile estimates such as VaR, the stan-

dard delete-1 jackknife estimate may be inconsistent 

if the estimate is not smooth, i.e. a small change in the 

data can cause a large change in the statistic. Such 

non-smooth statistics include the median and percen-

tiles. A more generalised jackknife method, the delete-

d jackknife proposed by Wu (1986), is able to solve 

this problem of inconsistency. Rather than leaving out 

one observation at a time, we omit d observations, 

where d can be any integer satisfying TdT .

Unlike its standard counterpart, which has in total 

only T jackknife samples, the number of possible 

subsamples in the delete-d jackknife is 

!!!, dTd/TdTP . As the jackknife samples 

from the original observed sample and the delete-d 

jackknife is specially designed for non-smooth 

statistics such as quantiles, the delete-d jackknife is 

a natural candidate for quantile estimation. There 

are several alternative quantile estimators. We use 

the type-8 quantile estimator proposed by Hynd-

man and Fan (1996), which is found by Kim and 

Hardy (2007) to perform better than other quantile 

estimators.  

The accuracy of VaR forecasts is of great impor-
tance not only to the financial institution itself but 
also to its regulators. To evaluate the performance 
of VaR forecasts, we consider eight evaluation crite-
ria that are commonly used in the literature: mean 
absolute error (MAE); mean squared error (MSE); 
mean relative scaled bias (MRSB); the likelihood 
ratio tests of unconditional coverage, independence, 
conditional coverage (Christofferson, 1998; 2003); 
point estimator of probability of violation; and regu-
latory backtesting.

3. Empirical results 

This Section contains the VaR forecasts of five port-

folios, the comparison of our two proposed models 

against eight other models, and how our approach 

performs based on the stress VaR. 

3.1. VaR forecasts. In our empirical study, we  

examine daily returns of five portfolios and use them 
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as proxies for mutual funds with distinct investment 
perspectives. Our objective is to shed light on whether 
the proposed approach improves VaR forecast accu-
racy and precision. As different funds have quite 
diverse and sometimes complicated objectives, we 
largely ignore such diversity and complexity and 
confine our investigation to these return series. Portfo-
lio 1 is a market index fund proxied by the 
S&P/ASX200 index, which covers approximately 80 
percent of the Australian equity market by capitaliza-
tion. Portfolio 2, the S&P/ASX50, is used as a proxy 
for a fund investing in firms with large market capitali-
sation and pursuing the objective of providing long 

term capital appreciation. Portfolio 3 uses the re-
sources index to mimic a fund that captures the bene-
fits of the resources industry boom in Australia. Port-
folios 4 and five imitate the returns of low and high 
risk funds respectively1. The six-year trading period 
data from April, 3 2000 to April, 2 2006 are collected 
from Datastream. The sample contains 1,518 observa-
tions. Table 1 presents the summary statistics. It can be 
seen that all returns series are non-normal (column 7). 
The mean returns of portfolios one and two are insig-
nificant. In addition, portfolios 1, 2 and 5 are leptokur-
tic, and all portfolios except four are significantly 
skewed to the left (columns 5 and 6).  

Table 1. Summary statistics 

Portfolio Style µ (×100)  (×100) Skewness Kurtosis Bera-Jarque Statistic 

(1) (2) (3) (4) (5) (6) (7) 

1 Market 0.213 6.81 -0.79** 9.88** 5,268** 

2 Large cap 0.197 7.35 -0.61** 8.47** 3,854** 

3 Booming 0.672* 10.98 -0.15* 3.82 773** 

4 Low risk 0.348** 5.19 -0.02 3.70 721** 

5 High risk -1.315** 15.48 -2.20** 25.38** 34,917** 

Notes: The 1% and 5% significance levels are indicated by ** and * respectively. The Bera-Jarque statistic is asymptotically distrib-

uted as 
2

2
 under the null of normality. 

We1divide the whole sample into the estimation 

period of 263,1T  observations spanning over five 

years2, and the test period of 255 days. We use 

000,101...j  experiments to simulate returns for 

the forecast period of 255 days. The model estimates 
are updated by using a rolling window with the same 

window length as the estimation sample, 263,1T .

Thus, at time T + i, the rolling window consists of i
values of simulated returns and T most recent returns 

in the sample, where ,...,1i  is the ith forecast in 

the forecasting period. 

Regarding the specification for the mean equation 

(1), we determine the orders of AR and MA using 

ACF and PACF for each of the five portfolios. 

Other studies, such as Hull and White (1998) and 

Barone-Adesi et al. (1998), use the constant condi-

tional mean process. Angelidis et al. (2004) argue 

that the mean process specification plays no important 

role. We thus examine both the case of a constant and 

                                                     
1 To maintain simplicity, portfolios 4 and 5 contain only two industry 

indices. Based on the ex-post returns data of fourteen Australian indus-

try indices, we choose two indices with the lowest variances and two 

indices with the highest variances to form portfolios 4 and 5 respec-

tively. The weights of the two indices contained in each portfolio are 

then determined to minimise portfolio variances. 
2 The estimation periods of five to ten years are very common among 

the VaR literature. For example, Brooks and Persand (2003) use 5 years, 

and Barone-Adesi et al. (1998) use 10 years. Kuester et al. (2006) use a 

window size of 1,000 days, which are about four years of trading data. 

They also consider smaller window sizes for sensitivity analysis. It is to 

be noted that a large window size reduces the variability of estimated 

parameters, but increases modeling biases and thus approximation 

errors (Fan and Gijbels, 1996).  

a time-varying conditional mean process. To find out 

which GARCH-type model best fits the conditional 

variance and which distribution best describes the fat-

tailedness of GARCH-filtered residuals, we consider 

four types of GARCH  GARCH, AGARCH, 

EGARCH, PGARCH, and three types of residual 

distributions – the normal, student-t, and generalised 

error distributions. We choose a one-day holding 

period for VaR forecasting ( 1 ), and thus produce 

255 one-day ahead forecasts N = 255. Out of the 

twelve GARCH models, AGARCH with the t-

distribution is found to be the model with the best 

fit based on the AIC, BIC and log-likelihood crite-

ria, and is thus chosen for model estimation. It 

takes the form of 1

2

11 tt hh .

The asymmetric effects on volatility are modelled via 

the parameter , the estimate of which is found to be 

statistically significant for all portfolios in this study.  

Figure 1 presents the distributions of VaR forecasts for 

portfolio one over the 255-day forecasting period in 

the form of three-dimensional graphs3. Such entire 

distributions give us a complete picture about fore-

cast uncertainty. The left two panels give 1%and 5% 

VaRs from the ARMA conditional mean model 

based on jackknifing (hereafter Jack_ARMA) and 

the right two panels presents 1% and 5% VaRs from 

                                                     
3 Plots for other portfolios based on other models are qualitatively 

similar and available from the authors upon request. 
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the ARMA conditional mean model based on boot-

strapping (hereafter Boot_ARMA). Visually speak-

ing, graphs on the left and right reveal clearly dif-

ferent patterns. The distributions from Boot_ARMA 

spread out more, with frequency counts in continuous 

ranges; see Panels B and D. The VaR forecasts pro-

duced from the Jack_ARMA, on the other hand, are 

mostly concentrated in narrow ranges. This is shown 

by a smaller number of bins and a large number of 

frequency counts in each bin in Panels A and C. We 

can thus conclude that the new approach produces 

more precise VaR forecasts.  

A. VaR 1% from Jack_ARMA  B. VaR 1% from Boot_ARMA 

C. VaR 5% from Jack_ARMA D. VaR 5% from Boot_ARMA  

Note: The x-axis refers to forecasting day t, the y-axis gives the VaR forecasts in terms of logarithmic returns (×100), and the z-axis 

presents the probability. 

Fig. 1. The distributions of VaR forecasts: portfolio 1  

3.2. Comparison of forecast performance. In 

addition to Jack_ARMA, we also forecast VaR 

based on the constant conditional mean model 

based on jackknifing (hereafter Jack_Mean). To 

evaluate these two variants of our approach 

Jack_Mean and Jack_ARMA, we use eight other 

competing models to make comparisons. As we 

are interested in how our approach performs rela-

tive to the original FHS model by Barone-Adesi et 

al. (1998), we consider four variants of the FHS. 

The first two competing models, Boot_Mean and 

Boot_ARMA, are assumed to have a constant and 

an ARMA mean respectively. Their difference 

from the original FHS is that rolling windows are 

used to update model estimates. The third compet-

ing model is simply the FHS whereby the VaR 

forecast is a single point estimate. Competing 

model four is an extension to the FHS, which does 

not provide a single VaR forecast but B = 10,000 boot-

strapped forecast values. The basic idea is, for any 

forecast horizon, to repeat many times the proce-

dure of FHS (Dowd, 2005, p.98, footnote 14, hereafter 

FHS_Down). The other four models are GARCH with 
normally-distributed residuals (GARCH_N), GARCH 
with student-t distributed residuals (GARCH_T), his-
torical simulation (HS), and the variance-covariance 
(VCV) model.  

The statistical loss measures of VaR forecasts 
from the ten competing models are contained in 
Table 2. In terms of the probability of violation, 

ˆ , VaR forecasts from a majority of models are 

not too far away from the target values: %1

in the left panel and %5  in the right panel. 

Ceteris paribus, overestimation of VaR is preferred 
to underestimation – underestimation leaves losses 
uncovered, whereas a much-overestimated VaR 
leads to a lower return from the capital set aside. 
Therefore, if being right on target is difficult to 
achieve, slight overestimation is acceptable. As 
can be seen from columns 2 and 9, the two vari-
ants of jackknife FHS outperforms all other mod-
els for the high-risk portfolio, and performs as 
least as good as other models for the remaining 
four portfolios. 
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Table 2. Statistical loss measures of VaR models 

%1 %5

Model ˆ MAE Rank MSE Rank MRSB Rank ˆ MAE Rank MSE Rank MRSB Rank 

Sum of 
ranks 

A. The market index (portfolio 1) 

1. Jack_Mean 1.18 1.62 1 3.15 3 -15.37 4 5.10 1.14 2 1.68 2 -2.84 4 16 

2. Jack_ARMA 1.18 1.63 2 3.19 4 -16.07 2 5.49 1.14 1 1.68 1 -2.96 3 13 

3. Boot_Mean 1.96 1.66 6 3.29 6 -15.38 3 5.88 1.18 4 1.80 5 -3.69 1 25 

4. Boot_ARMA 1.96 1.63 3 3.20 5 -16.10 1 5.88 1.15 3 1.70 3 -3.24 2 17 

5. FHS 0.78 2.07 9 4.78 9 7.45 7 5.10 1.28 8 2.00 9 1.49 6 48 

6. FHS_Dowd 1.18 2.03 8 4.63 8 16.71 9 5.10 1.28 8 1.99 8 2.80 9 50 

7. GARCH_N 1.57 1.64 4 3.13 2 13.37 8 5.49 1.22 6 1.84 7 2.92 10 37 

8. GARCH_T 0.78 2.25 10 5.59 10 17.83 10 1.96 1.60 10 2.99 10 1.13 5 55 

9. HS 1.18 1.78 7 3.57 7 3.37 5 5.88 1.20 5 1.75 4 1.62 7 35 

10. VCV 1.96 1.64 4 3.06 1 4.18 6 5.49 1.22 6 1.81 6 2.77 8 31 

B. The large-cap portfolio (portfolio 2) 

1. Jack_Mean 1.18 1.76 3 3.68 3 -10.99 4 5.49 1.21 1 1.89 2 -2.00 4 17 

2. Jack_ARMA 1.18 1.76 4 3.70 4 -11.05 3 5.49 1.21 1 1.88 1 -2.13 3 16 

3. Boot_Mean 1.18 1.78 5 3.78 5 -11.21 1 5.49 1.24 3 1.97 3 -3.29 1 18 

4. Boot_ARMA 1.18 1.78 5 3.82 6 -11.20 2 5.49 1.25 4 1.99 5 -3.15 2 24 

5. FHS 0.78 2.07 9 4.84 9 3.70 7 5.10 1.33 9 2.16 9 2.15 9 52 

6. FHS_Dowd 0.78 2.04 8 4.72 8 2.30 6 5.10 1.32 8 2.14 8 1.49 8 46 

7. GARCH_N 1.96 1.70 1 3.37 1 -5.13 5 5.49 1.26 5 1.98 4 0.42 7 23 

8. GARCH_T 0.78 2.25 10 5.61 10 13.58 10 2.75 1.61 10 3.05 10 2.83 10 60 

9. HS 1.18 1.90 7 4.02 7 3.84 8 5.10 1.28 6 1.99 5 -1.50 5 38 

10. VCV 1.18 1.75 2 3.49 2 3.92 9 4.71 1.30 7 2.04 7 -0.10 6 33 

C. The booming sector portfolio (portfolio 3) 

1. Jack_Mean 1.57 2.91 4 9.91 3 -10.74 2 5.49 2.01 2 5.23 2 -9.57 2 15 

2. Jack_ARMA 1.57 2.93 5 10.06 5 -10.78 1 6.27 2.01 1 5.23 1 -9.62 1 14 

3. Boot_Mean 1.18 2.96 6 10.38 6 -1.95 3 4.71 2.14 6 5.95 7 -1.76 4 32 

4. Boot_ARMA 1.18 2.89 3 9.95 4 -1.45 4 4.71 2.06 3 5.59 4 -2.54 3 21 

5. FHS 1.18 3.59 10 14.62 10 5.37 8 4.71 2.27 9 6.45 9 3.73 8 54 

6. FHS_Dowd 1.96 3.52 9 14.11 9 2.55 6 4.71 2.26 8 6.43 8 3.39 6 46 

7. GARCH_N 2.35 3.07 7 10.99 7 2.02 5 4.71 2.28 10 6.55 10 4.65 9 48 

8. GARCH_T 3.14 2.60 1 8.16 1 3.28 7 6.28 2.07 4 5.53 3 3.71 7 23 

9. HS 2.75 3.15 8 11.47 8 5.86 10 5.88 2.09 5 5.62 5 1.28 5 41 

10. VCV 2.75 2.87 2 9.70 2 5.85 9 5.49 2.15 7 5.92 6 6.74 10 36 

D. The low-risk portfolio (portfolio 4) 

1. Jack_Mean 1.96 1.27 1 1.98 2 -6.50 1 5.49 0.93 3 1.15 3 -1.79 2 12 

2. Jack_ARMA 1.96 1.28 3 2.01 3 -5.54 3 5.88 0.93 2 1.15 2 -1.84 1 14 

3. Boot_Mean 2.35 1.35 6 2.19 7 -4.97 4 6.67 0.97 6 1.23 6 -0.74 5 34 

4. Boot_ARMA 2.35 1.33 5 2.13 5 -5.54 2 6.67 0.94 4 1.18 5 -1.23 3 24 

5. FHS 0.78 1.59 9 2.90 9 8.14 10 6.28 1.02 8 1.33 8 -0.21 7 51 

6. FHS_Dowd 0.78 1.57 8 2.85 8 7.08 8 6.28 1.02 8 1.33 8 0.50 8 48 

7. GARCH_N 3.14 1.32 4 2.08 4 7.65 9 6.67 0.98 7 1.23 7 3.59 10 41 

8. GARCH_T 0.39 1.73 10 3.38 10 3.29 7 2.75 1.29 10 2.00 10 3.14 9 56 

9. HS 1.57 1.36 7 2.16 6 -1.59 6 6.28 0.93 1 1.11 1 -0.98 4 25 

10. VCV 1.57 1.28 2 1.95 1 -2.03 5 6.28 0.95 5 1.16 4 -0.44 6 23 

E. The high-risk portfolio (portfolio 5) 

1. Jack_Mean 0.57 3.62 3 15.10 4 3.79 9 4.08 2.24 1 6.62 1 -4.23 3 21 

2. Jack_ARMA 0.58 3.71 6 15.82 6 4.36 10 4.10 2.30 4 6.92 4 -4.11 4 34 

3. Boot_Mean 1.19 3.62 4 14.98 3 0.94 7 4.71 2.28 3 6.74 3 -7.09 2 22 

4. Boot_ARMA 1.20 3.66 5 15.31 5 1.12 8 4.71 2.28 2 6.73 2 -7.13 1 23 

5. FHS 1.39 5.28 10 30.34 10 -3.43 1 4.71 2.53 9 8.05 9 4.24 9 48 

6. FHS_Dowd 1.39 5.16 9 28.95 9 -1.21 5 4.71 2.52 8 8.01 8 3.80 7 46 
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Table 2 (cont.). Statistical loss measures of VaR models 

%1 %5

Model ˆ MAE Rank MSE Rank MRSB Rank ˆ MAE Rank MSE Rank MRSB Rank 

Sum of 
ranks 

7. GARCH_N 1.18 3.40 1 13.52 1 -2.19 2 4.71 2.47 6 7.77 6 1.39 5 21 

8. GARCH_T 0.39 4.89 8 26.02 8 -0.57 6 2.35 3.05 10 11.16 10 5.36 10 52 

9. HS 0.39 4.25 7 19.91 7 -1.44 3 5.49 2.39 5 7.34 5 3.57 6 33 

10. VCV 1.18 3.44 2 13.69 2 -1.36 4 5.10 2.50 7 7.91 7 4.20 8 30 

Notes: The entries in columns 2, 3, 9 and 10 are to be divided by 102, and those in columns 5 and 12 are to be divided by 104. The 

ARMA specifications in the conditional mean equation for each portfolio are: ARAM(2,2) for portfolio 1, AR(1) for portfolio 2, 

AR(1) for portfolio 3, ARMA(4,4) for portfolio 4 and ARMA(1,1) for portfolio 5. 

The relatively smaller values of MAE and MSE for 

our two jackknife FHS models presented in columns 

3-6 and 10-13 of Table 2 suggest that the proposed 

approach is able to track actual returns more closely 

than other models. Comparing columns 11 and 13 

for 5% VaR, we can see that the rankings based on the 

two criteria are more or less the same. The two jack-

kinfe variants rank at the top for almost all portfolios. 

At the 1% level, their rankings slip down but are still 

above average in general (columns 4 and 6). 

The essence of the MRSB is to consider the devia-

tion from the mean of VaR forecasts of different 

models. Therefore, results depend on the choice 

number of models used in the comparison and 

would be different when adding or deleting mod-

els from comparison. A value of 0.10 implies that 

a given VaR forecast is 10 percent larger, on av-

erage, than the average of all VaR models under 

consideration. The results in columns 7-8 and 14-

15 in Table 2 show that our two models are top 

performers for portfolios one and two, and are 

above average for portfolios three and four. For 

the high-risk portfolio, both jackknife variants are 

above average at the 5% level, but do not fare 

well at the 1% level. 

The statistical and regulatory test results are pre-

sented in Table 3. The conditional coverage test 

(LRcc) offers the most comprehensive test as it com-

bines the unconditional coverage (LRuc) and inde-

pendence tests (LRind)
1. The results in columns 2-4 

and 7-9 suggest that in general, the bootstrap FHS 

models are top performers, passing all LR tests for 

all portfolios. The jackknife FHS models perform 

satisfactorily: the two jackknife variants pass all 

LR tests except in the case of 1% VaR for portfo-

lio one. For portfolios 3 and 4, Boot_Mean and 

Boot_ARMA are clear winners. For portfolio 5, 

all models pass the LR tests, suggesting that the 

LR tests are not useful in picking up the winning 

model when the returns are highly volatile.  

Table 3. Statistical and regulatory tests of VaR models1

%1 %5

Model LRuc LRind LRcc

Is  in the estimated 

range of ˆ  ? 

Regulatory 
colour zone 

LRuc LRind LRcc

Is  in the estimated 

range of ˆ ?

A. The market index (portfolio 1) 

1. Jack_Mean 78.29 1.93 6.24 Yes Green 94.29 15.20 35.75 Yes 

2. Jack_ARMA 78.29 1.93 6.24 Yes Green 72.35 20.51 42.09 Yes 

3. Boot_Mean 17.29 7.37 7.98 No Yellow 52.89 26.83 44.45 Yes 

4. Boot_ARMA 17.29 7.37 7.98 No Yellow 52.89 26.83 44.45 Yes 

5. FHS 71.90 0.60 2.16 Yes Green 94.29 2.06 6.85 Yes 

6. FHS_Dowd 78.29 1.93 6.24 Yes Green 94.29 2.06 6.85 Yes 

7. GARCH_N 39.95 4.16 8.79 Yes Green 94.29 2.06 6.85 Yes 

8. GARCH_T 71.90 0.60 2.16 Yes Green 1.15 7.37 0.83 No 

9. HS 78.29 1.93 6.24 Yes Green 52.89 5.13 12.29 Yes 

10. VCV 17.29 7.37 7.98 No Yellow 72.35 3.33 9.76 Yes 

B. The large-cap portfolio (portfolio 2) 

1. Jack_Mean 78.29 78.93 92.90 Yes Green 72.35 20.51 42.09 Yes 

2. Jack_ARMA 78.29 78.93 92.90 Yes Green 72.35 20.51 42.09 Yes 

3. Boot_Mean 78.29 78.93 92.90 Yes Green 72.35 20.51 42.09 Yes 

                                                     
1 A general guide to examine all LR test results is as follows: (1) models with p-values greater than five are desirable; (2) models having higher p-

values from the LR tests are preferred; and (3) models estimates are unreliable if they pass the unconditional coverage test but fails either or both the 

independence and conditional coverage tests (Christofferson, 1998; 2003). 
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Table 3 (cont.). Statistical and regulatory tests of VaR models 

%1 %5

Model LRuc LRind LRcc

Is  in the estimated 

range of ˆ  ? 

Regulatory 
colour zone 

LRuc LRind LRcc

Is  in the estimated 

range of ˆ ?

4. Boot_ARMA 78.29 78.93 92.90 Yes Green 72.35 20.51 42.09 Yes 

5. FHS 71.90 0.60 2.16 Yes Green 94.29 2.06 6.85 Yes 

6. FHS_Dowd 71.90 0.60 2.16 Yes Green 94.29 2.06 6.85 Yes 

7. GARCH_N 17.29 7.37 7.98 No Yellow 72.35 3.33 9.76 Yes 

8. GARCH_T 71.90 0.60 2.16 Yes Green 7.18 16.97 7.71 No 

9. HS 78.29 1.93 6.24 Yes Green 94.29 2.06 6.85 Yes 

10. VCV 78.29 1.93 6.24 Yes Green 82.78 1.21 4.20 Yes 

C. The booming sector portfolio (portfolio 3) 

1. Jack_Mean 39.95 72.10 65.79 Yes Green 72.35 3.33 9.76 Yes 

2. Jack_ARMA 39.95 72.10 65.79 Yes Green 36.82 7.59 13.81 Yes 

3. Boot_Mean 78.29 78.93 92.90 Yes Green 82.78 10.87 26.98 Yes 

4. Boot_ARMA 78.29 78.93 92.90 Yes Green 82.78 10.87 26.98 Yes 

5. FHS 78.29 1.93 6.24 Yes Green 82.78 1.21 4.20 Yes 

6. FHS_Dowd 17.29 0.16 0.27 No Yellow 82.78 1.21 4.20 Yes 

7. GARCH_N 6.46 0.41 0.30 No Yellow 82.78 1.21 4.20 Yes 

8. GARCH_T 0.61 1.72 0.14 No Yellow 36.82 1.15 2.73 Yes 

9. HS 2.11 0.90 0.23 No Yellow 52.89 5.13 12.29 Yes 

10. VCV 2.11 0.90 0.23 No Yellow 72.35 3.33 9.76 Yes 

D. The low-risk portfolio (portfolio 4) 

1. Jack_Mean 17.29 7.37 7.98 No Yellow 72.35 3.33 9.76 Yes 

2. Jack_ARMA 17.29 7.37 7.98 No Yellow 52.89 5.13 12.29 Yes 

3. Boot_Mean 6.46 11.63 5.28 No Yellow 24.42 10.82 13.97 No 

4. Boot_ARMA 6.46 11.63 5.28 No Yellow 24.42 10.82 13.97 No 

5. FHS 71.90 0.60 2.16 Yes Green 36.82 1.15 2.73 Yes 

6. FHS_Dowd 71.90 0.60 2.16 Yes Green 36.82 1.15 2.73 Yes 

7. GARCH_N 0.61 1.72 0.14 No Yellow 24.42 1.90 3.25 No 

8. GARCH_T 26.60 92.93 53.66 No Green 7.18 0.90 0.65 No 

9. HS 39.95 4.16 8.79 Yes Green 36.82 7.59 13.81 Yes 

10. VCV 39.95 4.16 8.79 Yes Green 36.82 7.59 13.81 Yes 

E. The high-risk portfolio (portfolio 5) 

1. Jack_Mean 39.95 72.10 65.79 Yes Green 52.89 17.08 32.10 Yes 

2. Jack_ARMA 71.90 85.89 92.26 Yes Green 94.29 23.72 49.60 Yes 

3. Boot_Mean 26.60 92.93 53.66 No Green 82.78 27.62 53.98 Yes 

4. Boot_ARMA 26.60 92.93 53.66 No Green 82.78 27.62 53.98 Yes 

5. FHS 26.60 92.93 53.66 No Green 82.78 27.62 53.98 Yes 

6. FHS_Dowd 26.60 92.93 53.66 No Green 82.78 27.62 53.98 Yes 

7. GARCH_N 78.29 78.93 92.90 Yes Green 82.78 27.62 53.98 Yes 

8. GARCH_T 26.60 92.93 53.66 No Green 3.12 59.07 8.50 No 

9. HS 26.60 92.93 53.66 No Green 72.35 78.86 90.61 Yes 

10. VCV 78.29 78.93 92.90 Yes Green 94.29 68.25 91.74 Yes 

Notes: The entries in columns 2-4 and 7-9 are the significance levels (p-values) of the respective likelihood ratio tests. A model is 

classified into the green zone if there are 4 or less violations in 250 trading days. The numbers of violations corresponding to the 

yellow and red zones are 5 to 9, and 10 or more respectively. The ARMA specifications in the conditional mean equation for each

portfolio are: ARAM(2,2) for portfolio 1, AR(1) for portfolio 2, AR(1) for portfolio 3, ARMA(4,4) for portfolio 4 and ARMA(1,1)

for portfolio 5. 

As the regulatory backtesting specifies 010. ,

column 6 reports the colour zone that each model falls 

into. The VaR forecasts from the original FHS are in 

the green zone for all portfolios, following by our ap-

proach for 4 out of 5 portfolios. The results based 

on the estimated range of probability of violation are 

given in columns 5 and 10 of Table 3. It can be 
seen that our two models outperform all other 
eight models. In the ten combinations (i.e. 1% and 
5% VaRs for five portfolios) considered, the real-

ised value of VaR, ˆ , is inside the estimated con-

fidence range from the jackknife FHS forecasts 
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except for the case of 1% VaR for portfolio 4. 
Counting the number of “no” for the ten combina-
tions, we can rank the models according to this 
test: the first place is taken by the two jackknife 
variants and FHS, and the second place by 
FHS_Dowd, HS and VCV. The regulatory back-
testing results, shown in column 6 of Table 3, 
arrive at a similar conclusion.  

Finally, we summarise the results in this sub-

section. The proposed approach based on the de-

lete-d jackknife clearly produces much more ac-

curate and more precise VaR forecasts. Precision can 

be seen in Figure 1, where the distribution of VaR 

forecasts is highly concentrated. Accuracy can be seen 

in column 16 of Table 2, which reports the sum of the 

ranks of each model at both the 1% and 5% levels 

based on MAE, MSE and MRSB. The smaller the 

sum, the higher the accuracy of a model. The conclu-

sion is that the delete-d jackknife, though an approxi-

mation to the bootstrap, possesses considerable ad-

vantages over bootstrap to forecast VaR, which is a 

quantile estimate. Table 3 shows that the two variants 

of the proposed approach outperform all other models 

in terms of the range and regulatory tests and provide 

reasonable improvement over their bootstrap counter-

part in terms of the LR tests for unconditional and 

conditional coverage.  

3.3. Further analysis. VaR is widely critised as 

being reflecting only normal market conditions, 

but not what happens during crises. A variety of 

stress tests are proposed in the literature to ad-

dress the shortcomings of VaR. Though a stan-

dard methodology for stress testing has yet to 

emerge, the consensus is that when a portfolio is 

under stress, the assumptions underpinning VaR 

becomes invalid (Tan and Chan, 2003). Therefore, 

the selection of appropriate and economically 

plausible scenarios is vital to stress testing. In 

July 2009, the Bank for International Settlements 

finalized revisions to Basel II, which require the 

stress VaR (sVaR) added to the market risk VaR in 

the calculation of capital requirements (CR), i.e: 

,,max,max avesavec sVaRMsVaRVaRMVaRCR

where 3, sc MM  are multiplication factors, and 

the subscript “ave” denotes the average over 60 

days. Regarding the calculation of sVaR, there are 

three types of stress scenarios: (1) recent history; (2) 

user-defined scenarios; and (3) mechanical-search 

stress tests (Aragones et al., 2001).

The Basel Committee on Banking Supervision 

considers the 2007-8 period adequate for reflect-

ing unusual stress (BCBS, 2009). Staley (2010), 

among others, suggests that the inclusion of sVaR 

may double capital requirements under normal 

market conditions. In our analysis above, our data 

end in 2006. It would be useful to assess the per-

formance of our proposed methodology under 

extreme market conditions. We therefore carry 

out further analysis by examining VaR forecasts 

and capital requirements for the forecasting pe-

riod of 2008-2009. It can be seen from Table 4 

that our approach leads to underestimation of loss 

during extreme market conditions, based purely 

on Market VaR. Using the Basel II capital re-

quirements, our approach can adequately account 

for losses at the 1% VaR level but not at the 5% 

level. The last two columns show that the viola-

tions are zero once the additional sVaR require-

ment is taken into consideration, suggesting that 

our proposed approach makes an institutional or 

trading portfolio stay solvent under the revised 

Basel II framework. Finally, it is to be noted that 

the conclusions are qualitatively the same across 

all of the five portfolios.  

Table 4. Violations of VaR and capital requirements 
in 2008-2009: JACK_ARMA 

Portfolio
VaR violation 

ˆ
Violation of CR based 

on market VaR 

Violation of CR based 
on market VaR plus 

sVaR

 1% 5% 1%  5%  1%  5%  

1 1.18 6.69 0 0.20 0 0 

2 1.38 6.69 0 0.20 0 0 

3 2.36 7.68 0 0.20 0 0 

4 1.77 9.06 0 0.39 0 0 

5 1.77 7.09 0 0.00 0 0 

Notes: The violations are expressed in terms of percentage. As 
argued in the text, when sVaR is added on top of market VaR, 
the CR is sometimes doubled. For simplicity, we thus calculate 
CR under the revisions to Basil II framework as twice of market 
VaR. We used both five-year and one-year rolling windows but 
only report the results from one-year rolling window here. The 
two sets of results are qualitatively similar. Summary and con-
clusions

Since VaR models are intended to measure the rela-

tionships among many uncertainties, it is of tanta-

mount importance that VaR forecasts are both accu-

rate and precise. Accuracy relates to unbiasness 

while the precision relates to the uncertainty asso-

ciated with the forecasts. Unlike most previous 

studies that are only concerned with the tail behavior 

of predicted returns, our approach incorporates a 

number of sources of resampling uncertainty.  

As VaR forecasts are quantile estimates, bootstrap-

ping is widely used. Our proposed new approach is 

based on its alternative  the jackknife. In particular, 

we employed the delete-d jackknife, which is spe-

cifically designed for non-smooth statistics such as 
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the quantile and has the attraction of producing un-

biased statistics because it resamples from the origi-

nal distribution rather than from the empirical dis-

tribution as in the bootstrap.  

We applied the proposed approach to five return 

series. It was found that the distributions of VaR 

forecasts are narrower than those from bootstrap, 

indicating forecast precision. To evaluate forecast 

performance, we compared the two variants of the 

proposed approach to eight other models. The re-

sults from statistical loss measures showed that our 

proposed approach provided more accurate VaR 

forecasts. In addition, our two models achieved rea-

sonable improvement over the other eight models in 

terms of statistical and regulatory tests. Finally, our 

approach was able to track actual returns more 

closely, reducing the chances of both VaR underes-

timation and large overestimation.  

Given that no VaR model has been proved adequate 

for all financial assets, sampling frequencies, trading 

positions, confidence levels and sub-periods, this 

paper does not intend to provide a cure all. Instead, 

by proposing a new approach, we tried to shed light 

on how to incorporate possible sources of resam-

pling uncertainty in VaR modelling. We showed 

that the delete-d jackknife, an alternative to the 

bootstrap is very useful in improving accuracy and 

precision of VaR forecasts. 
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