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Hemantha S.B. Herath (Canada), Tejaswini C. Herath (Canada) 

Copula-based actuarial model for pricing cyber-insurance policies 

Abstract 

Cyber-insurance is often suggested as a tool to manage IT security residual risks but the accuracy of premiums is still 
an open question. Thus, practitioners and academics have argued for more robust and innovative cyber-insurance pric-
ing models. The paper fills this important gap in the literature by developing a cyber-insurance model using the emerg-
ing copula methodology. The premiums for first party losses due to virus intrusions are estimated using three types of 
insurance policy models. Our approach is the first in the information security literature to integrate standard elements 
of insurance risk with the robust copula methodology to determine cyber insurance premiums.   

Keywords: cyber-insurance, copula, correlated risk, information security risk management.  

Introduction

Reported financial losses due to information security 

breaches give us an overall glimpse of the severity of 

the information security problem. Security breaches 

result in losses of millions of dollars due to direct 

costs such as lost revenues, lost productivity, and 

lawsuits, as well as more intangible losses such as 

loss of customer goodwill, lost reputation, and lost 

business opportunities. The recent 2008 CSI Com-

puter Crime and Security Survey (Richardson, 2008) 

notes that most organizations use security tools with 

almost 97% using antivirus software, 94% having 

firewalls, and 69% having intrusion detection sys-

tems. Despite this increased use of security measures, 

the security breaches and the losses due to these 

breaches remain high. It is difficult for security man-

agers in any organization to know about and elimi-

nate all the points of vulnerability in an IT system 

(i.e., create a foolproof system), and a hacker needs 

just one of these points of vulnerability to exploit 

(Anderson, 2001).   

Recognizing that the total elimination of security 

breach risk is close to impossible, National Institute 

of Standards and Technology (NIST) recommends 

several risk mitigation techniques that are based on 

technical as well as non-technical controls. These 

techniques include risk assumption, risk avoidance, 

risk limitation, risk planning, research and acknowl-

edgment, and risk transference (Stoneburner et al., 

2002). Our article focuses on risk transference as a 

tool that minimizes some of the financial losses to 

firms (i.e., to transfer the risk by using other options 

to compensate for the loss, such as purchasing insur-

ance). Both practitioners and academics have sug-

gested using risk transference with insurance to ab-

sorb losses caused by security breaches and to sup-

plement the existing set of tools used to manage IT 

security residual risk after IT security investments are 

made (see Gordon et al., 2003; Ogut et al., 2005 

among others).    

                                                     
 Hemantha S.B. Herath, Tejaswini C. Herath, 2011. 

There are currently a variety of cyber-insurance prod-
ucts offered in the market. Cyber-insurance is a spe-
cialty insurance product that covers losses associated 
with a firm’s information assets including computer 
generated, stored, and processed information. Tradi-
tional business insurance products cover tangible 
property but do not cover assets like data and informa-
tion. Cyber-insurance is primarily designed to cover 
intangible business assets which traditional business 
insurance does not cover.  Such insurance policies help 
protect against losses due to cyber attacks, employee 
breaches of network security, hackers, the associated 
liability of these events, the consequential expenses 
due to privacy breach, and liability over website con-
tent, among other potential losses (Oellrich, 2003). 
These insurance policies cover both first party business 
losses and third party liability (Betterly, 2007).  

The cyber-insurance market evolved with the advent 
and dispersion of Internet use in commerce activi-
ties. Majuca et al. (2006) and Baer and Parkinson 
(2007) provide a nice discussion on the evolution of 
the cyber-insurance market. Although specialty 
coverage against computer crime first appeared in 
the 1970s, it was mostly an extension of traditional 
crime tied to electronic banking. It was in 1998, 
however, that the earliest cyber-insurance products 
were offered by technology companies which part-
nered with insurance companies (Majuca, 2006). 
These companies included ICSA TruSecure, Cigna 
Corp/Cisco Systems/NetSolve, J.S. Wurzler Under-
writing, IBM/Sedgwick, Counterpane/Lloyd’s of 
London, Marsh McLennan/AT&T, and AIG, and 
mostly offered first party coverage. Current cyber-
insurance market includes many carriers such as 
ACE USA, American International Group (AIG), 
Chubb, AON, St. Paul Travelers, INSURETrust, 
SWBC, Allied World/Darwin, Aspen, The Hartford, 
Navigators, RLI, XL, and Zurich and retailers such 
as Digital Risk Managers/Lloyds, Euclid/ Hudson, 
and Safe-online/Lloyds. They offer both first party 
and third party coverage.  

According to the Betterley (September 2010), cyber-
insurance market is expected to grow due to wide-
spread concern over data breaches, creative efforts by 
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hackers, and political support for regulatory action. 
While annual premium volume information is diffi-
cult to gather the U.S. annual gross premium revenue 
for cyber-insurance policies has grown from less than 
US$100 million in 2002 to US$300-350 million by 
mid-2006 (Baer and Parkinson, 2007). It is, however, 
forecast to be in the $600 million range by the end of 
2010 (Betterley, June 2010). The market which pri-
marily involved large businesses seeking coverage is 
now broadening to small and mid-sized companies 
which are becoming aware of the possibilities of 
liability (Betterley, June 2010). Furthermore, many 
carriers are reporting strong growth in premiums with 
several reporting growth of over 100%, and few re-
porting between 50-100%. Businesses are seeking 
coverage for the value of the data loss, lost revenue 
due to loss of data, lost revenue due to repair down-
times, legal expenses for damage to another party, cost 
of crisis management, notification, credit monitoring 
and restoration after a data breach, and regulatory fines 
and penalties (Betterley, September 2010). New trends 
also suggest privacy coverage to be driving the cyber-
insurance market with new products such as Aspen’s 
New Privacy Control Breach Response.  

Premiums vary according to specific situation and 
the amount of coverage, and can range from a few 
thousand dollars for base coverage for small busi-
nesses (less than $10 million in revenue) to several 
hundred thousand dollars for major corporations 
desiring comprehensive coverage. Although insur-
ance companies provide cyber-insurance products, 
the accuracy of the pricing and whether or not in-
surance providers are charging the right premiums is 
still an open question (Gordon et al., 2003). Premi-
ums depend on the individual firm’s security risk 
exposure and can vary substantially depending on 
the insurance provider. To address this, both practi-
tioners and academics have argued for more robust 
and innovative cyber-insurance pricing models to 
stimulate increased growth in the cyber-insurance 
market (Baer and Parkinson, 2007; Betterly, 2007; 
Geer et al., 2003; Oellrich, 2003).  In this article, we 
attempt to fill this important research gap by devel-
oping a cyber-insurance pricing model, where the 
premiums depend on the number of computers af-
fected, the firm level dollar loss distribution, and the 
timing of the breach event.  

The contribution of this article is threefold. First, we 

incorporate three elements of a standard insurance 

contract – the settlement amount that is paid, the 

occurrence of the event covered by the contract and 

the time when the settlement is paid into pricing cy-

ber-insurance and explicitly model them in the con-

text of information security. Second, the proposed 

model applies the copula methodology that allows for 

capturing of non-linear dependencies among the in-

put pricing variables. Copulas do not place restric-

tions on the type of marginal distributions considered 

for the pricing variables. The novel integration of the 

copula methodology makes the modeling robust and 

offers a methodological contribution to information 

security research. The use of copulas is essential but 

relatively new to the cyber-security insurance indus-

try. Finally, using empirical loss distributions based 

on publicly available ICSA survey data, we illustrate 

a copula-based Monte Carlo simulation model for 

pricing cyber insurance. More specifically, we use 

firm level data of the number of computers affected 

and the dollar losses due to virus incidents as a start-

ing point to illustrate the assessment of the empirical 

joint loss distribution that is essential for premium 

pricing. We compute the premiums for first party 

losses using three types of insurance policy models: 

basic policies, policies with deductible and policies 

with deductible and co-insurance. 

The paper is organized as follows. Section 1 provides a 
review of the related cyber-insurance literature. In 
Section 2, we provide a framework for cyber risk as-
sessment that combines standard elements of an insur-
ance contract with copula methodology from the per-
spective of information security. In this section, we 
also introduce the concept of copulas. Section 3 de-
scribes the cyber-insurance models and in Section 4, 
we illustrate the models using ICSA data. The final 
Section concludes this paper with a discussion of limi-
tations, future research directions and managerial im-
plications. An Appendix provides a primer on the cop-
ula methodology used in this article.  

1. Related cyber-insurance literature 

Cyber-insurance as a risk management tool gives rise 
to challenges that are typically not considered in tra-
ditional business insurance models. Issues related to 
pricing, adverse selection, and moral hazard are 
common to all forms of insurance. In addition, sev-
eral technology-related characteristics make the pric-
ing of cyber-insurance challenging. First, internet-
related risks are unique in terms of location, degree, 
and visibility. Traditional policies do not comprehen-
sively address the additional risks that firms face as a 
result of being part of the digital economy (Gordon et 
al., 2003). Second, the Internet is a shared medium. 
Firms use common software and interact with other 
firms. Cyber security involves many layers and re-
quires attention through many stages of a system’s 
lifecycle, from software design and system configura-
tion to maintenance tasks such as patching to achieve 
final results. Thus, an important feature of cyber se-
curity is that it may need collaborative partnerships to 
attain these goals. These factors create interdepend-
encies that make risk and vulnerability assessment 
difficult. 
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An understanding of cyber-risk issues is compli-
cated but essential when designing insurance prod-
ucts. These unique challenges create a number of 
important research opportunities that need to be 
addressed from both – the point of view of insur-
ance companies (supply side) and the insured (de-
mand side). Pricing insurance products traditionally 
relies on actuarial tables constructed from historical 
records. However, unlike traditional insurance poli-
cies, cyber-insurance has no standard scoring sys-
tem or actuarial tables for pricing premiums. The 
Internet is relatively new, and as such data about 
security breaches and losses does not exist or does 
so only in small quantities. This difficulty is further 
exacerbated by the reluctance of organizations to 
reveal details of security breaches due to loss of 
market share, loss of reputation, etc. 

Recently, there has been a growing stream of re-
search focusing on cyber-insurance. In one of the 
earliest articles proposing cyber-insurance, Gordon 
et al. (2003) discuss a framework for using cyber-
insurance as a risk management technique. They 
describe the unique features of cyber-insurance and 
the problem of adverse selection and moral hazard 
which are common to all insurance markets. Bolot 
and Lelarge (2008) combine recent ideas from risk 
theory and network modeling in an economic ap-
proach to develop an expected utility insurance 
model. They investigate the interplay between self-
protection and insurance. Their results show that 
using insurance is beneficial since it increases the 
security of the Internet. Ogut et al. (2005) investi-
gate cyber-insurance explicitly from a moral hazard 
and adverse selection perspective. They show that 
the interdependence of IT security risk among dif-
ferent firms impacts a firm’s incentive to invest in 
cyber-insurance products.  

Recent literature in this area has recognized the 
value of copula methodology for modeling depend-
ent risks (Böhme and Kataria, 2006; and Muk-
hopadhyay et al., 2006). Copulas, term coined by 
Sklar (1959), have been studied for over forty years.
Copulas are functions that join or couple multivari-
ate distribution functions to their one-dimensional 
marginal distribution functions. Alternatively, copu-
las can be described as multivariate distributions 
whose one-dimensional margins are uniform in the 
interval [0, 1] (Frees and Valdez, 1998; Nelsen, 
1995). Copulas are of interest to statisticians for two 
main reasons: (1) as a way of studying scale-free 
measures of dependence; and (2) as a starting point 
for constructing families of bivariate distributions 
for simulation (Fisher, 1997). In the case of insur-
ance, this implies modeling the non-linear depend-
encies in the pricing variables and using simulation 
to determine the premiums.  

Mukhopadhyay et al. (2006) attempt to model cy-
ber-insurance claims using copulas. They use a cop-
ula setting with the Bayesian Belief Networks 
(BBN) technique to quantify the e-risks associated 
with online transactions that would be affected by 
security breaches. They employ the multivariate 
normal copula to describe the joint distribution and 
the conditional distribution at each node on the 
BBN. They use the software FULLBNT to identify 
breach probabilities and make the following as-
sumptions. The dollar losses at each node in the 
network are distributed binomially with assumed 
specific values and that cyber-insurance premiums 
are computed as a function of the expected value of 
the claim severity.  

Our paper contributes to this recent but growing 
body of IS literature. We adopt an empirical ap-
proach using Archimedean copulas that is different 
to the process/utility based approaches used by 
Böhme (2005), Böhme and Kataria (2006), Muk-
hopadhyay et al. (2006) and Bolot and Lelarge 
(2008). The primary limitation of process/utility 
approach is that it cannot be used by practitioners 
since it is not based on an actuarial approach. We 
investigate cyber-insurance pricing using the emerg-
ing copula methodology for modeling dependent 
risks from an actuarial approach that is based on 
empirical distributions. In this paper we use two 
Archimedean copulas: Clayton and Gumbel.   

2. Framework for assessing cyber risk 

In this section, we develop a framework for assess-
ing cyber risk that consider typical insurance pricing 
variables but from the perspective of IT security. 
More specifically, we discuss how to model loss 
function at the individual firm level from the popu-
lation data using the number of affected computers 
as proxy for size.   

2.1. Cyber-insurance risk elements. There are three 
elements of risk that are typically part of any insur-
ance contract (Klugman, 1986): (1) the settlement 
amount that is paid; (2) the occurrence of the event 
covered by the contract; and (3) the time when the 
settlement is paid. In the proposed insurance model 
for pricing first party business interruption due to 

security breaches, the unknown random variable of 
interest is the amount (P) that is paid by the insur-
ance company. The amount paid (P) will depend on 

the dollar loss amount ( ) that is likely to be in-
curred by a firm with (q) number of affected com-

puters. Suppose  is the observed dollar losses from 
available data (from, for example, the ICSA com-
puter virus prevalence survey). We can model the 

loss ( ) pertaining to a breach event at firm level as 

a function of both (q) and ( ) given by  = g ( , q).
In the model, we assume that loss distribution for a 
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firm will depend on two random variables  and q.

Since reliable data on  is a scant, insurance com-
panies can use the publicly available data such as 

the ICSA survey data to model  using an appropri-
ate copula1. The field of copulas in statistics is rela-
tively new to the IS field. Therefore, for pedagogical 
reasons and for better understanding of the proposed 
model we provide a lucid introduction to copulas in 
Appendix.

Copulas are more appropriate to model the joint loss 

distribution  = g ( , q) for two reasons. First, copu-
las allows combining any type of fitted marginal 

distributions for  and q. Thus, no restrictions are 
imposed on the type of marginal distributions for (q)

and ( ). This is quite useful in cyber-insurance 
given that a wide range of empirical distributions 
are possible. Second, copulas are ideal for investi-
gating non-linear type dependencies that arise when 
non normal marginal distributions of the type for (q)

and ( ) are combined. The type of dependence be-

tween random variable; such as (q) and ( ), is cru-
cial in many respects to cyber risk management 

because the variables (q) and ( ) are intertwined due 
to the partial dependence of the losses on the num-
ber of computers that are exposed to and affected by 
a security breach. 

The second element of risk, the occurrence of the 
event that is covered by the contract, is modeled by 
a binary variable . It takes the value of 1 if the 

covered event has occurred or 0 otherwise. The third 
element of risk is the time until the settlement is 
paid (T), which is the time from issue of policy to 
when the claim is paid. This time period includes 
the time until the breach incident from the issuance 
of policy and the time until settlement after the inci-
dent takes place. It is reasonable to assume that the 
time between the incident and the settlement will be 
short (or equivalently zero). This assumption is 
valid since we are modeling first party business 
interruption (first party damage) and not liability 
insurance. If one is modeling cyber-insurance liabil-
ity coverage, then the settlement time can be sub-
stantial due to legal proceedings and should be con-
sidered in the model. Thus, the parameter of interest 
for our model is time until breach incident. In in-
formation security, for random events such as virus 
intrusions, the Poisson distribution is widely used to 
model the arrival of intrusions per unit time (Con-

                                                     
1 In 2008 when the financial crisis occurred, the copula methodology 
was widely criticized as it was used by Li (2000) to model risks associ-
ated with credit derivatives. It was later argued by Krugman (2008) that 
the primary cause of the credit crisis was not the use of copulas to 
model a single credit derivative but a lack of understanding regarding 
the aggregate risks caused by writing multiple derivatives contacts on 
the same instrument. Copula is the primary tool that allows marginal 
distributions to be combined when they are non-elliptical.  

rad, 2005; Herath and Herath, 2009; Longstaff et al., 
2000). One can use the Poisson intrusion rate proc-
ess to determine the time until the IT system is 
breached. We use this approach in our paper to 
model the time until the breach incident or time 
until settlement (T).

The use of copulas implicitly assumes that the random 
events which caused the losses would be repeated. In 
the case of first party damage due to viruses, one can 
reasonably assume that the random breach event (virus 
intrusion) would likely follow a similar pattern. This 
may also be reasonably true for hacking if the event is 
random. However, it may not be the case if the hacker 
is particularly targeting a strategic organization such as 
a military establishment, NASA, etc. In this case, the 
pricing has to be tailored on a case by case basis by 
adding another layer of insurance on top of the general 
random events. 

2.2. Modeling the loss distribution  using copulas.

Copula methodology can be used effectively to 
model the joint dollar loss distribution due to cyber 
attacks at firm level. A key component of insurance 
pricing is to understand and model multivariate rela-
tionships. While linear regression may provide a 
basis for explaining the relationship between two (or 
more) variables, the model is based on normality 
assumptions and linear dependence. Linear regres-
sion would work if the marginal distributions are 
normal. However, the marginal distribution for the 
number of computers affected (q) and the dollar 

value of losses ( ) may not be normal (as exempli-
fied in case illustration). In the case of the pricing 
variable, the number of computers affected (q), the 
marginal distribution is likely to be of the type 
Pareto, Exponential, or Weibull, since a few viruses 
(15%-25%) account for (85%-75%) a large number 
of computers affected. Because the fitted marginal 
distributions are non-normal, the widely used classi-

cal Pearson’s product moment correlation ( ) cannot 
be used to model the dependency between the two 

variables. Correlation ( ) measures the straight line 
association and the dependency is linear. Thus, in 

modeling a firm’s loss distribution  from the 
available empirical data, the copula dependency is 
more appropriate.  

In the copula approach for modeling the firm’s loss 
distribution, the first step (as described in Appendix, 
Section 3) is to identify the “appropriate copula” for 
modeling the non-linear dependence that explains 
the relationship between the two variables of inter-
est, the number of computers affected (q), and the 

dollar value of losses ( ). That is, we identify the 

joint distribution of ( , q) by the specific function say 

 = g ( , q). Notice that we can now examine the 
firm’s loss distribution of any known function of q

and . To determine the loss distribution, let l and m
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be the lowest and the highest limits of the number of 
likely computers affected. Assuming the dollar 
value of the likely losses can be prorated based on 
the number of computers affected (or exposed), say 
the following function captures the firm’s specific 
loss distribution: 

mq
q

mq
a

mql
q

lq
a

lqa

qg

if,
10

if,
10

if,

,

3

2

1

, (1) 

where, ai, i = 1, 2, 3 are constants. The jointly distrib-

uted values for a firm’s loss distribution  = g ( , q)
can be computed using Monte Carlo simulation.   

3. Copula-based cyber-insurance model 

The probabilistic model for the cost of cyber-
insurance for first party damage due to a breach 
based on fundamental risk elements of an insurance 
contract is: 

PeC rT
,       (2) 

where  is a binary variable, equal to one if the 

covered event occurs and zero otherwise, T is the 
time until the security breach incident, r is the dis-
count rate, and P is the amount paid by the insur-
ance company in the event of a breach. For simplic-
ity, we assume that the covered event happens only 
once in the contract period and that the loss pertains 
to a single claim1. More specifically, T is the time to 
the first instance of a cyber security breach and we 
assume that the system fails after the first breach 
and the claim is paid only once. The contract period 
is up to the first breach event. In the case of cyber-
insurance, the amount paid P and the time of issuance 
of the policy to the payment of the claim T can be 
reasonably assumed to be independent because P is 
not a function of T 2. The net premium is given by: 

)()()( PeC rT
,     (3) 

where the probability of event occurring )(

)1(Prob . This net premium does not include 

the expenses and profits of the insurance company. 
In order to obtain the actual premium charged by the 
insurance company, an additional amount to cover 
the expenses and profits have to be added.   

                                                     
1 Klugman (1986) discusses several alternate ways to incorporate situa-
tions, where the covered event could happen several times during the 
contract period.   
2 If P is a function of T, one can use copulas to model appropriately the 
dependency and determine the joint distribution.

In this section we present three different types of 
cyber-insurance policy models. The first model is a 
basic first party damage policy with a zero deducti-
ble. The second model is a first party damage policy 
with a deductible. Finally, the third model consid-
ered is a first party damage policy with co-insurance 
and limit. For the first two models, suppose we con-
sider a first party damage cyber policy that has a 
deductible (d), the observed random variable – an 

amount of loss ( ), and (P) the amount paid which 
is the random of interest, then the policy relation-
ships are modeled as:   

Policy type 1. Basic first party damage policy with 

a zero deductible:

),( qgP .      (4) 

Policy type 2. First party damage policy with a 
deductible:

dd

d
P

if,

if,0
 .     (5)

Consider a third model with a deductible d, co-
insurance of a, and a limit of k. The insurance pays 
nothing when the loss is below d, pays 100% (1 – a)
of excess losses over d, but never pays anything 
over k. The relationship between the random vari-
able of interest P and the observed random variable 

 can be modeled as: 

Policy type 3. First party damage policy with co-
insurance and limit:

a

k
dk

a

k
ddda

d

P

1
if,

1
if,1

if,0

.   (6) 

In our approach, we can directly infer about P since 

the observed variable  is known (it is estimated 
from the ICSA data)3. We do not have historical 
data of actual amounts paid (P) by insurance com-
panies nor the number of polices to estimate the 

frequency of .  In our approach, since we know ,

we can assume that when  > 0 (a loss was in-

curred), then the event occurred and hence 1.

However, since we do not have the data to estimate 

                                                     
3 Klugman (1986) provides an example where the observed variable is P
(the amount paid by the insurance company) and the unknown loss 

distribution  has to be inferred. In such instances,  the frequency 

(i.e., the number of times the covered event occurred) is found by the 
relative frequency of P (i.e., the number of times an actual payment of 

amount P was made for a firm incurring a loss of /total number of 
polices observed).    
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the frequency and our main objective is to illustrate 
the copula approach in IT security context, we as-

sume 1 . This is a simplifying assumption. Ide-

ally, one should assume a fractional value for or 

where a fitted distribution is available for the actual 
amounts paid for cyber policies can be computed 

(see Klugman, 1986).    

The other unknown variable is T – the time from 

when the policy is issued until the insurance settle-

ment is paid. As explained in Section 2.1, since we 

are dealing with first party damage and not liability 

coverage, T can reasonably be assumed to be the 

time from the issuance of the policy until the breach 

incident or occurrence of the covered event, and can 

be modeled using a Poisson process. In a Poisson 

process with an expected arrival rate of  intrusions 

per unit time, the number of arrivals in any time 

period t is t and the numbers of arrivals in separate 

periods are independent of each other. Thus, the 

times between successive arrivals Ai = t1 – ti-1 are 

independent exponential random variables with 

mean
1

. Assuming ti-1 has been determined, to 

generate the next arrival time ti, the simulation pro-

cedure is as follows: 

Step 1. Generate a uniform random variable u U (0,1) 

independent of any previous random variate. 

Step 2. Return utt ii ln
1

1 . Notice that t0 = 0.

3.1. Integrated copula-based simulation algorithm 

for pricing cyber-insurance. The integrated copula-

based simulation algorithm for pricing a first party 

damage policy due to an IT security breach is given 

below. The steps are as follows: 

Step 1. Fit a copula to the empirical data (q, ).

Next, generate a sequence of bi-variate data (qk, k)

for the kth iteration using the fitted copula (i.e., Clay-

ton or Gumbel or any other copula). The procedures 

for generating data from Clayton and Gumbel are 

well summarized in Frees and Valdez (1998) and 

Nelson (1999), among others. We illustrate the simu-

lation procedure for the Gumbel copula in detail in 

Section 4. 

Step 2. For each sequence of bivariate data (qk, k) in 

step 1 above, compute the losses k = g ( k, qk)

using equation 1 for a given (l, m).

Step 3. Model the first instance of a security breach or 

the time until incident using the simulation procedure 

for a Poisson process kkkk uttT ln
1

1 dis-

cussed in Section 3.  

Step 4. Compute the insurance premium for the 
thk iteration as .

kTkk ePC  Notice that we have 

considered three types of first party damage policies 
in this paper. 

Step 5. Compute the expected value and the stan-
dard deviation of the cyber-insurance premium as:   

S

k

Tk
S

k

k k

eP
S

C
S

CE
11

11
,    (7) 

S

CEC
S

C

S

k

k 221

,     (8) 

where S is the number of simulation runs. 

4. Case illustration  

In this section, we illustrate the copula approach for 
pricing cyber-insurance using data from the ICSA 
survey. Consider a hypothetical organization, firm 
A, with the firm level data pertaining to the number 

of computers affected q and the dollar losses  for 
each major computer virus encountered in 2003. As 
assumed in Conrad (2005), we consider the possibil-

ity of two ( = 2) breaches a year. We assume that 
firm’s IT system fails after the first breach and the 
claim is paid only once. The coverage is only for the 
first breach event and the contract period is till the 
occurrence of first IT breach.

We use the ICSA survey data for 2003 on actual 
computer virus incidences and the actual number of 
computers affected, modified and scaled down one 
hundred times to represent firm level. Notice that 
both the number of computers affected as well as 
the dollar value of losses are random events. That is, 
the number of computers affected will depend on 
the severity of the virus, the company’s security 
posture, and the security policies in place. Similarly, 
the dollar value of losses will be random in the 
sense that, in the rare instance of the same number 
of computers being affected by two distinct viruses, 
the degree of loss will not be identical because it 
will depend on each virus’s ability to penetrate and 
harm the computers. Also, it will depend on the 
computer type affected (i.e., the proportion of stand 
alone computers, servers, network computers, etc.). 
The population data is given in Table 1. In Figure 1, 
we provide a scatter plot of the logarithmic values 
of dollar losses verses the number of computers 
affected. The Pearson correlation coefficient of 
0.976 and the scatter plot indicates a strong relation-
ship among the two variables.  

In order to price the cyber-insurance premium for firm 

A, based on the number of computers affected and the 

dollar value of losses pertaining to each virus inci-

dence, we have to capture the non-linear dependence 
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using the best fit copula from the empirical data and 

simulate the bi-variate data (qk, k). For the copula-

based simulation, we need to identify the marginal 

distributions for the number of computers affected q

and the losses  (see Table 1). We use ARENA soft-

ware for identifying the marginal distributions. The 

marginal distribution for number of computers af-

fected q and the losses  are Weibull distributions of 

the following form. The fitted marginal distributions 

are q  18 + Weibull (118, 0.586) and  5340 + 

Weibull (38900, 0.586)1. Notice that both the distri-

butions are shifted Weibull distributions. There are 

several reasons why in such a case one needs to use 

a copula-based model to simulate the pair of values 

(qk, k). First, the marginal distributions are Weibull 

and not normal, thus one cannot use linear regres-

sion. Second, finding the joint distribution of the 

two variables is complex since they are shifted 

Weibull distributions. And finally, Pearson’s prod-

uct moment or linear correlation cannot be use since 

the marginals are non-normal. The copula approach, 

as illustrated below, enables us to identify the ap-

propriate copula to determine a joint distribution 

that can be used with these non-normal marginal 

distributions. Furthermore, a copula approach al-

lows the modeling of non-linear dependency, which 

is more appropriate for estimating the premiums.   

Table 1. Surveyed computer virus data 

 Virus 
q

# of computers $ losses 

1 W32/Blaster 1291 $355 648.72 

2 W32/Slammer 849 $339 832.66 

3 W32/Sobig 238 $115 729.51 

4 W32/Klez 140 $65 090.38 

5 W32/Yaha 118 $45 402.25 

6 W32/Swen 108 $66 053.73 

7 W32/Dumaru 87 $39 182.88 

8 W32/Mimail 70 $19 556.82 

9 W32/Nachi 63 $20 087.13 

10 W32/Fizzer 58 $20 465.35 

11 W32/BugBear 50 $10 180.13 

12 W32/Lirva 47 $11 769.29 

13 W32/Sober 21 $6 944.48 

14 W32/SirCam 21 $5 339.08 

15 W32/Ganda 19 $7 547.77 

Mean  212 $75 255 

Standard 
deviation 

 363 $114 702 

                                                     
1 We fitted marginal distributions using the ARENA software package, 
where the best fit marginal is the one with the minimum squared error. 

Weibull with squared error of 0.0226 for  and Weibull with squared 
error of 0.0257 for q were selected from among possible marginal 
distributions which included Exponential, Erlang, Gamma, Beta, Log-
normal, Normal, Triangular and Uniform.   
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We use Kendall’s Tau to measure the dependence 

between the number of computers affected (q) and 

the dollar losses ( ) for the data in Table 1. We use 

the statistical software SPSS to compute Kendall’s 

Tau, which is found to be 0.848. Next, we obtain 

 values of 11.15789 and 6.578947 respectively 

using the equations in Appendix, Section 2 for Clay-

ton and Gumbel copulas. In order to identify the 

appropriate copula, we follow the procedure out-

lined in Appendix, Section 3. The empirical distri-

bution KE (z) and its parametric values K (z) for Clay-

ton and Gumbel copulas based on equations in Ap-

pendix, Section 3 (1) and (2) are shown in Figure 1. 

Frees and Valdez (1998) provides a nice exposition 

on fitting copulas including visual fit, the quantile-

quantile (Q-Q) plots and more robust maximum like-

lihood approach. It is evident from Figure 2 that 

based on a visual fit, although both Clayton and 

Gumbel copulas are relatively close, the Gumbel 

copula provides the best fit. The Q-Q plots shown in 

Figure 3 also further confirm that Gumbel copula is 

the best fit. More robust statistical approaches per-

taining to the specialized topic of copula selection 

methods are found in Frees and Valdez (1998), Huard 

et al. (2006) and Genest et al. (2009). 
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Fig. 3. Q-Q plots

In order to simulate bi-variate outcomes (qk, k)
using the Gumbel copula, we use the algorithm 
suggested by Marshall and Olkin (1988). For the 
Gumbel copula, the generator and Laplace trans-
form are given in Appendix, Section 2. The in-
verse generator is equal to the Laplace transform 

of a positive Stable variate 0,,1,St~ , where 

2
cos and 0 .

Step 1. Simulate a positive Stable variate 

0,,1,ˆSt~ .

Step 2. Simulate two independent uniform [0, 1] 
random numbers u1 and u2.

Step 3. Set *

1

1 uFq  and *

2

1 uG  where 

ii
uu ln

1*  and 
1

exp)( tt for i  [1, 2], 

where
118/1*

1

*

1

1 )ln(586.018)( uuF  and 
38900/1*

2

*

2

1 )ln(586.05340)( uuG .

Nolan (2005) and Cherubini et al. (2004) suggest the 

following procedure to simulate a positive random 

variable ,,1,ˆSt~ :

Step 1(a). Simulate a uniform random variable: 

2
,

2
U .

Step 1(b). Independently draw an exponential ran-

dom variable ( ) with mean 1.  

Step 1(c).
2

tanarctan0  and compute  

1

0

1

0

0 1cos

coscos

sin
z .

Step 1(d). z .

In order to determine the cyber-insurance premium 

for a firm with l = 10 and m = 500, the lowest and 

the highest limits of the number of computers 

likely affected, we ran the integrated copula-based 

algorithm given in Section 3.1 for S = 10 000 times. 

The net insurance premiums per computer related to 

the three cyber policies with a1 = 400, a2 = 125, and 

a3 = 300 are given in Table 2. 

Table 2. Premium per computer for cyber policy 1, 2, and 3 

 Deductible (d) 0 500 1000 1500 2000 2500 

Average premium $229      
Polycy 1 

St. dev. (%) 62%      

Average premium $229 $224 $214 $214 $199 $184 
Polycy 2 

St.  dev. (%) 62% 72% 71% 72% 83% 86% 

Average premium $210 $204 $196 $195 $180 $168 
a = 5% 

St.  dev. (%) 57% 62% 65% 65% 70% 77% 

Average premium $203 $192 $188 $188 $174 $167 
a = 10% 

St.  dev. (%) 59% 63% 65% 67% 73% 73% 

Average premium $192 $181 $175 $177 $166 $164 
a = 15% 

St.  dev. (%) 61% 63% 68% 68% 71% 74% 

Average premium $185 $178 $168 $160 $157 $151 

Policy 3 
k=25000

a = 20% 
St.  dev. (%) 61% 64% 67% 70% 72% 75% 
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Table 2 (cont.). Premium per computer for cyber policy 1, 2, and 3 

Deductible (d) 0 500 1000 1500 2000 2500 

Average premium $195 $194 $181 $179 $174 $168 
a = 5% 

St.  dev. (%) 54% 54% 59% 63% 64% 68% 

Average premium $185 $183 $174 $168 $169 $162 
a = 10% 

St.  dev. (%) 56% 58% 63% 65% 66% 70% 

Average premium $177 $173 $168 $161 $159 $152 
a = 15% 

St.  dev. (%) 58% 60% 63% 68% 69% 72% 

Average premium $169 $162 $165 $152 $152 $150 

Policy 3 
k=20000

a = 20% 
St.  dev. (%) 60% 61% 63% 67% 68% 70% 

Average premium $165 $163 $159 $151 $148 $143 
a = 5% 

St.  dev. (%) 46% 49% 51% 57% 59% 64% 

Average premium $159 $157 $154 $148 $145 $140 
a = 10% 

St.  dev. (%) 49% 49% 53% 58% 60% 64% 

Average premium $158 $153 $149 $147 $143 $139 
a = 15% 

St.  dev. (%) 50% 53% 56% 58% 61% 65% 

Average premium $154 $150 $149 $147 $142 $133 

Policy 3 
k=15000

a = 20% 
St.  dev. (%) 51% 55% 55% 58% 61% 68% 

Average premium $123 $120 $117 $115 $112 $107 
a = 5% 

St.  dev. (%) 35% 39% 42% 46% 51% 55% 

Average premium $122 $117 $113 $111 $108 $106 
a = 10% 

St.  dev. (%) 36% 41% 45% 49% 53% 56% 

Average premium $120 $116 $115 $111 $107 $105 
a = 15% 

St.  dev. (%) 38% 42% 45% 50% 54% 57% 

Average premium $116 $114 $112 $108 $106 $103 

Policy 3 
k=10000

a = 20% 
St.  dev. (%) 40% 43% 46% 51% 55% 58% 

For Policy type 1 with no deductible, the average 
net annual premium per computer is $229. For Pol-
icy type 2, with a deductible ranging from $0 to 
$2500, the average net premium per computer re-
duces from $229 to $184. The reason for the reduc-
tion in average net premium per computer for the 
higher deductible is because with a higher deducti-
ble, a greater portion of risk is borne by the firm.  

The deductible plays an important role in managing 
cyber security risk. For the insurance company, it is 
a way to lower its risk since the higher is the de-
ductible, the lower their risk of paying out on a 
claim would be. Typically, cyber-insurance provid-
ers impose higher deductibles for firms with greater 
cyber security risks, for example, firms with consis-
tently lower investment in cyber security, with poor 
security controls or with inadequate IT staff, among 
other factors. From a risk management perspective, 
for a firm, it is important to understand that deducti-
bles affect the premiums. If the deductible is low, 
the net premium is higher, and vice versa. Firms, 
therefore, can decide on the deductible as a way to 
manage their annual cyber-insurance premium costs.      

For Policy type 3, with a deductible, co-insurance, 

and limit, Table 2 provides the annual net premiums 

per computer for policies with the deductible rang-

ing from $0-$2500, the co-insurance rate ranging 

from 5%-20%, and the limit ranging from $10000 to 

$25000. In Policy 3, the insurance company pays 

nothing when the loss is below the deductible, pays 

(1 – coinsurance rate) of excess losses over the de-

ductible, but never pays anything over the limit. For 

a maximum limit of $25000 and a given deductible 

of $1500, the average net premium per computer 

reduces from $195 to $160 as the co-insurance rate 

increases from 5% to 20%. Thus, a higher co-

insurance rate means that the firm bears a larger 

portion of the cyber risk, and hence the reduction in 

net premiums. The effect of the limit is as follows. 

It provides an upper bound on the amount of the 

average net premium paid by the insurance com-

pany. Therefore, as expected, when the limit is 

reduced, assuming the other variables hold con-

stant, the average net premium is reduced. For 

example, with a deductible of $1000 and a co-

insurance rate of 5%, the net premium per com-

puter reduces from $196 to $117 when the limit is 

reduced from $25000 to $10000. The coinsurance 

is the amount of firm will bear above the annual de-

ductible. The deductible plus the co-insurance will be 

the maximum out-of-pocket expense for the firm.   

It is common practice to assume independence in 
pricing premiums. Thus, following Frees and Valdez 
(1998) we provide the ratios of dependence to inde-
pendence cyber-insurance premiums to determine the 
extend of mispricing for a sample set of policies. In 
particular, we use the independent copula C (u, v) = uv

to compute the net insurance premiums per computer 
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for the independent case. A ratio below 1.0 indicate 
under valued premiums. As seen from Table 3, for 
Policy type 1 with no deductible and for Policy type 2 
with deductible ranging from 500 to 2500, the under-
valuation is the greatest. For Policy type 3, with a 
limit of $25000 and co-insurance rate ranging from 

5% to 20% the premiums are still under valued but 
not as much due to the cap imposed by the limit. 
Therefore, in general one can argue that premium 
pricing errors can be substantial if independence is 
assumed making the case for considering non-linear 
dependence in cyber insurance pricing. 

Table 3. Ratios of dependence to independence premiums 

   Cyber Policy 1, 2, and 3 

Deductible (d) 0 500 1000 1500 2000 2500 

Policy 1 Mean 0.218      

Policy 2 Mean 0.218 0.221 0.216 0.217 0.203 0.196 

a = 5% Mean 0.861 0.859 0.856 0.884 0.831 0.778 

a = 10% Mean 0.837 0.820 0.813 0.834 0.790 0.783 

a = 15% Mean 0.835 0.796 0.804 0.817 0.784 0.798 

Policy 3 
k=25000

a = 20% Mean 0.832 0.810 0.795 0.783 0.771 0.754 

Discussion  

This paper develops a cyber-insurance pricing model 

explicitly considering the three primary risk variables 

in pricing insurance policies, namely the occurrence 

of the covered cyber breach event, the time when the 

insurance is paid, and the amount paid. We illustrated 

three different types of cyber-insurance policies: a 

basic policy with no deductible, a policy with a de-

ductible, and a policy with a deductible, coinsurance, 

and limit. To the best of our knowledge, cyber-

insurance literature to date has not explicitly consid-

ered these aspects of insurance which are fundamen-

tal for appropriately modeling the risks associated 

with a cyber-insurance contract. Another important 

aspect of this article is the use of existing data, spe-

cifically the publicly available ICSA survey data, for 

developing and illustrating an actuarial approach to 

cyber-insurance pricing.  

An important point indicated by ICSA data is that the 
marginal distributions may be non-normal. The de-
pendence between the number of computers affected 
and the dollar losses is correlated, but not in the typi-
cal linear fashion due to the non-normal marginals. In 
this regards, the usual linear dependence measure, 
which is the Pearson’s product moment correlation, 
breaks down due to the existence of non-normal or 
non-elliptical marginals. This problem is severe and 
especially important as cyber losses tend to be dis-
tributed in a Pareto fashion with few viruses or few 
hacking incidents resulting in large losses and affect-
ing a large number of computers. 

In order to appropriately price the risk at firm level, 

we illustrated the emerging copula approach for 

modeling dependent risks. This is a more robust 

technique to obtain the joint loss distributions for 

two main reasons. First, it allows consideration of 

non-linear dependencies for correlated risks. Sec-

ondly, it permits simulating from a copula model 

without explicitly having to determine the joint dis-

tribution for the two given marginals. Thus, this 

approach is quite versatile since any type of mar-

ginal distributions can be used.    

Limitations and avenues for future research. One 

of the primary constraints in pricing cyber-insurance, 

as identified by Gordon et al. (2003) and Baer and 

Parkinson (2007), is the paucity of data on e-crimes 

and related losses. The data problem is further exac-

erbated due to the fact that firms do not reveal details 

concerning security breaches (Geer et al., 2003; 

Gordon et al., 2003). The paucity of data is a limita-

tion of the proposed copula approach since the ap-

proach uses data to determine the appropriate copula 

and to price the average net annual premiums. While 

firm-level data may not be available, in our approach 

we used the publicly available ICSA survey data as a 

sample of the population of interest and modified it 

for firm level by using the lower and upper bound 

number of computers affected as a proxy for firm 

size. Thus, we used the best available population data 

to infer about the firm level. As such, one can argue 

that our model suffers from the data paucity problem. 

Another limitation is the quality of the data. While 

we proxy for firm level using the number of com-

puters, it is more likely that  will depend on the 

number of vulnerabilities, which can be expected to 

depend on the security precautions taken by the firm 

(security posture). For example, daily monitoring and 

updating of virus signatures is less risky than weekly 

virus signature updates. Similarly, if the firm has 

resources and can afford hourly monitoring and up-

dates, the firm’s IT system is likely more safe than 

with daily or weekly monitoring. In the event of an 

incident, the dollar losses will depend on the type of 

computer affected and the user environment.  

Security breaches often pose numerous types of losses: 

(1) lost productivity; (2) lost revenue; (3) clean up 

costs; and (4) financial performance impact, to name 

a few. These costs depend on the type of computers 
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that are breached. For example, if the virus has crip-

pled the administrative PCs, it will impose em-

ployee productivity losses as well as clean up costs 

related to the attack. If the computer involved is a 

web-server that is used mostly in e-business types of 

activity, in addition to clean up costs there is likely 

to be lost revenues. The current paper thus provides 

a launching pad for a plethora of research. There is 

abundant scope for future research, including topics 

such as the development of cyber-insurance policies 

based on product diversity (hacking, malware, etc.) 

and security postures, the integration of additional 

correlated risks using the process approaches with 

the actuarial approach, etc. 

A slow growth in the cyber insurance industry can be 
partially attributed to the fact that losses from secu-
rity breaches are highly correlated because of the 
Internet. The issue of high correlation among the 
insured in cyber insurance is contrary to the principle 
of portfolio balancing in other types of insurance 
services. This issue, however, is endogenous and 
cannot be avoided since the Internet infrastructure is 
a globally shared medium. While our model may be 
affected to some degree by the above general limita-
tion, the actuarial approach we adopt is data driven 
and a good set of data would minimize this limitation.  

Managerial implications. The actuarial approach, 
discussed in this article, increases the awareness that it 
is important to collect data on security breaches for 
negotiating lower premiums on cyber-insurance prod-
ucts. In addition to demonstrating a sound methodol-
ogy, this paper illustrates how one can work with the 
currently available data to get a better idea of the pre-
mium pricing. This is much better than using ad-hoc 
models, which is the current practice. As pointed out 
by many IT security researchers, one of the main prob-
lems that the cyber-insurance industry currently is 
facing is the disparity in premiums charged for cyber-
insurance products and the lack of innovative quantita-
tive models. Most traditional insurance products use 
historically collected data for determining insurance 
premiums. In a similar way, the insurance companies 
can collect the cyber risk related data over time and 
subsequently modify the models. The proposed ap-
proach provides a starting point. It is reasonable to 
speculate whether cyber-insurance will be helpful or 

harmful in encouraging IT security due to the issue of 
moral hazard (Gordon et al., 2003). However, cyber-
insurance combined with adequate IT security invest-
ments allows firms to better manage cyber risks. 

Conclusion 

In this paper, we developed a copula-based simula-
tion approach for determining the annual net premi-
ums for three different types of first party damage 
cyber-insurance policies. This paper makes a sig-
nificant contribution to the literature in cyber-
insurance risk modeling and pricing since it consid-
ers the fundamental insurance contract variables in 
an actuarial approach and illustrates a copula meth-
odology for modeling cyber risks which allows the 
combining of non-normal risk distributions. Despite 
the limitations, the proposed copula-based cyber-
insurance model makes a significant methodological 
contribution to the cyber security area as it provides 
a theoretically sound modeling perspective using an 
actuarial approach to assess the insurance premiums 
for cyber-insurance products. The proposed ap-
proach is the first in the information security litera-
ture to integrate standard elements of insurance risk 
with the robust copula methodology.  
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Appendix. An introduction to copula methodology 

1. Definition: Sklar (1959) theorem. Let X and Y denote continuous random variables (lower case x, y represent their 
values) with bivariate distribution function H (x, y) and marginal distribution function F (x) and G (y). Let F-1 (.) and G-1 (.) 

be the inverse of F and G. Then for any uniform random variables U and V with values u, v  [0, 1] (i.e., make the 

probability transformation of each variate U = F (X) and V = G (Y) to get a new pair of variates U U (0, 1) and V U

(0, 1), exist a copula C such that for all x, y R:

),())(),((),( vuCyGxFCyxH .                        (1) 

If F and G are continuous, then C is unique. An important feature of copulas is that any choice of marginal distribu-
tions can be used. Copulas are constructed based on the assumption that marginal distribution functions are known.  

Copulas allow us to study the dependence or association between random variables. There are several ways to measure 

dependence. The most widely used measures are the Spearman’s Rho and Kendall’s Tau. Copulas precisely account for 
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the interdependence of random variables. For example, between two random variables X and Y , the dependence prop-

erties of the joint distribution (the manner in which X and Y move together) are precisely captured by the copula for 

strictly increasing functions of each variable. The two standard non-parametric dependence measures expressed in 

copula form are as follows: 

Kendall’s Tau is given by: 
2

1),(d),(4
I

vuCvuC ,         (2) 

and Spearman’s Rho is given by: 
2

3dd),(12
I

vuvuC .                      (3) 

The expressions for Kendall’s Tau and Spearman’s Rho for some known families of copulas are presented in Section 1. 

Copulas provide a way to study scale-free measures of dependence. In empirical applications, where data is available, 

we can use the dependence measure to specify the form of copula. Genest and Rivest (1993) provide a procedure for 

identifying a copula when bivarate data is available. Once the appropriate copula is identified, it can be used to simu-

late random outcomes from dependent variables.   

2. Review of Gumbel and Clayton copula. In this paper, we review two one-parameter bivariate Archimedean copu-

las adopted from Frees and Valdez (1998) and Nelsen (1999). Nelsen (1999, pp. 94-97) lists 22 one parameter families. 

Archimedean copulas have nice properties and are easy to apply. The parameter  in each case measures the degree of 

dependence and controls the association between the two variables. When 0 there is no dependence, and when 

there is perfect dependence. Schweizer and Wolff (1981) show that the dependence parameter  which charac-

terizes each family of Archimedean copulas can be related to Kendall’s Tau. This property can be used to determine 

empirically the applicable copula form.  

1. Clayton copula (1978): 

Generator:                               )1()( tt ;

Bivariate copula:                    
1

1),( vuvuC ;

Laplace transform:                 
1

1 )1()()( ttt ;

Kendall’s Tau                         
2

.

2. Gumbel copula (1960): 

Generator:                              ))ln(()( tt ;

Bivariate copula:                   
1

)ln()ln(exp),( vuvuC ;

Laplace transform:               )exp()()(
1

1 ttt ;

Kendall’s Tau                       11 .

3. Identifying a copula form. The first step in modeling and simulation is identifying the appropriate copula form. 

Genest and Rivest (1993) provide the following procedure (fit test) to identify an Archimedean copula. The method 

assumes that a random sample of bivariate data (Xi, Yi) for i = 1, 2,…, n is available. Assume that the joint distribution 

function H has an associated Archimedean copula C ; then the fit allows us to select the appropriate generator . The 

procedure involves verifying how close different copulas fit the data by comparing the closeness of the copula (para-

metric version) with the empirical (non-parametric) version:  

Step 1. Estimate the Kendall’s correlation using the non-parametric or distribution-free measure: 

ji

iijiE YYXX
n

))((Sign
2

1

.

Step 2. Identify an intermediate variable Zi = F (Xi, Yi) having a distribution function K (z) = Pr (Zi z). Construct an 

empirical (non-parametric) estimate of this distribution as follows: 

1

andsuch that ),(number

n

YYXXYX
Z

ijijji

i
.

The empirical version of the distribution function K (z) is KE (z) = proportion of Zi z.

Step 3. Construct the parametric estimate of K (z). The relationship between this distribution function and the generator 
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is given by 
)(

)(
)(

z

z
zzK , where )(z is the derivative of the generator and 10 z . The following is a specific 

form of K (z) for the two Archimedean copulas reviewed in this paper. 

1. Clayton copula                              
)1(

)(
zz

zK .                                               (4) 

2. Gumbel copula                              
)ln(

)(
zz

zK .                                               (5) 

Repeat Step 3 for several different families of copulas, i.e. several choices of (.) . By visually examining the graph of 

K (z) versus z, or using statistical measures such as minimum square error analysis, one can choose the best copula. 
This copula can then be used in modeling dependencies and simulation. 
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