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Mostafa Mashayekhi (USA) 

Parametric empirical Bayes estimation of the net premium  

with right censored data 

Abstract 

This paper considers an empirical Bayes estimation of the net single premium for one-year insurance policies with 

right-censored observations of the times of claim causing events. It is assumed there are m independent classes of in-

sureds with ni + 1 members in the ith class (i  {1,…, m}) and ni of these members provide the claims experience. 

Members of the ith class are assumed to be subject to the same constant hazard rate i, during the policy period, with 

1,…, m  being the values of independent unobservable random variables with common gamma distribution with un-

known parameters  and . The force of interest is assumed to be a deterministic function of time. The claim sizes are 

allowed to be random. The authors obtains sufficient conditions for asymptotic optimality of empirical Bayes estima-

tors of the net single premium, under the squared error loss function, and provide an easy to compute example of esti-

mators that satisfy the sufficient conditions. 

Keywords: parametric empirical Bayes, asymptotically optimal, right censored data, net single premium. 

Introduction and preliminaries

The assumption of a constant hazard rate, or con-

stant force of mortality, is frequently adopted by 

actuaries in the process of determining premiums 

for life insurance policies. This assumption is also 

present in models of risk assessment in casualty 

insurance that use a Poisson process for the num-

ber of claims in a given period of time. In this 

paper we adopt the assumption of a constant haz-

ard rate in an empirical Bayes approach to estima-

tion of the net single premium for coverage 

against an event that cannot happen to a policy-

holder more than once during the policy period. 

The examples of such events include a death, loss 

of a limb, catching a certain incurable disease, or 

loss of a certain unique property which cannot be 

replaced, etc. 

Consider the net single premium for a one-year in-

surance policy that pays one dollar if a certain event 

occurs within the next year when the following as-

sumption is satisfied. 

Assumption 1. (1) The force of interest, )(t  at 

time t , is a deterministic function of time. (2) The 

time to the event has a constant hazard rate, , dur-

ing the policy period.  

The net single premium satisfying the equivalence 

principle for this insurance policy, for the case 

when the value of  is known, is denoted through-

out this paper by )( . With Y  denoting the time 

to the event, we have: 
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In general, let B  denote the amount of the claim 

random variable. Note that since there is no claim if 

the event does not happen during the policy period, 

B  and Y are not independent, and 
]1[

1
Y

BB .

Suppose if there is a claim its size is independent of 
the time of occurrence of the event under every 

value of . Then given the value of 11Y  the ran-

dom variables B and Y are conditionally independ-

ent and with E denoting the expectation with re-

spect to the joint distribution of B  and Y under ,

the conditional expectation ]1|[ YBE  does not 

depend on . Suppose this conditional expectation 

is finite and let ]1|[ YBE .

The net single premium satisfying the equivalence 

principle, in the above case, is given by: 
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In many cases data for separate policies have been 
collected by observing small cohorts. In such cases 
an actuary can improve the quality of his/her esti-
mates by borrowing strength from similar data. A 
popular method that is often used for this purpose is 
the empirical Bayes credibility method. The esti-
mates, produced by the empirical Bayes credibility 
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method, are linear empirical Bayes estimates under 
the squared error loss function. In this paper by 
“Bayes estimator” we mean unrestricted Bayes es-
timator and use “credibility estimator” to refer to a 
restricted linear Bayes estimator.  

The use of an empirical Bayes credibility estimator 

instead of an empirical Bayes estimator is often 

justified by the simplicity of computation of the 

empirical Bayes credibility estimators. It is argued 

(see Bühlmann and Gisler, 2005) that in general the 

Bayes estimator does not have a closed form repre-

sentation and, therefore, the value of the Bayes es-

timator can only be computed by numerical proce-

dures. The argument about the difficulty in the 

computation of a Bayes solution extends to the em-

pirical Bayes method because every empirical Bayes 

procedure either involves computation of a Bayes 

solution versus some estimate of the unknown prior 

distribution or some direct estimation of the Bayes 

solution versus the unknown prior. Another advan-

tage of using an empirical Bayes credibility estima-

tor is that an empirical Bayes credibility estimator 

can be completely non-parametric and, therefore, 

more robust relative to the empirical Bayes ap-

proach. For computation of an empirical Bayes 

credibility estimate, one does not need to assume 

any functional forms for the model distribution (i.e., 

the conditional distribution of an observation given 

the parameter) or the prior distribution. An empiri-

cal Bayes estimator, on the other hand, cannot be 

found without a parametric assumption about the 

functional form of the model distribution. Support-

ers of parametric inference would argue, however, 

that the extra precision gained by a reasonable pa-

rametric model can outweigh the extra robustness of 

a non-parametric model. 

In addition to the above arguments, in favor of the 

credibility estimators, a famous theorem of Jewell 

(1974; 1975) asserts that under certain regularity 

conditions the credibility estimator is equal to the 

Bayes estimator when the model distribution be-

longs to a single parameter exponential family of 

distributions consisting of distributions with density 

of the form 

)(

)(
)|(

c

exa
xp

x

,

if the natural conjugate distribution is used for the 

prior. A rigorous treatment of Jewell’s theorem with 

its extension from 1-dimensional parameter case to 

the d-dimensional case and a proof for the converse 

of Jewell’s theorem are given in Diaconis and Yl-

visaker (1979). The converse of Jewell’s theorem 

asserts that under the stated conditions the Bayes 

estimator is equal to the credibility estimator only if 

the conjugate prior is used. 

However, as we will show in the model that we are 

considering asymptotically optimal  empirical Bayes 

estimates are not hard to compute and the credibility 

solution does not coincide with the Bayes solution. 

We will give sufficient conditions for asymptotic 

optimality of the empirical Bayes estimators in our 

model and provide an easy to compute example 

which satisfies the sufficient conditions.  

Let
1,1 ..., nYY  denote the times to the claim-causing 

event for 1n  policies, with 
nYY ,...,1
 correspond-

ing to past policies, and suppose that given  the 

times
11 ,..., nYY  are independent and have a constant 

hazard rate equal to  for the first year. In practice 

an insurer is not in a position to observe 
nYY ,...,1

and the available observations are values of cen-

sored times.

Suppose it is only possible to observe the type 1 

right censored random variables 
nXX ,...,1

, where 

for each },...,1{ ni ,

]1[]1[
11

ii
YY

ii YX .

Let

]1[
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Then in the case when the thn )1(  policy pays one 

dollar at the time of the event, the random present 

value of the payoff due to the thn )1(  policy is 

equal to )( 1nXD . Since the value of )(t changes

over time the random variables )(),...,( 1 nXDXD  are 

not the discounted payoffs at time of issue, of the 
first n  policies. However, since the random vari-

ables )(),...,( 11 nXDXD satisfy the assumptions of 

Bühlmann’s credibility model (c.f., Bühlmann, 
1967; or for example Klugman et al., 1998, pp. 
436-437) and the information generated by 

nXX ,...,1
 is the same as the information generated 

by )(),...,( 1 nXDXD , these random variables may 

be used in the Bühlmann formula to obtain the 
credibility  estimate of the net single premium for 

the thn )1(  policy. With Z  denoting the credibility 

factor, the credibility estimator of the net single 

premium for the thn )1(  policy is equal to:  

)1()]([
1

1 ZXDnZ
n

i

i )]([E .    (4) 

Note that the credibility estimator given in equation 

(4) is not equal to the Bayes estimator because the 

conditional distribution of )( 1XD  given  and the 
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assumed gamma distribution for  do not satisfy 

the conditions of Jewell’s theorem. Indeed, it is easy 

to check that for the simple case, where 0)(t ,

and hence the conditional distribution of )( 1XD

given  is Bernoulli with probability of success 

equal to e1 , the gamma distribution is not the 

conjugate prior. Therefore, by the Diaconis and 

Ylvisaker (1979) converse of Jewell’s theorem the 

credibility estimator cannot be equal to the Bayes 

estimator in this case. 

Theorem 1 in Section 1 gives the Bayes estimator of 

the net single premium for the thn )1(  policy for 

the case when the claim size is constant, and the 

prior distribution is gamma. Theorem 2 gives a gen-

eralization of Theorem 1 for the case when the 

claim size is random. In Section 2 we consider em-

pirical Bayes estimation of the net single premium 

and provide sufficient conditions for asymptotic 

optimality of empirical Bayes estimators in Theo-

rem 3. Examples of estimators that satisfy the suffi-

cient conditions for asymptotic optimality are pro-

vided in Section 3.  

1. The Bayes estimator 

The following theorem gives the unrestricted Bayes 

estimator of the net single premium for one-year 

policies with constant claim sizes based on type 1 

right censored data. 

Theorem 1. Let ,,..., 11 nXX  be random variables 

such that  is gamma ( ),  and given  the ran-

dom variables 
11 ,..., nXX are ... dii  with distribu-

tion function 

]1[]10[ 11)1()( xx

xexF .    (5) 

Then with )(  defined in equation (1) and )(sD

defined in equation (3): 

],...,|)([],...,|)([ 111 nnn XXEXXXDE

)]([*E ,
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n
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X i
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]1[

* 1 and ,
1

*
n

i

iX

the symbol *E denotes expectation under gamma 

( ), ** distribution for .

Proof. Let  denote the uniform probability meas-

ure on ]1,0[  and let  be the probability measure 

that gives mass 1 to }1{ and let  be the measure 

defined by . Then, given , each 
iX  has 

density (Radon Nikodym derivative) with respect to 

 given by: 
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1
1)( ]1[
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x
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Let g  denote the density of  and, for 1k  let 

kh  denote the marginal density of 
kXX ,...,1
 with 

respect to k . Then: 
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Let ),...,|( 1 nxxg denote the conditional density of 

nn xXxX ,...,given 11
and note that  

),...,|( 1 nxxg =
),...,(

)(

1

1

11

]1[

nn

x

xxh

ge

n

i

i

n

i
ix

.

By the Tonelli theorem the right hand side of equa-

tion (6) is equal to 

dxxgdxxfxD nnnn ),...,|())()(( 111
0

1

0
1 =

dxxg n ),...,|()( 1
0

nn xXxXE ,...|)( 11 .

Observe that ),...|( 1 nxxg  is proportional to 
n

i

i

n

i
ix x

e 11

]1[ )(1)1(

. Therefore, it is a gamma 

(
n

i

xi

1

]1[ ,1
n

i

ix
1

) density.  

For the case when the claim sizes are random, let 

11 ,..., nBB  denote the random claim amounts of 

)1(n policies and suppose the following assump-

tion is satisfied. 

Assumption 2. (1) Conditional on the information 

that there is a claim for the thn )1( policy, the 

size of the claim is independent of the time of 

occurrence of the event. (2) The dependence of 

11,..., nBB  is only through the dependence of 
11,..., nXX ,

so that the conditional distribution of ),( 11 nn XB

given ),(),...,,( 11 nn XBXB  is the same as the condi-

tional distribution of ),( 11 nn XB  given 
nXX ,...1
,

and the conditional distribution of 
1nB  given 

11 ,..., nXX  is the same as the conditional distribu-
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tion of 
1nB  given 

1nX . (3) ,]1|[ ii XBE

and 2]1|[ ii XBVar  for every }.,...,1{ ni

Let E denote the expectation under the joint distri-
bution of all of the random variables involved. Then 
by (1) and (3) of Assumption 2  

]1|[1]|[ ]1[1]1[11 11 nn XnXnn BEXBE

]1[ 1
1

nX .

Note that the Bayes estimator of the net single pre-

mium for the thn )1( policy under the squared error 

loss function is )],(),...,,(|)([ 1111 nnnn XBXBXDBE .

The following theorem gives the Bayes estimator of 
the net single premium for the case when the claim 
sizes are random.  

Theorem 2. Let ,,..., 11 nXX  be as in Theorem 1 and 

let
11,..., nBB  be such that ),(),...,( 1111 nn XBXB

satisfy Assumption 2. Then with 
*E  as in Theorem 1, 

)],(),...,,(|)([ 1111 nnnn XBXBXDBE

)].([],...,|)([ *

1 EXXE n

Proof. By Assumption 2 we have: 

]1[11

111

1
1]|[
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XBE

XXXBE
     (7)  

and
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111
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Since the information generated by 
nXX ,...,1
 is 

contained in the information generated by 

11 ,,..., nn XXX , we have (see Theorem 34.4 of 

Billingsley, 1986): 

],...,|)([ 111 nnn XXXDBE

],...,|,...,|)([[ 11111 nnnn XXXXXDBEE .

Since )( 1nXD is a Borel function of 
11,..., nXX ,

].,...,|[)(

],...,|)([

1111

1111

nnn

nnn

XXBEXD

XXXDBE
    (8) 

By equation (7) it follows that the right hand side 

of equation (8) is equal to ]1[1 1
1)(

nXnXD =

)( 1nXD

Therefore, an application of Theorem 1 completes 

the proof.

The computation of the Bayes estimator (with 

known prior parameters) and, as we will see, the 

empirical Bayes estimators (based on estimates of 

the prior parameters) of the net single premium in-

volves computation of integrals of the form 

0

)()( dg ,

where g is a gamma ( ba, ) density for some 0a

and 0b .

To approximate such an integral with error        

less than an arbitrary positive , note that with 

dc0 we can write:

.)()()()(

)()()()(
00

d

d

c

c

gg

gg

     (9) 

Since 1)( , the first term on the right hand side 

of equation (9) is less than 11 )))(( aa cba . Hence, 

we can choose c  such that the first term is less 

than 3/ .

By Markov inequality the third term on the right 

hand side of equation (9) is less than or equal to 
1)(bda . Hence, we can choose d such that the 

third term is less than .3/

When the integrand has continuous second deriva-

tive on ],[ dc , we can use numerical integration, for 

example the Composite Midpoint rule, to approxi-

mate the second term with error less than 3/ .

For example it is easy to see that when the force 

of interest is a constant , we have )(

],1[)( )(1 e  and the integrand has 

continuous second derivative. 

2. Asymptotically optimal empirical Bayes 

estimators

In the empirical Bayes approach pioneered by 

Robbins (1955) it is assumed there are m  inde-

pendent random pairs ),(),...,,( 11 mm VV  such 

that
mVV ,...,1

are observable and distribution of 
iV

depends on the parameter 
i
. The parameters 

m,...,1
 are independent unobservable random 

variables with a common distribution G . There is a 

non-negative loss function L and the task is to find 

decision rules ,.),...,((.) 1 mmm VVtt that are asymp-

totically optimal in the sense that  

0]),(([min)]),(([ mmtmmm VtLEVtLE

as .m
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In the non-parametric empirical Bayes approach 

introduced by Robbins (1955), G  is completely 

unknown. In the parametric empirical Bayes ap-

proach that was later explored by Efron and Morris 

(1973, 1975), the prior distribution G  belongs to a 

parametric family of distributions. 

The model we are considering for an empirical 

Bayes approach is formally described in the follow-

ing assumption. 

Assumption 3. With ),,...,,(
1111 ii ininiii XBXBV ,

the random pairs ),(),...,,( 11 mm VV  are independ-

ent and for each i , conditional on 
i
, the random 

variables
1

,...,1 iini XX  are independent with distri-

bution function 

]1[]10[ 11)1()( xx

xi

i
exF .

The random variables 
m,...,1

 have common 

gamma distribution with unknown parameters 

and ,  and for each i  Assumption 2 is satisfied 

with
1

,...,1 iini BB  in place of nBB ,...,1  and 
1

,...,1 iini XX

in place of 
nXX ,...,1
.

This problem is slightly different from the problem 

introduced by Robbins (1955) in the sense that the 

component problems are not identical when the 
in ’s 

are not equal. However, if  is a Borel function, 

one can consider an empirical Bayes estimator EB

i
ˆ

of )( i
, },,...,1{ mi  asymptotically optimal un-

der squared error loss if with 
B

i
ˆ  denoting the Bayes 

estimator of )( i
,

2)](ˆ[ i

EB

iE – 0)](ˆ[ 2

i

B

iE

as .m

Asymptotic optimality for empirical Bayes forecasts 

may be defined similarly.   

Theorem 3 below provides sufficient conditions for 

asymptotic optimality of the empirical Bayes estima-

tors of the net single premium. Lemma 1 and Lemma 

2 are used in the proof of Theorem 3. The proofs of 

these lemmas are deferred to the Appendix. 

In the rest of this paper all incompletely described 

limits are as m through positive integers. 

Lemma 1. Suppose for some :K

Kaaa m0 , and ;ˆ0 Kaaa m

Kbbb m0 , and ;ˆ0 Kbbb m

0ˆ
mm aa , and .0ˆ

mm bb

Then

0||
0

1ˆ1ˆ
dyeyey

ybayba mmmm .

Lemma 2. Suppose ma , mâ , mb , and mb̂ are as in 

Lemma 1. Let mg denote the gamma density with 

parameters ma  and mb , and let mĝ denote the 

gamma density with parameters mâ  and 
mb̂ . Then

0|)()(ˆ|
0

dxxgxg mm .

Theorem 3. Suppose ii n1sup , and ],0( 1N

and ],0( 2N , and ],0( 3N , where 1N , 2N ,

and 3N are known numbers. Let ,ˆ0 1N and

2
ˆ0 N , and 

3
ˆ0 N  be such that

;ˆ P

;ˆ P

.ˆ P

Let
B

i
ˆ denote the Bayes estimator of )( i , and let 

EB

i
ˆ  be defined by 

dgi
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ig  denotes the gamma ( )ˆ,ˆ **
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 density . Then for 

each },...,1{ mi ,

2)](ˆˆ[ i
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B
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1)](ˆˆ[
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i XDE

0)](ˆ[ 2

1iin
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i XDE .

Proof. Let 
*

ig denote the gamma density with parame-

ters
i

ij

n

j

Xi

1

]1[

* 1  and 
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j

iji X
1

* . Ob-

serve that |ˆˆ| B

i

EB

i dgg ii |)()(ˆ| *

0

*  since 

1)( i
.

Let ,2/a ,2/b and .sup 1 ii nbaK

Then Kaa i

*  and Kbb i

*  for 

every }.,...,1{ mi  Note that if 
ma  and 

mb  then there is M  such that for all 
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Mm  we have Kaaa
i

ij

n

j

Xm

1

]1[1  and 

in

j

ijm KbXbb
1

. Use the fact (see Billing-

sley, 1986, Theorem 20.5) that ZZ P

n
 if and 

only if every subsequence of 
nZ  has a further subse-

quence that converges to Z  with probability 1. Then 

by Lemma 2 it follows that 0|ˆˆ| PB

i

EB

i
.

Since
EB

i
ˆ and

B

i
ˆ are both in ]1,0( , by the 

Bounded Convergence Theorem it follows that:  

0)ˆˆ( 2B

i

EB

iE .   (10) 

Since )( i  and )( 1iinXD are both in ]1,0( , by 

Lemma 2.1 of Singh (1979): 

2)](ˆˆ[ i

EB

iE 2)](ˆ[ i

B
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1 )](ˆ[)](ˆˆ[
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Let ||||  denote the 2L  norm. By the triangle 

inequality and the fact that 1ˆ0 EB

i
,

0||ˆˆ||||ˆ||||ˆˆˆ|| B

i

EB

i

B

i

EB

i

by the assumed property of ˆ  and equation (10) 

and the Bounded Convergence Theorem.  

3. Estimation of the structural parameters 

For 0t , let

m

i

n

j

tXi

i

ij
nmt

1 1

][

11 1)( .   (11) 

Let 11t , and 5.02t , and for 2,1k  let 

m
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tXktXijik

i

kijkij
tXnmU
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The following proposition gives estimators of the 

structural parameters , and , and  that satisfy 

the conditions of Theorem 3 under the assumption 

that 1 .

Proposition 1. Suppose ],1( 1N , and ],0( 2N ,

and ],0( 3N . Let ~  and 
~

, and ~  be as defined 

in equations (14), (13) and (15), respectively. Let  

]~[1]~0[ 11
11~ˆ

NN N ,

]
~

[2]
~

0[ 22

11
~ˆ

NN
N ,

and

]~[3]~[ 33
11~ˆ

NN N .

Then ˆ  and ˆ , and ˆ  satisfy the conditions of 

Theorem 3. 

Proof. Since 1]1[
1

1
in

j

iji Xn , we have:

01)]([ 1

1

2 mmtVar
m

j

.

Similarly,  

0)]1,[max()( 21

kk tmUVar .

Therefore, by Chebychev’s inequality  
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))].(()(()[1()( kkk
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Using the fact that convergence in probability is 

preserved under continuous transformations, it is 

easily seen that P~
 and 

P~ .

Hence,
Pˆ  and Pˆ .

Let ]1[ ijXPq . Observe that by the moment 

inequality
ii n

j

iji
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Since,

qBEEnmBE
m

i

n

j

Xiji

i

ij
]1|([)(

1 1

]1[

11

by Chebychev’s inequality it follows that .qB P

Hence,
PB1))1(1( .

Concluding remarks 

It is easy to check that )(  is a continuous function 

of . Also the distribution of the censored random 

variables given in equation (5) satisfies an identifi-
abillity assumption (see Mashayekhi, 2002) that 
makes it possible to obtain asymptotically optimal 

non-parametric empirical Bayes estimators of con-

tinuous functions of  under the assumption that the 

range of 
i
’s is compact. We considered a parametric 

empirical Bayes approach in this paper because the 

parametric approach is more attractive to many statis-

ticians (see Morris, 1983) since it is considered to be 

closer to Bayesian. Also the parametric approach 

produces estimates that are much easier to compute.  
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Appendix

Proof of Lemma 1.  

dyeyeydyeyey
ybaybbaaybayba mmmmmmmmmm

0

1)ˆ(ˆ

0

1ˆ1ˆ
|1||| .      (16)

Clearly the integrand on the right hand side of equation (16) converges to zero as .m

Let 0y . Observe that 
xyxu )(  has negative derivative and hence is decreasing when 10 y , and has non-

negative derivative and hence non-decreasing when 1y . Thus,  

ybaybaybayba mmmmmmmm eyeyeyey
1ˆ1ˆ1ˆ1ˆ

|| ]1[

1

]1[

1 1212 y

byKa

y

bya eyey .

Hence, the assertion of the lemma follows by the Lebesgue Dominated Convergence Theorem.  

Proof of Lemma 2. Let mm a

m

a

mmmm bbaar
ˆ1 ˆ)ˆ()]([ . We first show that 1mr .



Insurance Markets and Companies: Analyses and Actuarial Computations, Volume 2, Issue 1, 2011

33

Since
1

0

1

0

111111
)()( Kaeaedyyedyeya m

aya

m
mm  and by Lemma 1 0)()ˆ( mm aa  we 

have 0|)()ˆ(|)(|1)ˆ()]([| 11

mmmm aaKaeaa .

Since Kbbb m
ˆ0  we have 1ˆ 1

mm bb , and hence 
mmm

a

m

a

m baabb mm ˆlog)ˆ()ˆlog(
ˆ

0)ˆ/log( mmm bba . Therefore 1ˆ ˆ mm a

m

a

m bb . Hence, 1mr .

Since
mâ  and 

mb̂ are bounded there is M0  such that Mba ma

mm

ˆ1 ˆ)]ˆ([ . By the triangle inequality it follows 

that  

dxxgxg mm |)()(ˆ|
0 0

1ˆ1ˆ
|| dyeyeyM

ybayba mmmm +

0

1
|1| dyeyrM

yba

m
mm .   (17) 

The first term on the right hand side of equation (17) converges to zero by Lemma 1 and the second term converges to 

zero because 
by

y

Ka

y

ayba
eyyey mm )11( ]1[

1

]1[

11
.
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