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SECTION 4. Practitioner’s corner 

Jeffrey E. Jarrett (USA) 

Perspectives on the quality movement in the supply chain  

environment 

Abstract 

The purpose of this paper is to introduce the demand for the quality movement practice in the supply chain environ-

ment. The author shows both the need and application of these measures, especially the need for multivariate quality con-

cepts to reduce the costs of operating supply chains, to control the flow throughout the supply chain and in the dynamic 

behavior of supply chains, to utilize concepts associated with multivariate methods and autocorrelated time series. 

Keywords: supply chain, statistical process control, multivariate methods, autocorrelated time series. 

JEL Classification: C18, C19, C65, M10. 
 

Introduction  

Supply chain management involves the leveraging 

of channel wide integration to better serve customer 

needs. Increases in productivity and quality control 

and improvement will follow when firms will im-

plement and coordinate quality management activi-

ties upstream. When corporate management recog-

nizes the aspects of supply chain management, qual-

ity control and quality assurance two duties should 

be undertaken. The first refers to the process where-

by measures are taken to make sure defective prod-

ucts and services are not part of the final output, and 

that the product design meets the quality standards 

set out at the initiation of the project. One may ob-

serve that quality assurance entails overlooking all 

aspects, including design, production, development, 

service, installation, as well as documentation. The 

quality movement is the field that ensures that man-

agement maintains the standards set and continually 

improves the quality of the output. According to Lee 

and Wang (2003, p. 26): “The quality movement has 

offered us sound lessons that can be very powerful 

to address supply chain security lessons. Instead of 

final, end-product source inspection, the quality 

movement emphasizes prevention, total quality 

management, source inspection; profess control and 

a continuous improvement cycle. These are all in-

gredients for successful and effective ways to man-

age and mitigate the risks of supply chain security.” 

We introduce the philosophy and methods of the 

quality improvement to achieve the best results of 

production and supply chain management. This 

paper focuses on supply chain planning with quality 

control in an environment with multiple manufactur-

ing centers and multiple customers.  We first discuss 

the needs for quality planning in the supply chain 

environment to focus on the notion of statistical 

process (or quality) control (SPC); why it is so vital 
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to the performance of a firm’s supply chain and why 

it is so vital to the performance of supply chains in 

the global firm environment? In turn, we introduce 

and discuss the desire for more sophisticated SPC to 

insure that quality and improvement is maintained 

in production processes involving more and greater 

sophisticated production methods. 

While supply chains are so crucial to the health of 

business enterprises, these supply chains must be 

sustained by both preventative and emergency meas-

ures. Zhang, Yu and Huang (2009) propose several 

sophisticated strategies for dealing with SPC strate-

gies in the supply chain environment. Their study 

presents principle agent models regarding the cus-

tomer’s quality evaluation and the supplier’s quality 

prevention level decisions. Studies such as this may 

produce results not heretofore examined by the 

practioner’s of SPC in the supply chain environ-

ment. In addition, threats to supply chains are real 

and many measures must be developed to indicate 

when supply chains are not operating in an efficient 

and productive manner. These measures include 

those of SPC which will indicate when risks are 

present in the supply chain. Since supply chains are 

increasingly globalized, these SPC measures must 

be appropriately placed in the supply chain and the 

choice of the particular SPC procedure is critical in 

developing an optimal plan. 

1. Process control and improvement methodology 

Most SPC methodologies assume a steady state 

process behavior where the influence of dynamic 

behavior is ignored. In the steady state system, dy-

namic behaviors are assumed not present and the 

focus is only on one variable at a time. Specifically, 

SPC control for changes in either the measure of 

location or dispersion or both. SPC procedures as 

practiced do disturb the flow of the production 

process and operations. In recent years, the use of 

SPC methodologies to address the process where 

behavior is characterized by more than one variable 
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is emerging. The purpose of this next section is to 

review the basic univariate procedures to observe 

how they may be improved by more sophisticated 

methods having the same goal. 

2. Univariate control charts 

Shewhart control charts which is the central foun-
dation of univariate SPC has one major shortcom-
ing which we recognize now. The major drawback 
of the Shewhart chart is that it considers only the 
last data point and does not carry a memory of the 
previous data. As a result, small changes in the 
mean of a random variable are less likely to be 
detected rapidly. Exponentially weighted moving 
average (EWMA) chart improves upon the detection 
of small process shifts. Rapid detection of small 
changes in the quality characteristic of interest and 
ease of computations through recursive equations 
are some of the many good properties of the EWMA 
chart that make it attractive. 

EWMA chart achieves faster detection of small 
changes in the mean. It is used extensively in time 
series modeling and forecasting for processes with 
gradual drift (Box and Draper, 1998). It provides a 
forecast of where the process will be in the next 
instance of time. It thus provides a mechanism for 
dynamic process control (Hunter, 1986). 

The EWMA is a statistic for monitoring the process 
that averages the data in a way that gives exponen-
tially less and less weight to data as they are further 
removed in time. 

The EWMA statistic is defined by: 

.,10)1( 001 ZwithZXZ iii      (1) 

Can be used as the basis of a control chart. The proce-
dure consists of plotting the EWMA statistic Zi versus 
the sample number on a control chart with center line 
CL = μ0 and upper and lower control limits at 
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larger, so after several time periods, the control limit 
will approach steady state values. 
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The design parameters are the width of the control 

limits k and the EWMA parameter . Montgomery 

(2005) gives a table of recommended values for 

these parameters to achieve certain average run 

length performance. 

In many situations, the sample size used for process 

control is n = 1; that is, the sample consists of an 

individual unit (Montgomery and Runger, 2003). In 

such situations, the individuals control chart is use-

ful. The control chart for individuals uses the mov-

ing range of two successive observations to estimate 

the process variability. The moving range is defined 

as MRi = abs (Xi – Xi-1) an estimate of  is 

,1281
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because d2 = 1.128 when two consecutive observa-

tions are used to calculate a moving range. It is also 

possible to establish a control chart on the moving 

range using D3 and D4 for n = 2. The parameters for 

these charts are defined as follows. 

The central line (CL) upper and lower control limits 

for a control chart for individual are: 
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For a control chart for moving ranges 
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Although very useful, more recent studies indicate 

that misplaced control limits are present in many 

applications as discussed in the next section. 

3. Process with dynamic inputs and behavior 

In an extensive survey, Alwan and Roberts (1995) 

found that more than 85% of industrial process con-

trol applications resulted in charts with possibly 

misplaced control limits. In many instances, the 

misplaced control limits result from autocorrelation 

of the process observations, which violates a basic 

assumption often associated with the Shewhart chart 

(Woodall, 2000). Autocorrelation of process obser-

vations has been reported in many industries, includ-

ing cast steel (Alwan, 1992), blast furnace operations 

(Notohardjono and Ermer, 1986), wastewater treat-

ment plants (Berthouex, Hunter, and Pallesen, 1978), 

chemical processes industries (Montgomery and Ma-

strangelo, 1991), semiconductor manufacturing (Kim 
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and May, 1994), injection molding (Smith, 1993), 

applications with calibration curves (Mestek, Pavlik, 

and Suchanek, 1994), beer demand (Koksalan, Erkip, 

and Moskowitz, 1999) and basic rolling operations 

(Xia, Rao, Shan and Shu, 1994). 

Several models have been proposed to monitor 

processes with autocorrelated observations. Alwan 

and Roberts (1988) suggest using an autoregressive 

integrated moving average (ARIMA) residuals 

chart, which they referred to as a special cause 

chart. For subsample control applications, Alwan 

and Radson (1992) describe a fixed limit control 

chart, where the original observations are plotted 

with control limit distances determined by the va-

riance of the subsample mean series. Montgomery 

and Mastrangelo (1991) use an adaptive exponen-

tially weighted moving average (EWMA) centerline 

approach, where the control limits are adaptive in 

nature and are determined by smoothed estimate 

process variability. Lu and Reynolds (1999) investi-

gate the steady state average run length of cumula-

tive sum (CUSUM), EWMA, and Shewhart control 

charts for autocorrelated data modeled as a first 

order autoregressive process plus an additional ran-

dom error term. Last, Box and Luceno (1997) con-

sidering quality monitoring by feedback adjustment. 

A problem with all these control models is that the 

estimate of the process variance is sensitive to out-

liers. If assignable causes are present in the data 

used to fit the model, the model may be incorrectly 

identified and the estimators of model parameters 

may be biased, resulting in loose or invalid control 

limits (Boyles, 2000). To justify the use of these 

methods, researchers have made the assumption that 

a period of “clean data” exists to estimate control 

limits. Therefore, methods are needed to assure that 

parameter estimates are free of contamination from 

assignable causes of variation. Intervention analysis, 

with an iterative identification of outliers, has been 

proposed for this purpose. The reader interested in 

more detail should see Alwan (2000, pp. 301-307), 

Atienza, Tang and Ang (1998), and Box, Jenkins, 

and Reinsel (1994, pp. 473-474; 2008). Atienza, 

Tang, and Ang (1998) recommend the use of a con-

trol procedure based on an intervention test statistic, 

, and show that their procedure is more sensitive 

than ARIMA residual charts for process applications 

with high levels of positive autocorrelation. They 

limit their investigation of intervention analysis, 

however, to the detection of a single level distur-

bance in a process with high levels of first order 

autocorrelation. Wright, Booth, and Hu (2001) pro-

pose a joint estimation method capable of detecting 

outliers in an autocorrelated process where the data 

available is limited to as few as 9 to 25 process ob-

servations. Since intervention analysis is crucial to 

model identification and estimation, we investigate 

varying levels of autocorrelation, autoregressive and 

moving average processes, different types of distur-

bances, and multiple process disturbances. 

The ARIMA and intervention models are appropri-

ate for autocorrelated processes which input streams 

are closely controlled. However, there are quality 

applications, which we refer to as “dynamic input 

processes,” where this is not a valid assumption. 

The treatment of wastewater is one example of a 

dynamic process that must accommodate highly 

fluctuating input conditions. In the health care sec-

tor, the modeling of emergency room service must 

also deal with highly variable inputs. The dynamic 

nature of the input creates an additional source of 

variability in the system, namely the time series 

structure of the process input. For these applica-

tions, modeling the dynamic relationship between 

process inputs and outputs can be used to obtain 

improved process monitoring and control as dis-

cussed by Alwan (2000, pp. 675-679). 

4. Transfer function modeling 

West, Delana and Jarrett (2002) proposed the fol-

lowing transfer function model to solve problems 

having dynamic behavior. 

If a process quality characteristic zt, has a time series 

structure, an ARIMA model of the following gener-

al form can represent the undisturbed or natural 

process variation: 

(B)a(B)zt = (B)at.       (9) 

In equation (1), B represents the back-shift operator, 

where B(zt) = zt-1. The value of (B) represents the 

polynomial expression (1 – 1(B)  …  1B
p
), 

which models the autoregressive (AR) structure of 

the time series. The value of the  (B) represents the 

polynomial (1 – 1(B) - … - q B
q
), which models 

the moving average (MA) structure of the time se-

ries. The value of a(B) represents the expression 
dd BB 2

8
1 )1()1( , where d = d1 + sd2. This quantity is 

a polynomial in B that expresses the degree of diffe-

rencing required to achieve a stationary series and 

accounts for any seasonal pattern in the time series. 

Finally, at is a white noise series with distribution N 

)(O,2 . This model is described by Chen and Liu 

(1993a, 1993b). If the series zt are contaminated by 

periods of external disturbances to the process, the 

ARIMA model may be incorrectly specified, the 

variability of the residuals overestimated, and the 

resulting control limits incorrectly placed. 

The following transfer function model of Box and 

Tiao (1975) describes the observed quality characte-

ristic, yt, as a function of three courses of variability: 
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The first term v(B)xt-b, is the dynamic input term and 

represents an impulse function. v(B), applied to the 

input xt-b with a lag of b time periods. If a dynamic 

relationship between the input and output time se-

ries exists, lagged values of process inputs can be 

modeled, resulting in considerable reduction of un-

explained variance. The second term, w(B)/ (B)It, is 

the intervention term and identifies periods of time 

when assignable causes are present in the process. 

Here, It is an indicator variable with a value of zero 

when the process is undisturbed and a value of one 

when a disturbance is present in the process. See, 

for example, Box, Jenkins and Reinsel (1994, p. 

392; 2008) for the development of the transfer func-

tion term, and Box, Jenkins and Reinsel (1994, p. 

462; 2008) for details of the intervention term. The 

rational coefficient term It is a ratio of polynomials 

that defines the nature of the disturbance as detailed 

in Box, Jenkins and Reinsel (1994, p. 464; 2008). 

The third term ( (B)/ (B) at, is the basic ARIMA 

model of the undisturbed process from equation (9). 

We refer to equation (10) as the “transfer function” 

model throughout this paper. 

Different types of disturbances can be modeled by 

the proper design of the intervention term. The two 

most common disturbances for quality applications 

are a point disturbance, with an impact observed for 

only a single time period, and a step disturbance, 

with an impact persisting undiminished through 

several subsequent observations. The point distur-

bance is modeled as an additive outlier (AO). An 

AO impacts the observed process at one observa-

tion. The AO is modeled in the form: 

,
)(

)(
0w

B

Bw
                  (11) 

where w0 is a constant. A step disturbance to the 

process is modeled as a level-shift outlier (a form of 

innovational outlier or IO) in the form: 

.
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)( 0

B
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B
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Chang, Tiao, and Chen (1988) and Chen and Liu 

(1993a; 1993b) discuss both types of disturbance. 

Chang, Tiao, and Chen (1988) extended the concepts 

of Box and Tiao (1975) to an iterative method for 

detecting the location and nature of outliers at un-

known points in the time series. The above researchers 

defined procedures for detecting innovational outliers 

and additive outliers and for jointly estimating time 

series parameters. Their work also demonstrates the 

need for future study of the nature of outliers. 

5. Multivariate control charts 

Multivariate analyses utilize the additional informa-

tion due to the relationships among the variables and 

these concepts may be used to develop more efficient 

control charts than simultaneously operated several 

univariate control charts. The most popular multiva-

riate SPC charts are the Hotelling’s T2 
(see Sullivan 

and Woodall (1996) and multivariate exponentially 

weighted moving average (MEWMA) (Elsayed and 

Zhang, 2007). Multivariate control chart for process 

mean is based heavily upon Hotelling’s T2
 distribu-

tion, which was introduced by Hotelling (1947). Oth-

er approaches, such as a control ellipse for two re-

lated variables and the method of principal compo-

nents, are introduced by Jackson (1956) and Jackson 

1959. A straightforward multivariate extension of the 

univariate EWMA control chart was first introduced 

in Lowry Woodall, Champ and Rigdon (1992) and 

Lowry and Montgomery (1995) developed a multiva-

riate EWMA (MEWMA) control chart. It is an exten-

sion to the univariate EWMA. 

Zi = X + (I  )Zi-1,                 (13) 

where I is the identity matrix, Z is the ith EWMA 

vector, ,X  is the average ith observation vector I = 

1, 2, …, n,  is the weighting matrix. The plotting 

statistic is: 

.12
iziii                   (14) 

Lowry and Montgomery (1995) showed that the 

(k,1) element of the covariance matrix of the ith 

EWMA, zi, is: 

][

])1()1(1[
)1,(

11k

i
1

1
k

k
kkzi k,1,               (15) 

where k,1 is the (k,1) element of , the covariance 

matris of X . 

If 1 = 2 = …….. = p = , then the above expres-

sion simplifies to: 

])1(1[
2

)1,( 2ikzi ,               (16) 

where  is the covariance matrix of the input data. 

There is a further simplification. When I becomes 

large, the covariance matrix may be expressed as: 

2
zi .                 (17) 

Montgomery and Wadsworth (1972) suggested a mul-

tivariate control chart for process dispersion based 

),3)(1( 1/2
211 bbbSUCL  

,SCL                    (18) 
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In the next section, we explore how multivariate me-

thods improve process control in the supply chain. 

6. Interpretation of multivariate process control 

Multivariate quality control (MPC) charts (Hotelling, 

1947; Jackson, 1956, 1959, 1985; Hawkins, 1991, 

1993, Kalagonda and Kulkarni, 2003, 2004; Wierda, 

1994; Jarrett and Pan, 2006, 2007a, 2007b; Mestik, 

Mastrangelo and Forrest, 2002) have several advan-

tages over creating multiple univariate charts for the 

same business situation: 

1. The actual control region of the related variables 

is represented. In the bivariate case the repre-

sentation is elliptical. 

2. You can maintain a specific probability of a 

Type 1 error (the risk). 

3. The determination of whether the process is out 

of or in control is a single control limit. 

Currently, there is a gap between theory and prac-

tice and this is the subject of this manuscript. Many 

practitioners and decision-makers have difficulty 

interpreting multivariate process control applica-

tions, although Montgomery (2005) addresses many 

of the problems of understanding not discussed in 

the technical literature noted before. For example, 

the scale on multivariate charts is unrelated to the 

scale of any of the variables, and an out-of-control 

signal does not reveal which variable (or combina-

tion of variables) causes the signal. 

Often one determines whether to use a univariate or 

multivariate chart by constructing and interpreting a 

correlation matrix of the pertinent variables. If the 

correlation coefficients are greater than 0.1, you can 

assume the variables correlate, and it is appropriate 

to construct a multivariate quality control chart. 

The development of information technology enables 

the collection of large-size data bases with high di-

mensions and short sampling time intervals at low 

cost. Computational complexity is now relatively 

simple for on-line computer-aided processes. In turn, 

monitoring results by automatic procedures produces 

a new focus for quality management. The new focus 

is on fitting the new environment. SPC now requires 

methods to monitor multivariate and serially corre-

lated processes existing in new industrial practice. 

Illustrations of processes which are both multiva-

riate and serially correlated are numerous in the 

production of industrial gasses, silicon chips and 

highly technical computer driven products and ac-

cessories. In optical communication products manu-

facturing, the production of fiber optic is based on 

SiO2 rods made from condensation of silicon and 

oxygen gasses. The preparation of SiO2 rods need to 

monitor variables such as temperature, pressure, 

densities of different components, and the intensity 

of molecular beams. Similar processes exist in 

chemical and semiconductor industries where mate-

rials are prepared and made. In service industries, 

the correlation among processes are serial because 

due to the inertia of human behaviors, and also 

cross-sectional because of the interactions among 

various human actions and activities. As an exam-

ple, the number of visits to a restaurant at a tourist 

attraction may be serially dependent and also related 

to (1) the room occupation percentage of nearby 

overnight residences and (2) the cost and conveni-

ence of transportation. Furthermore, the latter fac-

tors are also autocorrelated and cross-sectionally 

correlated to each other. Business management and 

span of control problems relate unit sales to internal 

economic factors such as inventory, accounts re-

ceivable, labor and materials costs, and environmen-

tal factors such as outputs, competitors’ prices, spe-

cific demands, and the relevant economy in general. 

These problems are multivariate and serially corre-

lated because one factor at one point in time is asso-

ciated with other factors at other points in time 

(past, present and future). 

SPC emphasizes the properties of control for decision 

making while it ignores the complex issues of process 

parameter estimation. Estimation is less important for 

Shewhart control charts for serially independent 

processes because the effects of different estimators 

of process parameters are nearly indifferent to the 

criterion of average run length (ARL). Processes’ 

having serial correlation, estimation becomes the key 

to correct construction of control charts. Adopting 

workable estimators is then an important issue. 

In the past, researchers studied SPC for serially cor-

related processes and SPC for multivariate processes 

separately. Research on quality control charts for 

correlated processes focused on univariate pro-

cesses. Box, Jenkins, and Macgregor (1974) and 

Berthouex, Hunter and Pallesen (1978) noticed and 

discussed the correlated observations in production 

processes. Alwan and Roberts (1988) proposed a 

general approach to monitor residuals of univariate 

autocorrelated time series where the systematic pat-

terns are filtered out and the special changes are 

more exposed. Other studies include Montgomery 

and Friedman (1989), Harris and Ross (1991), 

Montgomery and Mastrangelo (1991), Maragah and 



Problems and Perspectives in Management, Volume 10, Issue 2, 2012 

112 

Woodall (1992), Wardell, Moskowitz and Plante 

(1994), Lu and Reynolds (1999), West, Delana and 

Jarrett (2002) and West and Jarrett (2004), English 

and Sastri (1990), Pan and Jarrett (2004) suggested 

state space methodology for the control of auto cor-

related process. Further, additional technologies 

implemented by Testik (2005), Yang and Rahim 

(2005) and Yeh, Huang and Wu (2004) provide 

newer methods for enabling better MPC methods. 

In Alwan and Roberts’ approach, a time series is 

separated into two parts that are monitored in two 

charts. One is the common-cause chart and the other 

is the special-cause chart. The common cause chart 

essentially accounts for the process’s systematic 

variation that is represented by an autoregressive-

integrated-moving-average (ARIMA) model, while 

the special cause chart is for detecting assignable 

causes that can be assigned in the residual of the 

ARIMA model. That is, the special cause chart is 

designed as Shewhart-type chart to monitor the resi-

duals filtered and whitened from the autocorrelated 

process (with certain or estimated parameters). In 

this analysis, the authors suggest methods used in 

conventional quality control software (i.e., Mini-

tab®). These methods entitled multivariate T2
 and 

Generalized Variance control charts. These multiva-

riate charts show how several variables jointly in-

fluence a process or outcome. For example, you can 

use multivariate control charts to investigate how 

the tensile strength and diameter of a fiber affect the 

quality of fabric or any similar application. If the 

data include correlated variables, the use of separate 

control charts is misleading because the variables 

jointly affect the process. If you use separate univa-

riate control charts in a multivariate situation, Type 

I error and the probability of a point correctly plot-

ting in control are not equal to their expected values. 

The distortion of these values increases with the 

number of measurement variables. 

Multivariate control charting has several advantages 

over creating multiple univariate charts: 

The actual control region of the related variables 

is represented (elliptical for bivariate case). 

You can maintain a specific Type 1 error. 

A single control limit determines whether the 

process is in control. 

Conclusions 

This paper discusses the control chart usage and 

illustrate why better procedures are available to 

supply chain managers. For example, we illustrated 

methods developed by Alwan and Roberts’ utilizing 

residual chart analysis. Later we explored methods 

such as West et al. transfer function application and 

traditional Multivariate Hotelling T2
 chart to moni-

tor multivariate and multivariate serially correlated 

processes (those with dynamic inputs). The scheme 

can be viewed as a generalization of Alwan and 

Roberts’ special cause approach to multivariate cases. 

The guideline and procedures of the construction of 

VAR residual charts are detailed in this paper. Mol-

nau et al. (2001) produces a method for calculating 

ARL for multivariate exponentially weighted moving 

average charts (2001). Mastrangelo and Forrest 

(2002) simulated a VAR process for SPC purposes. 

However, the general study on VAR residual charts is 

heretofore not reported. In addition, more recent stu-

dies by Kalagonda and Kulkarni (2003, 2004), and 

Jarrett and Pan, (2006, 2007a, 2007b) indicate addi-

tional ways in which one can improve upon the mul-

tivariate methods currently available in commercial 

quality control software such as Minitab® and others. 

These newer techniques provide more statistically 

accurate and efficient methods for determining when 

processes are in or not control in the multivariate 

environment. When these methods become commer-

cially available, practitioners should be able to im-

plant these new statistical algorithms for multivariate 

process control charts (MPC) using ARL measure to 

control and improve output. 

These new methods provide methods for MPC 

charts focusing on the average run length. The pur-

pose is to indicate how useful these techniques are 

in the supply chain environment where processes 

are multivariate, dynamic or both. Simple SPC 

charts though very useful in simple environments 

may have limited use in the supply chain. In any 

event, future research should focus on exploring the 

characteristics of the supply chain and finding the 

best model to implement quality planning and im-

provement programs. Multivariate analysis should 

provide many of the new tools for adaption in im-

proving supply chain management. The costs of 

security, stoppages and threats to the supply chain 

will diminish when managers explore the usefulness 

of multivariate methods noted before. Last, these 

supply managers much be trained, retrained and 

continually trained in those methods that best fit the 

supply chain environment. Simple Shewhart me-

thods no longer are sufficient to manage in the glob-

al environment of the supply chain. In the future, I 

suspect as supply become more global some of the 

underlying mathematics of modeling will also seek 

to handle more difficult problems when extreme 

value occur. Knowledge of extreme value theory 

(EVT) will become very useful in predicting and 

accounting distribution of data having long and 

heavy tails in their distributions (see Novak (2012) 

for the mathematical underpinning of predicting and 

accounting for extreme values). 
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