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Liquidity of financial options on GARCH option pricing  

in AMEX option market 

Abstract 

This paper examines the pricing efficiency of Heston and Nandi GARCH (HN GARCH) model on financial options in 

the AMEX option market. A total of eleven major financial options during 2006 are sampled and classified by liquid-

ity, market capitalization, and P/E ratio. The authors find that, while HN GARCH model has smaller valuation errors 

overall, they appear to be ill-suited for valuation of small market capitalization companies and display notable under-

pricing for options of low P/E ratio companies. They, however, do a good job modeling the option prices of lower 

liquidity companies, whose options are much more European in practice. 
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Introduction  

Some of the earlier contributions made by financial 
researchers regarding the weakness of Black-Scholes 
model include the displaced-diffusion model, and the 
flexible binomial model. However, there is one im-

portant catch to all of these models  the variance 
rate is not observable. Latest developments in this 
field are of two main types: implied volatility and 
stochastic volatility. The latter, in particular, include 
continuous-time stochastic models and discrete-time 
stochastic generalized autoregressive conditional 
heteroskedasticity (GARCH) models. 

While continuous-time stochastic volatility models 
can price options effectively, they are extremely diffi-
cult to implement in practice. Moreover, though both 
of these models assume that volatility can be ob-
served, it is nonetheless difficult to filter a continuous 
volatility variable from discrete observations. An al-
ternative to this approach is to use implied volatilities 
computed from option prices instead. This alternative, 
however, requires that volatility be estimated for every 
single trading date of the asset and can be computa-
tionally burdensome, if not outright infeasible, for a 
long time series of option records. Thus, it is important 
that continuous-time models be augmented with non-
trivial volatility estimation techniques. 

In addition, the continuous-time model can serve as 

the limit of a certain GARCH model. Nevertheless, 

Duan (1995) suggests that most of the existing biva-

riate diffusion models that has been used to model 

asset returns and volatility could be represented as 

limits of a family of GARCH models. In particular, 

the GARCH option model proposed by Heston and 

Nandi (2000) is proven to contain Heston’s (1993) 

stochastic volatility model as a continuous time 

limit. GARCH models have an inherent advantage 

over the continuous-time models in the sense that 

the volatility on which they rely can be readily ob-
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served from the asset’s historical prices. Thus, it is 

possible to price an option by simply using the in-

formation about historical prices of the underlying 

asset. In contrast, while the continuous-time sto-

chastic models assume volatility to be observable, 

the volatility cannot be filtered precisely from dis-

crete observations of spot asset prices in a conti-

nuous-time stochastic volatility mode. It is, there-

fore, impossible to price an option by relying on the 

historical prices of the underlying asset alone. 

Given that volatility cannot be observed, an alterna-

tive approach is to use the volatility implied from 

one option to price other options on the same under-

lying asset. However, such an approach could be 

error-prone, especially when the trade volume of the 

options under consideration is low. As a result, 

GARCH model is preferred over continuous-time 

models when the performance of stochastic option 

models and discrete-time models are compared. 

Duan (1995) incorporates GARCH into discrete-

time model and proposed the GARCH option pric-

ing model to extend the Black-Scholes model. The 

key hypothesis of the GARCH process is condition-

al heteroskedasticity, with variance determined by a 

series of parameters and a sequence of random va-

riables that are noise. Further, nonlinear GARCH, 

or NGARCH model capture the negative correlation 

between returns and conditional volatility. The gen-

eral theory of GARCH option pricing also applies to 

NGARCH models as well. 

Unfortunately, most GARCH models lack closed-
form solutions for option prices. As a result, many of 
these models have been solved empirically by Monte 
Carlo simulations (for example, Lord et al., 2010; Pitt 
et al., 2012; Ardia et al., 2012). However, Monte Car-
lo simulations are often time-consuming and computa-
tionally intensive. Ritchken and Trevor (1999) bring 
forth a lattice approximation to value American op-
tions. Duan et al. (1999) suggest a Markov chain ap-
proach for GARCH processes with single lags in the 
variance dynamics. Heston and Nandi (2000) also 
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develop a closed-form solution for European option 
values (and hedge ratios) in a GARCH model. Heston 
and Nandi’s model, in particular, allows for both mul-
tiple lags in the time series dynamics of the variance 
process and correlation between returns of the spot 
asset and variance. Hence, it suggests another alterna-
tive for option pricing. 

This paper tests the empirical implications based on 
Heston and Nandi (2000) GARCH model on finan-
cial options in the American Stock Exchange (hence-
forth AMEX) by comparing its pricing errors with 
those of the Black-Scholes model. According to Lehar 
et al. (2002), Su et al. (2010), and Ekstrom et al. 
(2011), it may be expected that the GARCH model, 
with slight modifications, should demonstrate 
smaller out-of-sample valuation errors compared to 
the Black-Scholes model. 

An additional dimension worth investigating about 

the specifics of the option pricing is also included in 

this paper. Namely, though it may be expected that 

GARCH option pricing model would fair more im-

pressively compared to traditional Black-Scholes 

model, is there any other factor at play here? For one 

thing, it makes sense to take the liquidity of the un-

derlying asset into consideration; it would seem the 

higher the liquidity of an asset, the more likely the 

less information asymmetry there is and hence the 

smaller the pricing errors expected. Other factors, 

such as the market capitalization and the P/E ratio of 

the companies, also deserve some consideration as 

well. In particular, a greater market capitalization for a 

company would mean more outstanding shares avail-

able for trade and hence probably higher liquidity, 

while a greater P/E ratio may suggest a higher degree 

of overpricing; the same argument would also work in 

reverse for companies with lower P/E ratios as well. 

It can be argued that American options, inherently 
more complex compared to their European counter- 
 

parts, may be ill-suited for analysis by Heston and 

Nandi’s GARCH model. However, many of the 

more notable approaches to the pricing of American 

options, such as the regression-based approach by 

Longstaff and Schwarz (2001), the Monte Carlo 

simulation approach by Haugh and Kogan (2004), and 

the static hedge portfolio approach by Chung and Shih 

(2009) are extremely computationally intensive. 

Moreover, as shown by La and Lemieux (2005), for 

American options whose prices are not extremely 

close to zero, the variance are not much different from 

their European counterparts. Thus, this paper makes 

the connection between the models and applies Heston 

and Nandi GARCH model to the pricing of American 

options while noting that such a generalization can 

have a slight effect on the pricing errors because of 

how variances are defined. 

The rest of this paper proceeds as follows. Section 1 

introduces the methodology, including data descrip-

tion and the model applied. Section 2 gives the in-

sample estimation through MLE and out-of-sample 

pricing results. The final section concludes. 

1. Data and methodology 

For the sake of comparability, all companies selected 

are from the financial industry. The sample consists of 

eleven leading financial companies which are, in al-

phabetical order, Bank of America, Citigroup, Gold-

man Sachs, ING Group, JP Morgan Chase, Lehman 

Brothers, Merrill Lynch, Morgan Stanley, Wachovia, 

Washington Mutual, and Wells Fargo. Moreover, the 

sample data are collected on Wednesdays during three 

years for a total of 156 trading days. For the risk free 

rate, the continuously compounded Treasury bill rates 

interpolated to match the maturity of the options are 

used. The samples are obtained from Wharton Re-

search Data Services (WRDS). A brief breakdown of 

these companies can be found in Table 1. 

Table 1. Brief breakdown of the companies analyzed 

Company name Average 3 month trade volume $ million Market capitalization (billion) 
Price to equity ratio 
52-week average 

Bank of America 48.77 157.30 10.72 

Citigroup 115.38 118.24 31.67 

Goldman Sachs 14.01 70.06 7.69 

ING Group 1.97 80.10 5.62 

JP Morgan Chase 42.91 142.15 9.55 

Lehman Brothers 30.09 21.73 6.47 

Merrill Lynch 30.47 41.83 9.80 

Morgan Stanley 18.96 48.07 22.70 

Wachovia 36.56 49.91 7.72 

Washington Mutual 52.92 9.21 12.20 

Wells Fargo 38.54 90.63 11.54 

Note: Data courtesy of Forbes.com and Yahoo! Finance. 

These companies can be further classified by their 
average trade volume, market capitalization, and 

52-week average P/E ratio. Specifically, companies 
are considered to be small (large) volume compa-
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nies if their average 3-month trade volume is less 
(greater) than or equal to 10 (100) million contracts, 
while they are considered to be moderate volume 
companies if their average 3-month trade volume is 
between 10 and 100 million contracts. Moreover, 
companies are considered to be small (large) market 
capitalization companies if their market capitalization 
is less (greater) than 50 (100) billion dollars, while 
they are considered to be medium market capitaliza-
tion companies if their market capitalization is be-
tween 50 and 100 billion dollars. Last but not least, 
companies are considered to have small P/E ratios if 
their P/E ratios are less than 10; they are considered 
to have large P/E ratios otherwise. 

Table 2 shows how the companies have thus been 
classified and the criteria for classification. Note 
that the criteria are rather arbitrary; that is, the 
boundaries between adjacent classifications are 
only chosen to facilitate the analyses, whose re-
sults will be organized based on this classifica-
tion. This paper is restricted to the analysis of call 
options only. Moreover, an option is included in 
the analysis only if it also fits the following criteria. 

First of all, only the call options with moneyness, or 

K/S, between 0.9 and 1.1 are used for the analysis. 

The elimination of extremely deep out-of-money and 

in-the-money options from the analysis that are infre-

quently traded ensures a certain level of credibility of 

the results of the analysis. Secondly, only those op-

tions with volume greater or equal to 100 con-

tracts were considered for the analysis. This re-

striction ensures the active trading of the options 

being considered and thus less information 

asymmetry between the trading parties that could 

lead to pricing errors. Last, the call options are 

eliminated from consideration for the analysis if they 

do not satisfy the boundary condition below: 

, 0, ,
r T t

S t C t T Max S t PVD Ke           (1) 

where S(t) stands for the price of the underlying asset 

at time t, C(t,T) stands for the price of the call 

option with time to maturity T at time t, PVD 

stands for the present value of all dividends on 

the underlying asset, and e
-r(T-t)

 stands for the 

present value of the strike price of the call option. 

Table 2. Classification of the companies analyzed based on average 3 month trade volume, 

market capitalization and 52-week average P/E ratio 

Small volume 

ING Group – medium market capitalization, small P/E ratio 

Moderate volume 

 Small market capitalization Medium market capitalization Large market capitalization 

Small P/E ratio 
Small P/E ratio 
Small P/E ratio 

Lehman Brothers 
Merrill Lynch 
Wachovia 

Goldman Sachs 
Goldman Sachs 
Goldman Sachs 

JP Morgan Chase  
JP Morgan Chase 
JP Morgan Chase 

Large P/E ratio 
Large P/E ratio 

Morgan Stanley 
Washington Mutual 

Wells Fargo 
Wells Fargo 

Bank of America 
Bank of America 

Large volume 

Citigroup – large market capitalization, large P/E ratio 

Note: Throughout the paper, Lehman Brothers and Washington Mutual will represent their corresponding categories. 

The first inequality must hold because, if not, inves-
tors can always earn arbitrage profits by buying one 
unit of the underlying asset and sell the correspond-
ing call option. In other words, the cost of the right 
to purchase an asset can never be higher than the 
cost of the actual asset to be purchased. The second 
inequality must be satisfied as well to ensure no 
arbitrage opportunity; if it is not satisfied, an inves-
tor can always make an instant profit by buying the 
call option and exercising it immediately. 

Thus, the data set of call options consists of 8773 
observations, or about 731 observations per compa-
ny, with a minimum of 177 and a maximum of 
1250. The sample is further categorized into 10 
different groups based on their moneyness and time 
to maturity. In terms of moneyness, the data set is 
divided into five categories: deep in-the-money call 
options with 0.9 / 0.95,K S  in-the-money op-

tions with 0.95 / 0.99,K S  at-the-money options 

with 0.99 / 1.01,K S  out-of-money options with 

1.01 / 1.05,K S  and deep out-of-money options with 

1.05 / 1.1.K S  These five categories are then 

further classified according to their time to maturi-
ty: short-term (with time to maturity less than or 
equal to 30 days) and long term (with time to matur-
ity greater than 30 days). Panel A of Table 3 lists 
the total number of call option contracts analyzed in 
this paper by time to maturity and moneyness. 

Panel B of Table 3 shows the average implied Black-
Scholes volatilities across various time to maturity and 
moneyness categories from call contracts used for the 
analysis in this paper. These numbers suggest that 
implied volatilities are not exactly constant across 
different times to maturity and moneyness, which may 
be interpreted as the presence of a mild volatility 
smirk/smile effect of the sample overall. If the compa-
nies that comprise the sample are inspected separately 
by average trade volume, market capitalization, and 
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P/E ratio, the results are similar. While these results 
may seem to violate the assumption of constant vola-
tility under Black-Scholes model somewhat, the effect 
is relatively mild and will not be taken into considera-

tion in the empirical analysis. In addition, the daily 
historical closing prices of the stocks of the companies 
during a year are used to estimate the parameters of 
the GARCH process. 

Table 3. Number of contracts and average implied volatilities of contracts across 

time to maturity and moneyness 

Panel A. Number of contracts 

Moneyness 
# of options that will mature in 30 

days or less 
# of options that will mature in 

more than 30 days 
Total 

0.90  K / S  0.95 293 861 1154 

0.95  K / S  0.99 396 1357 1753 

0.99  K / S  1.01 622 1874 2696 

1.01  K / S  1.05 569 1595 2154 

1.05  K / S  1.10 226 980 1206 

Total 2106 6667 8773 

Panel B. Average implied volatilities of contracts 

 Time to maturity  30 days Time to maturity > 30 days 

0.90  K / S  0.95 0.28305 0.21148 

0.95  K / S  0.99 0.23372 0.19140 

0.99  K / S  1.01 0.21802 0.18609 

1.01  K / S  1.05 0.21624 0.17883 

1.05  K / S  1.10 0.24593 0.17669 
 

We examine pricing error based on the closed form 
HN GARCH option valuation model. In general, 
GARCH models are solved by slow, computationally 
intensive simulations, making them impractical for 
empirical analyses. In contrast, HN GARCH model 
gives an analytical solution and thus is more applica-
ble for the real option market. This model features 
two assumptions. The first assumption is that the log-
spot prices follow a particular GARCH process. 

Assumption 1: The spot asset price, S(t) (including 
accumulated interest or dividends), follows the fol-
lowing process over time steps of length  

2

-1 =1

log = log - + + + ,

= + - i + - ,
p q

i i i

i i

S t S t r h t h t z t

h t h t z t - i h t - i

where r is the continuously compounded interest rate 
for the time interval , z(t) is the standard normal 
disturbance, h(t) is the conditional variance of the log 

return between t-  and t,  is the risk premium,  is 
the mean conditional volatility, i is the asymmetric 
influence of shock; a large negative shock z(t) raises 
the variance more than a large positive shock z(t),  
 

and i is the kurtosis of the distribution; a zero value 

implies a deterministic time varying variance. 

As the i and i parameters approach zero, the mod-

el approaches the Black-Scholes model observed at 

discrete intervals. This paper focuses on the first-

order GARCH process (i.e. p = q = 1). The first 

order GARCH process is stationary with finite 

mean and variance if 
2

1 1 1 1.   

Assumption 2: The value of a call option one pe-

riod prior to expiration obeys the Black-Scholes-

Rubinstein (hereafter BSR) formula. 

The BSR formula makes sense here because the 

spot price has a conditionally lognormal distribution 

over one single period. Basically, if the BS formu-

la holds for one single period, the risk neutral dis-

tribution of the asset price is lognormal with mean 

S(t  )e
r
. In other words, a random variable z

*
(t) with 

a standard normal distribution under risk-neutral prob-

ability can always be found. Follow Heston and Nandi 

(2000). At time t, an European call option with strike 

price K with expiration time T is worth: 

*

0 0

11 1 1
,0 ,

2 1 2

i ir T t
T t r T t

t

K f i K f ie
C e E Max S t K S t Re d Ke Re d

i f i
           (3) 

where *

tE  denotes the expectation under risk-

neutral probability measure. 

Thus, once the information of the characteristic 

function of log(S(T)) becomes available, this prop-

osition allows the expectation to be computed without 
 

evaluating two separate integrals. This is different 
from the approach proposed by Heston (1993) that 
calls first for two characteristic functions, namely, 

f1(logS, v, t; ) and f2(logS, v, t; ), to be found, 
which can later be inverted to obtain the desired 
probabilities as shown in the following formula: 
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0

log , , ;1 1
log , , ; log .

2

i

j

j

K f S v T
P S v T k Re d

i
        (4) 

Then, substituting the probabilities into the formula, 

1 2
, ,

r T t
C s v t SP Ke P , generates the option prices. 

Compared with Black-Scholes model, whose empha-
sis is on the current asset price and its variance, Hes-
ton and Nandi GARCH model hinges on both current 
asset price and the conditional variance. Since the 
conditional variance is a function of the observed path 
of asset prices, the option formula becomes a function 
of current and historical asset prices. The most impor-
tant difference here is that volatility in Heston and 
Nandi GARCH model is readily observable in the 
historical prices of the underlying asset compared to 
continuous-time stochastic volatility models. 

The objectives of study are as follows. This paper 

examines the valuation performance of GARCH mod-

el (both the unrestricted and restricted versions) on the 

pricing of options of stocks listed on AMEX. Further, 

we examine the pricing efficiency of HN GARCH 

model on financial options by liquidity, market capita-

lization, and P/E ratio. Moreover, we explore which 

type of options could do a good job modeling the op-

tion prices. That is, we shed some light on the effects 

of liquidity, market capitalization, and P/E ratio on the 

pricing errors of options by varios models. 

Thus, the purpose of research is to explore the fol-
lowing hypotheses. 

Hypothesis 1: The pricing errors of HN GARCH 

model (both the unrestricted and restricted versions) 

are lower than those in other option pricing models. 

Heston and Nandi (2000) develop a closed-form 
solution for European option values in a GARCH 
model. HN GARCH model performs well for option 
pricing in European option. We presume the HN 
GARCH model also performs well for option pric-
ing in American option. 

Hypothesis 2: HN GARCH model could do a better 

job modeling the option prices of lower liquidity 

companies. 

Since trades happen relatively rarely in companies 

with smaller liquidity, the options behave more like 

European options with lower volatilities and hence 

are more accurately modeled by HN GARCH model. 

2. Empirical results 

2.1. Estimation. The empirical analysis focuses 

mainly on the single lag version of GARCH model. 

Here,  is set to 1, and daily stock returns are used to 

model the evolution of volatility. Unlike the case 

with continuous time stochastic volatility models, in 

which the volatilities are unobservable, for the 

GARCH model, all parameters can be estimated di-

rectly from the historical asset prices. The estimation 

is done with the MLE method. Moreover, in order to 

bring out the importance of the skewness parameter, 

1, and its effects, this estimation is run twice, once 

with an unrestricted model and once with a restricted 

model with 1 set to zero. In the latter case, the model 

is also called a symmetric GARCH model. This es-

timation is performed on the data of time series of 

stock prices during a year. 

The volatility of volatility is very small (not reported 
for briefly) for companies of all trade volume, market 
capitalization, and P/E ratio, being no more than 
0.0004 in all cases. It may be worth noting, though, 

that the company with the greatest 1, around 0.0004 
in the asymmetric GARCH model and 0.0002 in the 
symmetric GARCH model, is ING Group, an indi-
cation that the returns of the company with the 
smallest trade volume may be the most volatile. 
Moreover, the parameter used to measure the degree 

of mean reversion, 2

111
, is between 0.6 and 

0.8 for most companies for both versions of the two 
models, indicating a strong mean reversion. However, 
mean aversion seems to be almost nonexistent for 
Bank of America for both models, with values of 
1.56*10

-8
, 9.10*10

-8
, 3.63*10

-8
, and 4.00*10

-9
 for the 

models computed. This lack of mean reversion can 
perhaps be explained by the stock split it executed 
late in 2004, which greatly increased the volatility 
of its stock prices. Other than Bank of America, 
Washington Mutual, another company of large P/E 
ratio, also exhibited this apparent lack of mean re-
version. Yet, the other company of large P/E ratio, 
Wells Fargo, showed no such result. This seems to 
cast Washington Mutual as an anomaly, whose 
small market capitalization and large P/E ratio may 
be a sign of great information asymmetry causing 
the significant deviation from the mean. The annu-
alized long-run mean of volatility are relatively low 
for both models with or without risk.  

The parameters obtained from the historical price 

levels using MLE can then be plugged into option 

pricing formula to compute the call option prices. The 

catch, however, is that the information set for the his-

torical price levels are not quite the same as those of 

the option prices. More specifically, option prices 

are forward looking, meaning they carry expecta-

tions about future price evolutions of the underlying 

asset. As Su et al. (2010) show, the pricing of op-

tions by plugging in parameters obtained from MLE 

into Heston and Nandi’s GARCH pricing model is 

plagued by significant errors. As a result, some 

corrections and improvements on this method, to be 

discussed in the next section, are in order. 
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Table 4 (cont.). The out-of-sample pricing errors 

Panel A 

 Lehman Brothers Washington Mutual Goldman Sachs 

Moneyness Model t.t.m. > 30 t.t.m. > 30 t.t.m. > 30 t.t.m. > 30 t.t.m. > 30 t.t.m. >30 

1.05  K / S  
 1.10 

BS 0.321 0.245 0.226 0.244 0.384 0.319 

GARCH 0.309 0.142 0.323 0.275 -0.092 -0.286 

GARCH updated -0.106 -0.090 0.318 0.091 -0.145 0.094 

Panel B 

 Wells Fargo JP Morgan Chase Bank of America 

Moneyness Model t.t.m. > 30 t.t.m. > 30 t.t.m. > 30 t.t.m. > 30 t.t.m. > 30 t.t.m. >30 

0.90  K / S 
 0.95 

BS 0.293 0.264 0.302 0.114 0.214 0.327 

GARCH 0.276 0.073 -0.151 0.046 0.069 0.113 

GARCH 
updated 

0.257 0.243 0.196 0.024 -0.051 0.131 

0.95  K / S  
 0.99 

BS 0.249 0.241 0.173 0.221 0.199 0.238 

GARCH -0.197 -0.143 -0.017 0.046 -0.037 0.056 

GARCH 
updated 

0.097 0.173 -0.062 -0.124 -0.066 0.099 

0.99  K / S  
 1.01 

BS 0.252 0.220 0.199 0.257 0.242 0.210 

GARCH 0.089 -0.096 -0.113 0.175 -0.100 -0.040 

GARCH 
updated 

0.052 -0.110 -0.102 -0.119 -0.129 0.184 

1.01  K / S  
 1.05 

BS 0.276 0.241 0.229 0.303 0.321 0.261 

GARCH -0.060 -0.108 -0.004 -0.062 0.031 0.080 

GARCH 
updated 

0.179 0.023 -0.061 0.072 0.233 0.224 

1.05  K / S  
 1.10 

BS -0.437 0.246 0.395 0.347 0.471 0.364 

GARCH -0.380 -0.125 0.334 0.409 -0.360 -0.344 

GARCH 
updated 

0.169 -0.078 -0.230 -0.054 0.332 0.335 

Panel C 

 ING Group Citigroup 

Moneyness Model t.t.m > 30 t.t.m. > 30 t.t.m. > 30 t.t.m. > 30

0.90  K / S  
 0.95 

BS 0.237 0.184 6.452 7.905 

GARCH 0.148 0.227 5.496 6.762 

GARCH updated -0.207 -0.010 4.756 5.565 

0.95  K / S  
 0.99 

BS 0.098 -0.064 4.008 5.871 

GARCH -0.236 -0.046 5.449 5.453 

GARCH updated 0.187 -0.075 2.169 4.286 

0.99  K / S  
 1.01 

BS 0.093 0.160 3.741 5.258 

GARCH -0.046 -0.074 3.662 6.993 

GARCH updated -0.133 -0.020 3.297 5.291 

1.01  K / S  
 1.05 

BS -0.276 0.276 3.789 7.848 

GARCH 0.254 0.275 4.412 6.818 

GARCH updated -0.248 0.186 3.528 6.803 

1.05  K / S  
 1.10 

BS 0.410 0.351 6.436 9.856 

GARCH 0.362 0.271 5.713 9.053 

GARCH updated -0.304 0.161 5.578 7.231 

Notes: “t.t.m.” means time to maturity. 

In addition, a particular point about Table 4 is that for 

almost all companies, regardless of their trade volume, 

market capitalization, or P/E ratio, the volatility of the 

pricing errors of the options of longer time to maturity 

(i.e. time to maturity > 30 days) appear to be greater 

than those of shorter time to maturity (i.e. time to ma-

turity  30 days) no matter what loss function is used 

as the basis of comparison. This may be due to the fact 

that American options are inherently more complex 

compared to their European counterparts. Whereas 

European options show more volatility as the exercise 

date approaches, American options have just the op-

posite story; the longer the time to maturity, the more 

possible dates of exercise for American options, 

and thus the greater the volatility. Another fact 

about Table 4 is that liquidity does not seem to 

make a difference at least as far as the loss functions 

are concerned. Comparing the results of ING Group 
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(small trade volume) and Goldman Sachs (moderate 

trade volume) as well as Bank of America (mod-

erate trade volume) and Citigroup (great trade vo-

lume), no definite conclusion can be drawn between 

the pricing errors of the pairs. While the pricing er-

rors
1
 do appear to suggest that ING Group, the com-

pany with the smaller trade volume and hence lower 

liquidity, is more accurately priced, especially for its 

options with time to maturity greater than 30 days, 

the same trend cannot be observed between Bank of 

America and Citigroup. It is worth noting, though, 

that in the case of ING Group vs Goldman Sachs, it 

is actually the company with the lower liquidity that 

is priced more accurately, an observation that seems 

to contradict the rationale presented in earlier sec-

tions. A possible explanation may be that the call 

options of lower liquidity, because of the relatively 

infrequency of their changing hands, behave more 

like Bermudan, or even European, options, whose 

volatilities are smaller compared to American ones. 

The trend becomes more conspicuous for options of 

longer maturities because of the additional exercise 

dates that have to be considered. Moreover, there 

appears to be a greater amount of underpricing for 

the options of the companies with a lower P/E ratio. 

From the pairwise comparison of the MPE of Leh-

man Brothers (low P/E ratio) and Washington Mu-

tual (high P/E ratio), Goldman Sachs (low P/E ratio) 

and Wells Fargo (high P/E ratio), and JP Morgan 

Chase (low P/E ratio) and Bank of America (high 

P/E ratio), it does appear that, in the thirty different 

scenarios of moneyness, time to maturity, and op-

tion pricing models considered, the companies with 

lower P/E ratios in the respective pairs tend to show 

negative MPEs more often compared to their higher 

P/E counterparts. The same could also be said of 

ING Group, which is another company with a low 

P/E ratio. This corresponds to the rationale presented 

earlier about a greater possibility of underpricing 

errors for companies of lower P/E ratios, whose 

stocks, and thus options, are of greater value to the 

investors. 

Last but not least, perhaps somewhat surprisingly, 
Lehman Brothers feature the greatest errors in pric-
ing of all the companies considered in this study. 
Other than the fact that Lehman Brothers, with a 
small P/E ratio, may more likely exhibit greater er-
rors because of a significant amount of underpricing, 
this observation also seems to correspond to the lack 
of mean reversion for Washington Mutual, another 
company of small market capitalization. These may 
combine to suggest that these option price methods 
are especially ill-suited for the pricing of options of 
companies with small market capitalizations. 

                                                      
1 While the pricing errors are measured by MPE, MAE and RMSE, the 

results are similar. We just present the results of MPE to save space. 

Conclusions 

This paper presents the valuation performance of 

GARCH model (both the unrestricted and re-

stricted versions) on the pricing of options of 

stocks listed on AMEX and compares the pricing 

errors of this model with other option pricing 

models. The important observation is that, without 

updating the parameters on a weekly basis, the 

GARCH pricing model fairs no better than the 

traditional Black-Scholes model for the out-of-

sample option pricing. That said, the weekly up-

date does afford the GARCH model a significant, 

perhaps even unfair, edge over the Black-Scholes 

model. Moreover, the presence of a mild volatility 

smirk/smile effect may also have complicated the 

analysis, even with proper adjustments made by 

using five different implied volatilities to account 

for differences across moneyness.  

Even though the updated GARCH model, as ex-

pected, outperforms the other two models, it should 

still be noted that its valuation errors for extremely 

out-of-money options are especially high. One poss-

ible explanation for this apparent inaccuracy is an 

inappropriate sample period, which may either have 

been too short to capture fully the volatilities or too 

long to include unwarranted noise. Moreover, the 

analysis presented in this paper relies mainly on 

MLE, which is inherently backward-looking and 

may come up considerably short in pricing options 

that are forward-looking. 

Nevertheless, the models presented in this paper do 

shed some light on the effects of liquidity, market 

capitalization, and P/E ratio on the pricing errors of 

options by various models. Specifically speaking, 

companies with smaller liquidity tend to exhibit 

smaller pricing errors, especially when the options 

have a long time to go before maturing, as demon-

strated by the particular case of ING Group. This 

may be due to the fact that, because trades happen 

relatively rarely, the options behave more like Eu-

ropean options with lower volatilities and hence are 

more accurately modeled by Heston and Nandi 

GARCH model. 

Moreover, companies with smaller P/E ratios tend 

to be underpriced more, though not by a considera-

ble margin. This is in line with the intuition that, the 

lower the P/E ratio of an asset, the more valuable it 

is and hence the more underpriced it is relative to 

other assets. However, since in no company’s case 

does the underpricing dominate (with ING Group 

being the most conspicuous example, exhibiting 

underpricing in 13 of the 30 MPEs), the argument is 

not convincing enough. It should also be noted that, 

of the companies considered, those with small mar-

ket capitalizations are the ones with the greatest 
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pricing errors; perhaps the pricing errors as the 

result of a low P/E ratio appear insignificant com-

pared to the influence exerted by a small market 

capitalization. 

In all, while Heston and Nandi GARCH model ap-
pears to be more of a computational convenience than 
other more optimal models, such as the GJR-GARCH 
as Lo and Wang (1995) suggested, it does provide 
some useful insight on the relationship between li-
quidity, market capitalization, and P/E ratios and 
their effects on pricing errors. More research will be 
required to specifically gauge the effects of these 
factors on the pricing errors. 

The above findings have important implications for 

policy implications. Since HN GARCH model has 

more of a computational convenience than other more 

optimal models, market regulators should encour-

age relevant financial firms to price options HN 

GARCH model to lower pricing errors. There is a 

possible direction to suggest for future research. 

Because global events could change financial 

environment, there are different extents of influ-

ence on different option pricing model. Thus, 

future research can explore whether the pricing er-

rors of HN GARCH model still lower after global 

financial events. 
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