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Guglielmo Maria Caporale (UK), Luis Alberiko Gil-Alana (Spain) 

Long memory in the Ukranian stock market 

Abstract 

This paper examines the dynamics of stock prices in Ukraine by estimating the degree of persistence of the PFTS stock 
market index. Using long memory techniques the authors show that the log prices series is I(d) with d slightly above 1, 
implying that returns are characterized by a small degree of long memory and thus are predictable using historical data. 
Moreover, their volatility, measured as the absolute and squared returns, also displays long memory. Finally, the paper 
examines if the time dependence is affected by the day of the week; the results indicate that Mondays and Fridays are 
characterized by higher dependency, consistently with the literature on anomalies in stock market prices. 

Keywords: stock market prices, efficient market hypothesis, long memory, fractional integration. 
JEL Classification: C22, G12. 
 

Introduction  

This paper analyzes the behavior of stock prices in 
Ukraine by modeling the PFTS stock market index. 
Specifically, it examines its degree of dependence, 
noting that if the order of integration of the series is 
equal to 1, it is possible for the efficiency market 
hypothesis to be satisfied provided the differenced 
process is uncorrelated. Moreover, it tests the 
hypothesis of mean reversion (orders of integration 
below 1 in prices) or alternatively, long memory 
returns (orders of integration above 1 in the log 
prices) by using long memory and fractional 
integration techniques. These are more general than 
the standard approaches based on integer degree of 
differentiation, and provide much more flexibility in 
modeling the dynamics of the process. Finally, the 
degree of dependence for each day of the week is 
investigated in order to establish whether there are 
any day-of-the-week effects. 

We use daily data from January 2007 to February 
2013 and the main results in the paper can be 
summarized as follows. First, we observe that the 
log-prices series are fractionally integrated or I(d) 
with an order of integration, d, which is slightly 
above 1 and thus implying that the underlying 
returns present a small degree of long memory 
behavior. The same evidence of long memory is 
obtained for the absolute and squared returns, which 
are used as proxies for the volatility. These results 
are consistent with those obtained in other stock 
markets. More importantly, we also find evidence of 
higher degrees of dependency on Mondays and 
Fridays than during the other days of the week, 
validating the hypothesis that there is an anomaly 
related with the “day-of-the-week” effect in the 
Ukrainian stock market.  

                                                      
 Guglielmo Maria Caporale, Luis Alberiko Gil-Alana, 2013. 
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The paper is organized as follows. Section 1 describes 
the methodology. Section 2 presents the data and the 
main empirical results, while the final section 
contains some concluding comments. 

1. Long memory and fractional integration 

Long memory is a feature of the data that implies 
that observations far apart in time are highly 
correlated. There are two main definitions of long 
memory, one in the time domain and the other in the 
frequency domain. Starting with the former, given a 
covariance stationary process {xt, t = 0, ±1, …}, with 
autocovariance function E(xt – Ext)(xt-j – Ext) = j, 
according to McLeod and Hipel (1978), xt is said to 
be characterized by long memory if 

Tj

Tj

jTlim       (1) 

is infinite. The alternative definition, based on the 
frequency domain, is the following. Suppose that xt 

has an absolutely continuous spectral distribution 
function, implying that it has a spectral density 
function, denoted by f( ), and defined as: 
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Then, xt displays the property of long memory if the 
spectral density function has a pole at some 
frequency  in the interval [0, ), i.e.,  

).,0[,,)( **
asf                (3) 

The empirical literature has focused on the case 
where the singularity or pole in the spectrum occurs 
at the 0 frequency, i.e., ( * = 0). This is the standard 
case of I(d) models of the form: 

,...,1,0,)1( tuxL tt

d     (4) 

where d can be any real value, L is the lag-operator 
(Lxt = xt-1) and ut is I(0), defined for our purposes as 
a covariance stationary process with a spectral 
density function that is positive and finite at the zero 
frequency. 
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Given the parameterization in (4) we can distinguish 
several cases depending on the value of d. Thus, if  
d = 0, xt = ut, xt is said to be “short memory” or I(0), 
and if the observations are autocorrelated (i.e. AR) 
they are of a “weakly” form, in the sense that the 
values in the autocorrelations are decaying at an 
exponentially rate; if d > 0, xt is said to be “long 
memory”, so named because of the strong association 
between observations far distant in time. If d belongs 
to the interval (0, 0.5) xt is still covariance stationary, 
while d  0.5 implies nonstationarity. Finally, if d < 1, 
the series is mean reverting in the sense that the effects 
of shocks disappear in the long run, contrary to what 
happens if d  1 when they persist forever. 

There exist several methods for estimating and 
testing the fractional differencing parameter d. 
Some of them are parametric while others are 
semiparametric and can be specified in the time or 
in the frequency domain. In this paper, we use a 
Whittle estimate of d in the frequency domain 
(Dahlhaus, 1989) along with a testing procedure, 
which is based on the Lagrange Multiplier (LM) 
principle and that also uses the Whittle function in 
the frequency domain. It tests the null hypothesis: 

,: oo ddH        (5) 

for any real value do, in a model given by the 
equation (4), where xt can be the errors in a 
regression model of the form: 

....,,2,1, txzy tt

T

t
    (6) 

where yt is the observed time series,  is a (kx1) 
vector of unknown coefficients and zt is a set of 
deterministic terms that might include an intercept 
(i.e., zt = 1), an intercept with a linear time trend (zt 
= (1, t)T), or any other type of deterministic 
processes. Robinson (1994) showed that, under 
certain very mild regularity conditions, the LM-
based statistic :)ˆ(r  

,)1,0(ˆ TasNr d
     (7) 

where “ d “ stands for convergence in distribution, 
and this limit behaviour holds independently of the 
regressors zt used in (6) and the specific model for 
the I(0) disturbances ut in (4). 

As in other standard large-sample testing situations, 
Wald and LR test statistics against fractional 
alternatives have the same null and limit theory as 
the LM test of Robinson (1994). Lobato and Velasco 
(2007) essentially employed such a Wald testing 
procedure, even though it requires a consistent 
estimate of d; therefore the LM test of Robinson 
(1994) seems computationally more attractive. A 
semiparametric Whittle approach (Robinson, 1995) 
will also be implemented in the paper. 

2. Data and empirical results 

The series examined is the PFTS Ukrainian Stock 
Index. It is registered by Ukrainian SEC stock 
exchange, which is in operation since 1997 and 
currently is the largest marketplace in Ukraine. The 
PFTS index is calculated based on the results of the 
trading. The daily trade volume is about $30-60 
million. Approximately 220 companies are listed on 
the PFTS, with a total market capitalisation around 
$140 billion. We use daily data from January 9, 
2007 to February 27, 2013. 

Figure 1 (see Appendix) displays the original time 
series, along with the corresponding returns, 
obtained as the first differences of the log-
transformed data, and also the corresponding 
correlograms and periodograms. The original series 
appears to fluctuate throughout the sample period, 
while the returns are very stable. The correlograms 
of the returns, however, has many significant values, 
even for some lags far away from zero, and the 
periodogram has the highest value at the zero 
frequency, which suggests some degree of long 
memory in the return series. 

As a first step we estimate a model of the form 

given by equations (4) and (6), with zt = (1,t)T, t  1, 
0, otherwise, i.e., 

....,,2,1
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t

uxLxty tt

d
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where yt is the log-transformed price. 

We report in Table 1 the estimates of d in (8) for the 
three standard cases of no regressors in the 
undifferenced regression (i.e., 0 = 1 = 0 in (8)), an 
intercept ( 0 unknown and 1 = 0), and an intercept 
with a linear time trend ( 0 and 1 unknown) along 
with the 95% confidence interval of the non-
rejection values of d using Robinson (1994) 
parametric approach. 

Table 1. Estimates of the fractional differencing 
parameter in the log of PFTS series 

 No regressors An intercept A linear time trend 

White noise 
1.009 

(0.979, 1.043) 
1.218 

(1.181, 1.261) 
1.218 

(1.181, 1.261) 

AR(1) 
1.381 

(1.321, 1.450) 
1.095 

(1.049, 1.148) 
1.095 

(1.049, 1.148) 

Bloomfield 
1.009 

(0.960, 1.068) 
1.101 

(1.060, 1.154) 
1.101 

(1.061, 1.154) 

Note: The values in parentheses give the 95% confidence band 
for the non-rejection values of d. The values corresponding to 
significant deterministic terms are in bold. 

The results are reported for the cases of both 
uncorrelated and autocorrelated errors. In the latter 
case, we assume first that ut is an AR(1) process, but 
then also model the disturbances following the more 
general specification proposed by Bloomfield (1973). 
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This is a non-parametric approach that approximates 
ARMA models with only a few parameters. The t-
values for the deterministic terms (not reported) 
imply that the model with an intercept is the most 
adequate specification for all three types of 
disturbances. The estimated coefficient for the 
fractional differencing parameter is slightly above 1 
in all three cases and, more importantly, the I(1) 
hypothesis is statistically rejected in favor of higher 
orders of integration. This implies that the 
underlying returns are characterized by long 
memory, with an order of integration of about 0.21 
in the case of uncorrelated errors, and slightly 
smaller if the errors are autocorrelated. This implies 
that market efficiency does not hold in the 
Ukrainian stock market since there is some degree 
of predictability based on historical data. 

Next we examine the volatility of the series 
measured as its absolute and the squared returns1. 
Both series are displayed in Figure 2 (see Appendix) 
along with their corresponding correlograms and 
periodograms. We notice that the sample autocorrela-
tion values now decay very slowly, and the period-
grams display large peaks at the zero frequency. This 
is clearly consistent with the I(d) process presented in 
section 1 with a positive d. 

Table 2. Estimates of the fractional differencing 
parameter in the absolute returns 

 No regressors An intercept A linear time trend 

White noise 
0.256 

(0.232, 0.283) 
0.245 

(0.222, 0.273) 
0.243 

(0.218, 0.271) 

AR(1) 
0.341 

(0.303, 0.382) 
0.326 

(0.287, 0.373) 
0.324 

(0.283, 0.374) 

Bloomfield 
0.359 

(0.312, 0.417) 
0.343 

(0.280, 0.404) 
0.342 

(0.281, 0.404) 

Note: The values in parentheses give the 95% confidence band 
for the non-rejection values of d. The values corresponding to 
significant deterministic terms are in bold. 

Table 3. Estimates of the fractional differencing 
parameter in the squared returns 

 No regressors An intercept A linear time trend 

White noise 
0.186 

(0.163, 0.211) 
0.183 

(1.159, 0.209) 
0.180 

(0.157, 0.207) 

AR(1) 
0.276 

(0.241, 0.315) 
0.272 

(0.237, 0.312) 
0.270 

(0.234, 0.310) 

Bloomfield 
0.322 

(0.271, 0.372) 
0.310 

(0.274, 0.367) 
0.310 

(0.261, 0.381) 

Note: The values in parentheses give the 95% confidence band 
for the non-rejection values of d. The values corresponding to 
significant deterministic terms are in bold. 

Tables 2 and 3 provide the same information as 
Table 1 but for absolute and squared returns 
respectively. The former appear to be characterized 

                                                      
1 Absolute returns were employed by Ding et al. (1993), Granger and 
Ding (1996), Bollerslev and Wright (2000) and Gil-Alana (2003), 
whereas squared returns were used in Lobato and Savin (1998) and Gil-
Alana (2005). 

by long memory in all cases, with the estimated 
values of d ranging from 0.245 (with white noise 
errors) to 0.343 (Bloomfield disturbances). Slightly 
smaller values are obtained for squared returns (see 
Table 3), these ranging from 0.183 (white noise ut) to 
0.310 (with Bloomfield autocorrelated errors). This 
evidence of long memory in the volatility of the series 
is in line with previous studies of other stock markets 
and suggests that other approaches based on 
autoregressive conditional hetero-scedasticity models 
(ARCH, Engel, 1982; GARCH, Bollerslev, 1986) 
should be extended to the fractional case (e.g., 
FIGARCH-type models, Baillie, Bollerslev and 
Mikkelsen, 1996) when looking at stock market prices.  

The results presented so far are based on a 
parametric approach (though a nonparametric 
method, Bloomfield, was also implemented for the 
I(0) disturbances), and should therefore be taken 
with caution given the possibility of misspeci-
fication. Therefore, we also conducted the analysis 
using a semiparametric method where no functional 
form is imposed on the I(0) error term. In particular, 
we used a Whittle approached developed by 
Robinson (1995) and later extended by Velasco 
(1999), Velasco and Robinson (2000), Phillips and 
Shimotsu (2004, 2005), Abadir et al. (2007) and 
others. This method is essentially a local ‘Whittle 
estimator’ in the frequency domain, which uses a 
band of frequencies that degenerates to zero. The 
estimator is implicitly defined by: 

,log
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where m is a bandwidth number, and I( s) is the 
periodogram of the raw time series, xt, given by: 
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and d  (-0.5, 0.5). Under finiteness of the fourth 
moment and other mild conditions, Robinson (1995) 
proved that: 

,as)4/1,0()ˆ( o TNddm d  

where do is the true value of d. This estimator is 
robust to a certain degree of conditional 
heteroscedasticity (Robinson and Henry, 1999) and 
is more efficient than other more recent semi-
parametric competitors. 

Figure 3 (see Appendix) displays the estimates of 
d for the return series and the absolute and 
squared returns, specifically the whole range of 
values of the bandwidth parameter along with the 
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95% confidence interval of the I(0) case. It can be 
seen that the estimated values are slightly above 
the interval in the case of returns and much higher 
for the two volatility series. Table 4 displays the 
estimates for some specific bandwidth parameters – 
these are significant and positive in all cases. 

Table 4. Semiparametric estimates of d 

Bandwidth nb. 
Stock market  

returns 
Absolute  
returns 

Squared  
returns 

10 0.102 0.215 0.227 

20 0.093 0.36 0.306 

25 0.194 0.334 0.326 

30 0.179 0.267 0.290 

35 0.243 0.305 0.319 

39*** 0.299 0.328 0.317 

45 0.299 0.301 0.262 

50 0.245 0.339 0.287 

60 0.241 0.405 0.324 

70 0.192 0.450 0.385 

80 0.205 0.492 0.429 

90 0.200 0.433 0.334 

100 0.161 0.423 0.307 

Source: Robinson (1995) and Abadir et al. (2007). 
Note: *** Bandwidth number corresponding to (T)0.5. 

As a final step we examine whether there are any 
anomalies related to the days of the week, as 
extensively documented in the financial literature 
(Osborne, 1962; Cross, 1973; French, 1980; and 
Gibbons and Hess, 1981). For instance, Osborne 
(1962) and Cross (1973) using data of the S&P 500 
found that returns were lower on Mondays than on 
Fridays. A similar results was reported by Gibbons and 
Hess (1981) for the DJIA series and in other studies 
for a number of countries including Canada, Australia, 
Japan and the UK (Jaffe and Westerfield, 1985); 
France (Solnik and Bousquet, 1990); and South Korea, 
Malaysia, the Philippines, Taiwan and Thailand 
(Brooks and Persand, 2001). 

Figure 4 (see Appendix) displays the PFTS index 
for each day of the week. It can be seen that the five 
series display a very similar pattern. Tables 5-7 report 
the estimates of d for the three cases of white noise, 
autoregressive and Bloomfield disturbances respect-
tively. Consistently with the results reported in 
Table 1, the estimates are above 1 in all cases. The 
most interesting feature is that in all three cases the 
highest degrees of persistence are obtained for 
Mondays and Fridays, and the lowest for the mid-days 
of the week. Thus, stock market prices are more 
persistent on Mondays and Fridays than during the 
other days of the week, implying a higher degree of 
predictability of their behavior on these days. The 
same evidence is obtained when using the semi-
parametric approach of Robinson (1995) and Abadir et 
al. (2007) (see Table 8 for some selected bandwidth 
parameters). 

Table 5. Estimates of the fractional differencing 
parameter with white noise errors 

 No regressors An intercept A linear time trend 

Monday 
1.017 

(0.952, 1.100) 
1.187 

(1.124, 1.366) 
1.187 

(1.124, 1.365) 

Tuesday 
1.016 

(0.951, 1.099) 
1.144 

(1.085, 1.219) 
1.144 

(1.085, 1.218) 

Wednesday 
1.013 

(0.949, 1.096) 
1.135 

(1.077, 1.208) 
1.135 

(1.077, 1.208) 

Thursday 
1.013 

(0.948, 1.095) 
1.164 

(1.102, 1.244) 
1.164 

(1.102, 1.243) 

Friday 
1.014 

(0.949, 1.097) 
1.212 

(1.146, 1.296) 
1.212 

(1.146, 1.295) 

Note: The values in parentheses give the 95% confidence band for 
the non-rejection values of d. The values corresponding to 
significant deterministic terms are in bold. 

Table 6. Estimates of the fractional differencing 
parameter with AR(1) errors 

 No regressors An intercept A linear time trend 

Monday 
1392 

(1.280, 1.552) 
1.253 

(1.130, 1.413) 
1.252 

(1.130, 1.408) 

Tuesday 
1.387 

(1.266, 1.542) 
1.222 

(1.121, 1.353) 
1.221 

(1.121, 1.350) 

Wednesday 
1.376 

(1.258, 1.528) 
1.207 

(1.105, 1.327) 
1.206 

(1.105, 1.324) 

Thursday 
1.375 

(1.256, 1.526) 
1.174 

(1.069, 1.293) 
1.173 

(1.069,   1.293) 

Friday 
1.384 

(1.266, 1.537) 
1.228 

(1.095, 1.385) 
1.227 

(1.095, 1.380) 

Note: The values in parentheses give the 95% confidence band for 
the non-rejection values of d. The values corresponding to 
significant deterministic terms are in bold. 

Table 7. Estimates of the fractional differencing 
parameter with Bloomfield errors 

 No regressors An intercept A linear time trend 

Monday 
1.012 

(0.911, 1.147) 
1.242 

(1.123, 1.400) 
1.242 

(1.123, 1.402) 

Tuesday 
1.002 

(0.901, 1.147) 
1.231 

(1.111, 1.397) 
1.230 

(1.111, 1.386) 

Wednesday 
1.003 

(0.902, 1.046) 
1.213 

(1.091, 1.366) 
1.212 

(1.091, 1.375) 

Thursday 
0.991 

(0.906, 1.132) 
1.177 

(1.061, 1.321) 
1.177 

(1.061, 1.319) 

Friday 
1.001 

(0.894, 1.131) 
1.219 

(1.102, 1.380) 
1.218 

(1.101, 1.377) 

Note: The values in parentheses give the 95% confidence band for 
the non-rejection values of d. The values corresponding to 
significant deterministic terms are in bold. 

Table 8. Semiparametric estimates of d  

Bandwidth nb. Monday Tuesday Wednesday Thursday Friday 

5 0.130 0.128 0.138 0.154 0.138 

10 0.500 0.500 0.500 0.500 0.500 

15 0.101 0.089 0.093 0.106 0.105 

18*** 0.096 0.093 0.096 0.101 0.097 

20 0.084 0.093 0.100 0.095 0.085 

25 0.181 0.191 0.100 0.200 0.189 

30 0.186 0.182 0.191 0.198 0.192 

Source: Robinson (1995) and Abadir et al. (2007). 
Note: *** Bandwidth number corresponding to (T)0.5. 
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Finally, the analysis for the absolute and squared 
returns by day of the week (in Tables 9 and 10) 
also shows higher estimates of d for Mondays and 
Friday (especially Mondays) than for the other 
days of the week.  

Table 9. Estimates of the fractional differencing 
parameter in the absolute returns 

 No regressors An intercept A linear time trend 

Monday 
0.281 

(0.212, 0..363) 
0.255 

(0.183, 0.338) 
0.253 

(0.180, 0.339) 

Tuesday 
0.257 

(0.181, 0.341) 
0.238 

(1.171, 0.322) 
0.235 

(0.161, 0.322) 

Wednesday 
0.245 

(0.182, 0.323) 
0.224 

(0.162, 0.302) 
0.218 

(0.151, 0.300) 

Thursday 
0.206 

(0.143, 0.281) 
0.187 

(0.128, 0.261) 
0.182 

(0.122, 0.258) 

Friday 
0.248 

(0.182, 0.329) 
0.225 

(0.163, 0.305) 
0.221 

(0.158, 0.303) 

Note: The values in parentheses give the 95% confidence band 
for the non-rejection values of d. The values corresponding to 
significant deterministic terms are in bold. 

Table 10. Estimates of the fractional differencing 
parameter in the squared returns 

 No regressors An intercept A linear time trend 

Monday 
0.245 

(0.172, 0.325) 
0.236 

(0.166, 0.326) 
0.233 

(0.150, 0.326) 

Tuesday 
0.203 

(0.134, 0.291) 
0.198 

(1.129, 0.286) 
0.193 

(0.122, 0.284) 

Wednesday 
0.206 

(0.147, 0.289) 
0.203 

(0.142, 0.283) 
0.198 

(0.134, 0.281) 

Thursday 
0.185 

(0.121, 0.260) 
0.181 

(0.121, 0.256) 
0.177 

(0.111, 0.254) 

Friday 
0.196 

(0.126, 0.289) 
0.191 

(0.123, 0.277) 
0.190 

(0.1119, 0.276) 

Note: The values in parentheses give the 95% confidence band for 
the non-rejection values of d. The values corresponding to 
significant deterministic terms are in bold. 

Conclusions 

In this paper we have examined the properties of the 
Ukranian stock market by estimating the order of 
integration of the PFTS series, daily, from January 
9, 2007 until February 27, 2013. The main findings 
are the following. First, the log-prices series is highly 
persistent, with an order of integration significantly 
above 1, which implies that stock returns are 
characterized by long memory behaviour. The same 
feature is detected in the absolute and squared returns 
which are used as a measure of volatility. Finally, 
the analysis by day of the week produces evidence 
of higher degrees of dependence on Mondays and 
Fridays than on the other days of the week. 
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Fig. 1. Time series plots, correlograms and periodograms 
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Notes: * The thick lines refer to the 95% confidence band for the null hypothesis of no autocorrelation. ** The horizontal axis refers 
to the discrete Fourier frequencies j = 2 j/T, j = 1, …, T/2. 

Fig. 2. Absolute and squared returns, correlograms and periodograms 
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Stock market returns 

 

Absolute returns 

 

Squared returns 

 

Note: The horizontal axis concerns the Bandwidth parameter while the vertical one refers to the estimated value of d. 

Fig. 3. Estimates of d based on the semiparametric approach of Robinson (1995) 
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Fig. 4. PFTS by day of the week 
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