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Po-Kai Huang (Taiwan) 

The stock index futures hedge ratio with structural changes 

Abstract 

This paper estimates the optimal stock index futures hedge ratio for S&P 500, FTSE 100, and Nikkei 225 stock indexes 
using bivariate GARCH model with structural changes (bivariate ICSS-GARCH). The article uses ICSS (Iterated 
Cumulative Sums of Squares) algorithm proposed by Inclan and Tiao (1994) to identify time points of structural 
changes in the financial time series. The results show that except for FTSE 100, the bivariate ICSS-GARCH model 
does not outperform the OLS and OLS-CI models. However, the bivariate ICSS-GARCH model has better 
performance than the bivariate GARCH model for all three markets. The finding suggests the necessity to incorporate 
structural changes in GARCH models and shows the importance to consider structural changes when estimating the 
hedge ratios. 

Keywords: hedge ratio, structural changes, ICSS algorithm. 
JEL Classification: G11, C32. 
 

Introduction  

Stock is one of the major investment instruments for 
investors. Since system risk cannot be diversified 
away by portfolio formation, stock investors would 
bear the system risk. With the existence of stock 
index futures markets, investors can hedge their 
stock positions with stock index futures to prevent 
the value of their stock portfolios from being 
affected by the system risk. Thus, the next important 
issue is how to calculate the optimal hedge ratio. 

One of the ways to hedge risk is using a naïve 
hedging strategy. Investors establish stock index 
futures positions equal in magnitude but opposite 
sign to the stock portfolio. The hedge ratio is equal 
to one. However, only in the absence of basis risk 
on the spot commitment day, the naïve hedge can 
fully reduce risk.  

In order to get the optimal hedge ratio under the 
existence of basis risk, Ederington (1979) uses 
ordinary least squares (OLS) to estimate the hedge 
ratio and notices that the hedge ratio is less than one 
in most cases. Even though the OLS technique 
accounts for basis risk, it ignores the fact that spot 
and futures prices often have a unit root and are 
cointegrated (Wahab and Lashgari, 1993). Hence, 
integrating an error correction term into OLS can 
improve the hedging performance (Ghosh, 1993). 

The hedge ratios estimated by OLS without and 
with an error correction term are both constant over 
time. However, the hedge ratio should be time-
varying. Chang, Chou and Nelling (2000) point out 
that when stock market volatility increases, the 
demand for hedging will increase. Their result 
implies that the hedge ratio should vary with spot 
volatility. Therefore, many studies such as Park and 
Switzer (1995), and Yeh and Gannon (2000) 
estimate time-varying hedge ratios using bivariate 
ARCH and GARCH models. 

                                                      
 Po-Kai Huang, 2014. 

The hedge ratio may also depend on the level of 
price volatility. When there are structural changes in 
volatility, which are caused by political, social or 
economic events and unknown in advance, the optimal 
hedge ratio can vary. Lamoureux and Lastrapes (1990) 
consider that because of a failure to take account of 
structural changes in the financial time series, an 
ARCH/GARCH model may overestimate the 
persistence in variance, which means that the impact 
of shocks on volatility does not die out quickly under 
the model. Wilson, Aggarwal, and Inclan (1996) also 
suggest that if hedgers account for structural changes 
in variance, the portfolio will be correctly hedged. 
Furthermore, ignoring structural changes may 
significantly overestimate the degree of volatility 
transmission (Ewing and Malik, 2005; Arago-
Manzana and Fernandez-Izquierdo, 2007; Marcelo, 
Quiros, and Quiros, 2008). Therefore, the hedge 
ratio estimated by either a bivariate ARCH or 
GARCH model without considering structural 
changes may not be optimal. 

Mansur, Cochran and Shaffer (2007) use a GARCH 
model with structural changes to compute the 
optimal hedge ratio of exchange rates and show that 
the ratio can improve hedging performance. This is 
because those structural changes have influence on 
the volatility structure of the joint spot and futures 
distribution. Stock markets often experience 
structural changes (Aggarwal, Inclan and Leal, 
1999). However, few studies have explored that 
whether structural changes affect the hedge ratio of 
stock markets. Our paper fills the gap in the 
literature by estimating the optimal stock index 
futures hedge ratio based on a bivariate GARCH 
model with structural changes. 

Our results show that except for FTSE 100, the 
bivariate ICSS-GARCH model does not outperform 
the OLS and OLS-CI models. However, hedged 
portfolios constructed by the bivariate ICSS-GARCH 
model have better performance than those by the 
bivariate GARCH model across all the three markets. 
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Our finding provides a justification for incorporating 
structural changes in GARCH models and shows that 
it is important to consider structural changes when 
estimating the hedge ratio. Our results are consistent 
with the Mansur, Cochran and Shaffer (2007), who 
show that ICSS-GARCH model outperforms the basic 
GARCH model for exchange rates markets. 

The remainder of this paper is organized as follows. 
Section 1 describes the theory of futures hedging. 
Section 2 provides literature review of hedge ratio 
estimation, section 3 lays out the methodology to 
estimate hedge ratio. Section 4 describes the data. 
Section 5 provides the results of the hedge ratio 
estimation. The final section concludes. 

1. Theory of futures hedging 

The concept of futures hedging has been proposed 
in the early stages. Keynes (1930) asserts that 
hedgers, owning spot endowment and executing 
short hedge, are willing to pay risk premium to 
speculators to be exempted from price risk. The next 
question for hedgers is how to get the optimal hedge 
ratio. There have been many different theoretical 
approaches to deriving the optimal hedge ratio, 
depending on objective functions.  

The objective function of the naïve hedging strategy 
is risk avoidance. Working (1953), however, argues 
that the objective function of hedgers is expected 
profit maximization. In particular, because of basis 
risk, short hedgers would hedge if the basis is 
expected to fall and would not hedge if the basis is 
expected to rise.  

Johnson (1960) and Stein (1961) propose portfolio 
theory to incorporate risk avoidance of the naïve 
hedging strategy with Working’s expected profit 
maximization. The objective function is to minimize 
the variance of a hedged portfolio. Although the 
minimum variance (MV) hedge ratio ignores the 
expected return of the hedged portfolio, it is often 
used in many studies because it is simple to 
understand and to estimate.  

In this paper, we adopt the MV approach to deriving 
the optimal hedge ratio. Nevertheless, following 
Kroner and Sultan (1993), we start with the objective 
function within the mean-variance framework to show 
that the optimal mean-variance hedge ratio is the same 
as the MV hedge ratio, under the assumption that the 
futures price follows a martingale process1. 

                                                      
1 Pok, Poshakwale and Ford (2009) investigate hedging effectiveness of 
dynamic and constant models in the emerging market of Malaysia. 
Particularly, they use both minimum variance and expected utility 
maximum method to measure in-sample and out-of-sample hedging 
performance. 

Assume that an investor holds a portfolio, including 
one unit in the spot market and a short position of -b 
units in the futures market. The payoff of this 
portfolio, r, is: 

,r s bf                                                              (1) 

where s and f are the price changes of spot and 
futures, respectively. 

Assume further that the expected utility function of 
the investor can be expressed in the mean-variance 
framework,  

[ ( )] ( ) ( ),E U r E r Var r                                  (2) 

where  is the degree of risk aversion,  > 0. The 
objective function of the investor is as follows: 

2 2 2[ ( )] ( ) ( ) 2
s f sf

b b

MaxE U r Max E s bE f b b
 
(3) 

By solving the first-order condition, the optimal 
hedge ratio, b*, is: 

2 2

( )

2

sf*

f f

E f
b .                                                   (4) 

The first term of the right hand side is the optimal 
hedge ratio under the objective function of variance 
minimization, and the second term is the hedge ratio 
under the objective function of payoff maximization. 
Short hedgers would increase short futures position 
if futures prices are expected to fall and decrease 
otherwise. We assume that futures prices follow a 
martingale process, so equation (4) can be rewritten as:  

2

sf*

f

b .                                                               (5) 

b
* is a constant hedge ratio, and is often estimated 

by the ordinary least squares estimator from a time-
series regression of changes in spot prices on 
changes in futures prices. 

However, the joint distribution of spot and futures 
price changes is time varying, so the constant hedge 
ratio may not be suitable for practice use. Consider 
the dynamic process below. 

1 ,
t t t t
r s b f                                                         

 
(6) 

where st and ft are spot and futures price changes 
from time t-1 to t respectively. bt-1 is the short 
futures position at time t-1.  

The expected utility function of the investor is as 
follows:  

2
1 1 1[ ( )] ( ) ( )t t t t t tE U r E r r .                            (7) 

The subscript t under the expectation operator and 
the variance symbol are used to emphasize that they 
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are calculated conditional on available information 
at time t. By solving the first-order condition, the 

optimal hedge ratio, *
tb , is: 

1 1

1 1

1
2 2

( )

2
t t

t t

s f* t t
t

f f

E f
b .                                       (8) 

We further assume that futures prices follow a 
martingale process, so equation (8) can be rewritten 
in the following manner: 

1 1

1

2
t t

t

s f*

t

f

b .                                                          (9) 

The difference between *
tb  and b

* comes from the 

replacement of the constant unconditional variance 

by the time varying conditional variance. *
tb  varies 

with time to capture the price change caused by new 
information. 

2. A review of hedge ratio estimation 

2.1. Constant hedge ratio. It is convenient for 
hedgers to estimate the hedge ratio by ordinary least 
squares (OLS) technique. In addition, the OLS 
technique accounts for basis risk. Ederington (1979) 
uses OLS to estimate the hedge ratio of GNMA, T-
Bill, wheat, and corn futures markets. They notice 
that hedge ratios are less than one in most cases, 
contrary to the naïve hedging strategy.  

However, the OLS technique ignores the fact that spot 
and futures often share a unit root and are cointegrated. 
Using Standard and Poor 500 (S&P 500) index and the 
Financial Times 100 index, Wahab and Lashgari 
(1993) show that cash and futures markets are 
cointegrated and it is appropriate to represent each 
series as an error correction process. Therefore, 
integrating an error correction term into OLS (OLS-
CI) can improve the hedging performance. For 
example, Ghosh (1993) documents that hedge ratios 
estimated by an error correction model have smaller 
forecast errors than those by an OLS model. 

2.2. Time-varying hedge ratio. The hedge ratios 
estimated by OLS and OLS with an error correction 
term are both constant over time. However, the 
hedge ratio should be time-varying. Baillie and 
Myers (1991) argue that since optimal hedge ratios 
depend on the conditional distribution of price 
movements, they will almost certainly vary over 
time as this conditional distribution changes. In 
other words, they argue that the time-invariant 
optimal hedge ratio is inappropriate. In addition, 
Chang, Chou and Nelling (2000) point out that 
when stock market volatility increases, the demand 
for hedging will increase. Their results also imply 
that hedge ratios should vary with spot volatility.  

Many studies have used ARCH/GARCH models to 
estimate time-varying hedge ratios for commodity, 
interest rate, and stock index futures. For example, 
Cecchetti, Cumby and Figlewski (1988) note that as 
expectations about risk and return changed, hedge 
ratios of Treasury bonds futures estimated by the 
univariate ARCH framework vary from 0.52 to over 
0.91. Myers (1991) notes that bivariate GARCH 
models have theoretical advantages over OLS models. 
Using wheat futures contracts traded at the Chicago 
Board of Trade, he shows that the bivariate GARCH 
model provides superior hedging performance to the 
OLS model. Baillie and Myers (1991) use a bivariate 
GARCH model to estimate hedge ratios for six 
commodities futures contracts such as beef, coffee, 
corn, cotton, gold, and soybeans, and find that a 
constant hedge ratio is quite costly for some 
commodities. Choudhry (2004) compares the hedging 
effectiveness of an OLS model with that of a bivariate 
GARCH model. Using Australian, Hong Kong, and 
Japanese stock futures markets, his results show that 
the time-varying GARCH hedge ratios outperform the 
constant ratios in most of the cases. Pok, Poshakwale 
and Ford (2009) investigate hedging effectiveness of 
dynamic and constant models in the emerging market 
of Malaysia. The results show that out of sample 
hedging performance of dynamic GARCH models in 
the Malaysian emerging market is as good as the 
one reported for the highly developed markets in the 
previous literature. 

Kroner and Sultan (1993) and Park and Switzer 
(1995) further apply a bivariate GARCH error 
correction model to estimate time-varying hedge 
ratios. The error correction term of the model is 
used to capture the long-run relationship between 
spot and futures prices. These two studies examine 
the issue using foreign currency futures and stock 
index futures respectively and both find that the 
bivariate GARCH error correction model improves 
the hedging performance over several other models 
such as the naïve, OLS, and OLS-CI models.  

2.3. Time-varying hedge ratio and structural 

changes. Due to structural changes, which are 
caused by factors unknown a priori such as political, 
social and economic events, the hedge ratios 
estimated by a bivariate ARCH or GARCH model 
may not be optimal. Lamoureux and Lastrapes 
(1990) consider that failing to take account of 
structural changes in the financial time series may 
cause an ARCH/GARCH model to overestimate the 
persistence in variance. That is, the model assumes 
that impacts of shocks on volatility do not die out 
quickly. This model misspecification in persistence 
may has influence on the hedging performance. 

However, previous few studies have explored 
whether a GARCH model with structural changes 
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can improve hedging performance. The study of 
Mansur, Cochran and Shaffer (2007) is an 
exception. They argue that structural changes have 
influence on the volatility structure of the joint 
distribution of spot and futures prices. Therefore, 
they use a GARCH model considering structural 
changes to compute the hedge ratios in currency 
futures and show that the model can improve 
hedging performance. Stock markets often 
experience structural changes (Aggarwal, Inclan and 
Leal, 1999). However, few studies have explored 
that whether structural changes affect the hedge 
ratio of stock markets. Our paper fills the gap in the 
literature by estimating the stock index futures 
hedge ratios using a bivariate GARCH model with 
structural changes. 

Recently, some studies have emphasized that 
GARCH model with structural changes can improve 
hedging performance. Lien and Yang (2010) 
suggest that daily currency risk can be better hedged 
with currency futures when controlling for 
unconditional variance breaks in the bivariate 
GARCH model. Arago and Salvador (2011) employ 
several multivariate GARCH models to estimate the 
optimal hedge ratios for the Spanish stock market. 
They show that more complex models including 
sudden changes in volatility outperform the simpler 
models in hedging effectiveness both with in-sample 
and out-of-sample analysis. 

Many approaches have been proposed to find 
structural changes. Lamoureux and Lastrapes (1990) 
arbitrarily assume that structural changes in the 
unconditional variance occur at every 302 
observations over a range of 4,228 observations. 
Similar to Lamoureux and Lastrapes (1990), Kearns 
and Pagan (1993) trim the data by separately 
omitting observations on returns whose absolute 
value exceeded x per cent, where x equals to 20, 15, 
10, 7.5, 3, and 1. Diebold (1986) argue that 
persistent movements in variance may be due to a 
failure to include policy regime dummies for the 
conditional variance intercept. Lastrapes (1989) 
confirms the argument of Diebold (1986), improves 
the ARCH model fitness, and reduces volatility 
persistence by accounting for monetary policy 
regime shifts in the model. Ackert and Racine 
(1997) directly consider October 1989 crash event 
as a structural change. However, these approaches 
are either arbitrary or biased. Therefore, a statistical 
procedure that can effectively detect the actual 
structural changes would be required. 

The ICSS (Iterated Cumulative Sums of Squares) 
algorithm proposed by Inclan and Tiao (1994) is 
often used to identify time points of structural 
changes in the financial time series. For example, 
the approach has been used in studies such as 
 

Wilson, Aggarwal and Inclan (1996), Aggarwal, 
Inclan and Leal (1999), Malik (2003), Malik and 
Hassan (2004), and Malik, Ewing and Payne (2005). 
They all conclude that when structural changes 
detected by the ICSS algorithm are incorporated into 
ARCH/GARCH models, the persistence of financial 
asset volatility overestimated by ARCH/GARCH 
models decreases dramatically. 

3. Methodology 

3.1. A bivariate GARCH model. Kroner and 
Sultan (1993) propose a bivariate GARCH (1,1) 
error correction model to estimate *

tb :  

0 1 1 1( ) ,t s s t t sts S F                         
 
(10) 

0 1 1 1( ) ,
t f f t t ft

f S F                            (11) 

1 (0, ),
st

t t

ft

~ N H                                        (12) 

0

0

01
,

01

ss ,t sf ,t s ,t

t

sf ,t ff ,t f ,t

s ,t

f ,t

h h h
H

h h h

h

h
                    

(13) 

2 2 2
, 0 1 , 1 2 , 1,s t s s s t s s t

h v v v h                               (14) 

2 2 2
, 0 1 , 1 2 , 1,f t f f f t f f t

h v v v h                            (15) 

,

,

,
sf t*

t

ff t

ĥ
b

ĥ
                                                           (16) 

where St-1 and Ft-1 are the natural logarithm of spot 
and futures prices at time t-1 respectively. t-1 is the 
information set at time t-1. The term (St-1  Ft-1) is 
the error correction term, which captures the co-
movement and long-run stable equilibrium between 
stock and futures prices. The error correction term 
should be added into the bivariate time series model 
if two variables are cointegrated (Engle and 
Granger, 1987). *

tb  is the time-varying hedge ratio. 

3.2. The ICSS algorithm. The methodology we 
will use to detect structural changes in the variance 
of an observed time series is based on the ICSS 
(Iterated Cumulative Sums of Squares) algorithm 
proposed by Inclan and Tiao (1994). The analysis 
assumes that variance of a time series is stationary 
over an initial period until the occurrence of a 
structural change, caused by an exogenous shock. 
The variance is then stationary again until the next 
shock occurs. The process is repeated through time 
and yields an unknown number of structural 
changes in the variance. 
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Let {at} be a series with zero mean and with 

unconditional variance
2
t , and t = 1, …, T. The 

variance within each interval is denoted by 2
j , j = 

0, 1, …, NT, and given as follows: 

2 2
0 1

2 2
1 1 2

2 2

, 1

,

, ,
T T

t

t

t N N

t k

k t k

k t T

                                       (17) 

where k1, k2, …, 
TNk are the set of time points when 

structural changes occur. 

Inclan and Tiao (1994) use a cumulative sum of 
squares approach to estimate the number of changes 
in variance and time points of structural changes. Let  

2

1

, 1,..., ,
k

k t

t

C a k T                                       (18) 

be the (mean-centered) cumulative sum of the 
squares from the first observation of the series to the 
kth point in time. Define the statistic Dk as follows: 

, 1,..., ,k
k

T

C k
D k T

C T
                              

(19)

 with 0 0TD D .
 

If a time series has no structural changes in 
variance, the Dk statistics will oscillate around zero. 
On the contrary, if the series contains one or more 
structural changes, the Dk statistics will drift either 
upward or downward away from zero. Critical 
values used to detect a significant structural change 
in variance are obtained from the distribution of Dk 

statistics under the null hypothesis of homogeneous 
variance. The null hypothesis is rejected if the 
maximum absolute value of Dk is greater than the 
critical value. Define k* to be the value of k at which 
maxk|Dk| is attained. k* is taken as an estimate of the 

structure-change point if kk DT 2max  exceeds a 

predetermined boundary. The term 2T  is 

required for standardizing the distribution. 

Under the null hypothesis of homogeneous variance, 

kDT 2
 

behaves like a Brownian bridge 

asymptotically. The critical value of 95th percentile 

of the asymptotic distribution of kk DT 2max  is 

1.358. Following Aggarwal, Inclan and Leal (1999), 
we also set the critical value to be 1.358. However, 
if the analyzed series contains multiple structure-
change points, Dk statistics is insufficient to find 
these due to masking effects. To solve the problem, 
Inclan and Tiao (1994) propose an iterative scheme 
 

that uses Dk statistics to systematically identify any 
possible structure-change points at different pieces 
of the series.  

3.3. A bivariate GARCH model with structural 

changes. In the univariate ARCH/GARCH model, 
when structural changes detected by the ICSS 
algorithm are incorporated directly into conditional 
variance in form of dummy variables, the 
overestimated persistence of variance decreases 
dramatically (Wilson, Aggarwal and Inclan, 1996; 
Aggarwal, Inclan and Leal, 1999; Malik, 2003; Malik 
and Hassan, 2004; and Malik, Ewing and Payne, 
2005). Structural changes also affect the volatility 
structure of the joint spot and futures distribution. 
Therefore, following Mansur, Cochran and Shaffer 
(2007), we use a bivariate GARCH model with 
structural changes to estimate the hedge ratios for 
stock index futures. The model is as follows: 

0 1 1 1( ) ,
t s s t t st

s S F
                            

(20) 

0 1 1 1( ) ,t f f t t ftf S F
                          

(21) 

1 (0, ),
st

t t

ft

~ N H                                         (22) 

, , ,

, , ,

,

,

0

0

01
,

01

ss t sf t s t

t

sf t ff t f t

s t

f t

h h h
H

h h h

h

h

                    (23) 

2 2 2
, 0 1 , 1 2 , 1 , ,

2

,
n

s t s s s t s s t s i s i

i

h v v v h d D

            

(24) 

2 2 2
, 0 1 , 1 2 , 1 , ,

2

,
m

f t f f f t f f t f j f j

j

h v v v h d D

      

(25) 

,

,

,
sf t*

t

ff t

ĥ
b

ĥ
                                                          

 

(26) 

where i and j are structural changes detected by the 
ICSS algorithm, and n and m are the number of 
structural changes for spot and futures returns 
respectively. Ds,i (Df,j) are dummy variables. If the 
ICSS algorithm detects a shift in the volatility of 
spot or futures returns, Ds,i (Df,j) take a value of one 
from each point of structural change onwards, zero 
elsewhere. As a result of intercept specification in 
the conditional variance, we add only m-1 and n-1 
structural changes in the conditional variance to 
avoid the problem of multicollinearity. *

tb  
is the 

time-varying hedge ratio. 
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4. Data description  

Data for the study are obtained from Datastream 
database. The daily prices used in this study are 
S&P 500 index and futures, FTSE 100 index and 
futures, and Nikkei 225 index and futures. The three 
futures contracts are traded in Chicago Mercantile 
Exchange (CME), London International Financial 
Futures Exchange (LIFFE), and Osaka Securities 
Exchange (OSE) respectively. At any time, S&P 
500 index futures has eight contracts outstanding 
with delivery in the March quarterly cycle. For 
FTSE 100 index futures, the three nearest quarterly 
months (March, June, September and December) 
will be listed. The contract months of Nikkei 225 
Futures are 5 near contracts in the March quarterly 
cycle. The prices of contracts with the nearest 
expiration date are used for the study. 

The daily prices are transformed into weekly rates 
of returns based on Wednesday prices. When there 
is no trading on a given Wednesday, the last trading 
day before Wednesday is used to compute returns. 
The sample period is from January 1, 1989 to 
December 31, 2006, including 939 weekly 
observations1. Returns are defined as changes in the 

logarithmic prices, )ln()ln( 1ttt ppR . The 

reason for using weekly rather than daily data is 
twofold. The first one is that weekly returns contain 
less noise than daily measures. The other one is 
weekly hedging adjustments would incur lower 
hedging cost than the daily adjustment strategy. 

Summary statistics of price and return series for the 
three financial markets are presented in Table 1 (see 
Appendix). Panel B reports the result of the return 
series. The sample mean for the S&P 500 and FTSE 
100 stock index spot and futures returns are 
significantly different from zero, but those for 
Nikkei 225 are close to zero. The sample kurtosis 
and Jarque-Bera statistics show that the return series 
are not normally distributed.  

There is evidence of serial correlation in S&P 500 
and FTSE 100 stock index and futures return series. 
Thus, a conditional-mean equation to take account 
of the serial correlation in the returns is required2. In 
addition, the Q2(8) and Q2(16) statistics indicate 
significant serial correlation in the squared returns 
across all the markets, which suggests the need to 
model the conditional heteroscedasticity. 

                                                      
1 I have no access rights to Datastream due to contract expiration, so the 
sample period stops in December 2006. 
2 We identify the best-fitting specification of conditional-mean equation 
by Box-Jenkins techniques for S&P 500 and FTSE 100 stock index and 
futures. The partial autocorrelation function suggests that the ARMA 
(||1, 7||, 0) model would be appropriate for S&P 500 spot and futures 
return series, and ARMA(||1||, 0) model would be appropriate for FTSE 
100 spot and futures return series. The statistics are shown in Table 5, 
Table 6, and Table 7. 

5. Empirical results 

5.1. Unit root test. To test for the stationarity of 
prices and returns, the augmented Dickey-Fuller test 
(ADF) is used. The null hypothesis is that a time 
series has a unit root. We consider three different 
specifications as follows. 

1 1
2

,
p

t t i t i t

i

Y Y Y                             (27) 

0 1 1
2

,
p

t t i t i t

i

Y Y Y                        (28) 

0 1 2 1
2

,
p

t t i t i t

i

Y Y t Y         (29) 

where Y can denote either price or return for spot 
and futures. The appropriate number of lagged 
differences, p, is determined by BIC criterion. 
Specifically, we choose a number as p from zero to 
20 to minimize the BIC criterion. 

The difference between the three equations is the 
presence of drift term or time trend. Equation (27) is 
like a pure random walk model, equation (28) adds a 
drift term ( 0), and equation (29) extends both a drift 
and a time trend (t). In all cases, if the parameter  is 
significantly different from zero, series Y does not 
contain a unit root, indicating that series Y is 
stationary. 

Table 2 (see Appendix) presents the results of unit 
root tests conducted on prices and returns of spot 
and futures. The results confirm the presence of a 
unit root in the logarithmic price indices, but there is 
no evidence of a unit root in their first differences, 
i.e. returns. Unit root tests indicate that spot and 
futures series for each index are both nonstationary 
in prices, and returns are stationary. Because that 
spot and futures series are integrated of order one, 
I(1), tests for cointegration can be undertaken. 
Therefore, the next step is to test whether spot and 
futures prices are cointegrated. 

5.2. Cointegration test. Two time series are said to be 
cointegrated if they share a common trend. That is, 
there is a long-term equilibrium relationship between 
the two variables. Engle and Granger (1987) initiate 
the cointegration test technique. They propose the 
Engle-Granger two-step procedure to test whether two 
nonstationary time series are cointegrated. The main 
advantage of their method is its simplicity.  

Based on the Engle-Granger two-step procedure, the 
first step is regressing spot prices on futures prices. 
The equation is as follows: 

,t t tS F e (30)

where St and Ft are spot and futures prices in the 
logarithmic form respectively. Residual, et, can be 
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regarded as temporary deviations from the long-run 
equilibrium. The second step is testing residuals, et, 
for unit roots. The null hypothesis is that spot and 
futures are non-conintegrated. If  (as shown in 
equations (27), (28), and (29)) is significantly different 
from zero, et residual is stationary, indicating that spot 
and futures prices are cointegrated. 

Table 3 (see Appendix) presents the Engle-Granger 
cointegration results for ADF unit root tests on 
residuals from the cointegrating regression. The 
cointegrating parameters, , are highly significant 
and are approximately unity.  are all significantly 
different from zero, providing evidence of 
cointegration in spot and futures markets. The 
results are also consistent with Wahab and Lashgari 
(1993), who show that the cash and futures markets 
are cointegrated. Therefore, the error correction 
term (St-1 – Ft-1), which captures the co-movement 
and long-run stable equilibrium between stock and 
futures prices, can be included in the model to 
estimate the optimal hedge ratio. 

5.3. Structural changes detected by the ICSS 

algorithm. Table 4 (see Appendix) reports the number 
 

and dates of structural changes in variance identified 
by the ICSS algorithm for weekly stock index spot 
and futures returns. For each period, Table 4 also 
provides the level of annualized standard deviation 
for weekly returns and numbers of observations per 
period.  

The numbers of structural changes are not the same 
in spot and futures for each market, with the 
exception of Japan markets. The S&P 500 and 
FTSE 100 stock index have eight break points in 
variances, and their futures have six break points; 
Nikkei 225 stock index spot and futures both have 
nine break points. Except the seventh structural 
change in Japan, change points of futures markets 
either lead or synchronize those of spot markets. 

The regimes of different variance structures are 
shown in Figures 1 and 2 for S&P 500, Figures 3 
and 4 for FTSE 100, and Figures 5 and 6 for Nikkei 
225. Boundaries are set to be ± 3 standard 
deviations, where the standard deviation is the 
unconditional volatility calculated within each 
regime period. 

 

Notes: Doted lines specify boundaries of ± 3 standard deviations. Structural changes are detected using the ICSS algorithm. Sample 
period is from January 1, 1989 to December 31, 2006. 

Fig. 1. S&P 500 stock index weekly returns 

 

Notes: Doted lines specify boundaries of ± 3 standard deviations. Structural changes are detected using the ICSS algorithm. Sample 
period is from January 1, 1989 to December 31, 2006. 

Fig. 2. S&P 500 stock index futures weekly returns 
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Notes: Doted lines specify boundaries of ± 3 standard deviations. Structural changes are detected using the ICSS algorithm. Sample 
period is from January 1, 1989 to December 31, 2006. 

Fig. 3. FTSE 100 stock index weekly returns  

 

Notes: Doted lines specify boundaries of ± 3 standard deviations. Structural changes are detected using the ICSS algorithm. Sample 
period is from January 1, 1989 to December 31, 2006. 

Fig. 4. FTSE 100 stock index futures weekly returns

 

Notes: Doted lines specify boundaries of ± 3 standard deviations. Structural changes are detected using the ICSS algorithm. Sample 
period is from January 1, 1989 to December 31, 2006. 

Fig. 5. Nikkei 225 stock index weekly returns  
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Notes: Doted lines specify boundaries of ± 3 standard deviations. Structural changes are detected using the ICSS algorithm. Sample 
period is from January 1, 1989 to December 31, 2006. 

Fig. 6. Nikkei 225 stock index futures weekly returns  

5.4. Constant hedge ratio – OLS and OLS-CI. 

Table 5 (see Appendix) reports the results from 
constant hedge ratio models, OLS and OLS-CI. The 
OLS and OLS-CI models are obtained by imposing v1s 
= v2s = v1f = v2f = 1s = 1f = 0 and v1s = v2s = v1f = v2f = 0 
in equations (10) to (16). The hedge ratios estimated 
by these two models are constant, because conditional 
variance is assumed to be time-invariant. 

As expected, the coefficient of the error correction 
term is significant for each time series. In addition, 
the likelihood ratio (LR) test statistics under the null 
hypothesis H0: 1s = 1f = 0, presented at the bottom 
of Table 5 are all significant at the 1% level. These 
results show that the OLS-CI model fits the data 
better than the OLS model. Consistent with the 
empirical results of Kroner and Sultan (1993), and 
Mansur, Cochran and Shaffer (2007), hedge ratios 
estimated by the OLS model are smaller than those 
estimated by the OLS-CI model across the financial 
markets except for S&P 500. 

5.5. Time-varying hedge ratio – bivariate 

GARCH. Table 6 (see Appendix) reports the results 
from the bivariate GARCH model. The bivariate 
GARCH model is obtained by imposing the restriction 
ds,i = df,j = 0 in equations (20) to (26). The GARCH 
coefficients (v1s, v2s, v1f, and v2f) are all significant at 
the 1% level across all the stock indices, implying that 
it is appropriate to include the GARCH specification 
in the hedge ratio estimation model.  

The likelihood ratio test statistics, LR1, under the 
null hypothesis H01: v1s = v2s = v1f = v2f = 1s = 1f = 
0, is significant at the 1% level. These results show 
that the bivariate GARCH model fits the data better 
than the OLS model. In addition, the likelihood ratio 
test statistics, LR2, under the null hypothesis H02: v1s 
= v2s = v1f = v2f = 0, is also significant at the 1% 

level. This shows that the bivariate GARCH model 
fits the data better than the OLS-CI model. 

5.6. Time-varying hedge ratio – ICSS-GARCH. 

Table 7 (see Appendix) reports the results from the 
bivariate ICSS-GARCH model. Many coefficients 
of structural change dummy variables are at least 
significant at the 10% level for each stock index. 
After including structural changes in the model, 
some GARCH coefficients (v1s, v2s, v1f, and v2f) are 
insignificant for each markets. It implies that it is 
also appropriate to include the GARCH 
specification in the hedge ratio estimation model. 
However, the GARCH effect is only partially 
captured by the structural changes detected by the 
ICSS algorithm. Therefore, a more complete 
analysis should allow for both the GARCH effect 
and the structural change effect. In addition, the 
likelihood ratio test statistics LR1, LR2, and LR3, 
which compare the OLS, OLS-CI, and bivariate 
GARCH models with the bivariate ICSS-GARCH 
model, show that the bivariate ICSS-GARCH model 
fits the data well for each stock index. 

5.7. Hedging performance comparison. Considering 
that an investor holds a portfolio, including one unit 
in the spot market and a short position of -bt units in 
the futures market, the following basic profit model 
is used. 

,
t t t t

s b f
                                                      

(31) 

where  is the rate of return. The objective function 
of minimum variance (MV) hedge ratio is to 
minimize the variance of the hedged portfolio, in 
other words, to minimize the variance of .  

In order to compare the hedging performance of the 
four estimation models, we use equation (31) to 
construct a portfolio and calculate the variance of . 
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Table 8 (see Appendix) presents the results. 
Surprisingly, the bivariate ICSS-GARCH model 
does not outperform the OLS and OLS-CI models, 
except for FTSE 100. The hedge ratio estimated by 
the bivariate ICSS-GARCH model yields the lowest 
variance for FTSE 100 markets. However, for S&P 
500 and Nikkei 225 markets, their variance of 
0.1171 and 0.2976 are higher than those of the OLS 
and OLS-CI models. The best model for S&P 500 
market is either OLS or OLS-CI. The best model for 
Nikkei 225 market is OLS.  

In particular, the bivariate ICSS-GARCH model has 
better performance than the bivariate GARCH 
model for all the three markets. It may imply that 
structural changes identified by the ICSS algorithm 
indeed have influence on the volatility structure of 
the joint spot and futures distribution. In order to 
increase the hedging performance, it is necessary to 
include the structural changes in the bivariate 
GARCH model. Our results are consistent with the 
Mansur, Cochran and Shaffer (2007), who show that 
ICSS-GARCH outperforms the basic GARCH 
model for exchange rates markets. 

Conclusion 

Calculating hedge ratios for stock index futures is an 
important issue to prevent the value of a stock 
portfolio from being affected by systematic risk. 
Many studies use bivariate ARCH and GARCH 
models to estimated time-varying hedge ratios. 
However, Lamoureux and Lastrapes (1990) suggest 
that failing to take account of structural changes in 
the financial time series can cause ARCH/GARCH 
 

models to overestimate the persistence in variance. 
A market with structural changes in variance 
experiences important information shocks, and these 
shocks can be incorporated into the volatility 
generating process of the other market. Therefore, 
ignoring structural changes may significantly 
overestimate the degree of volatility transmission 
(Ewing and Malik, 2005; Arago-Manzana and 
Fernandez-Izquierdo, 2007; Marcelo, Quiros and 
Quiros, 2008). Furthermore, these structure changes 
can have influence on the volatility structure of the 
joint spot and futures distribution (Mansur, Cochran 
and Shaffer, 2007). 

In this study, we use the bivariate GARCH model 
with structural changes (bivariate ICSS-GARCH) to 
estimate the stock index futures hedge ratios for 
S&P 500, FTSE 100, and Nikkei 225 stock indexes. 
We use the ICSS (Iterated Cumulative Sums of 
Squares) algorithm proposed by Inclan and Tiao 
(1994) to identify time points of structural changes 
in the financial time series. Our results show that 
except for FTSE 100, the bivariate ICSS-GARCH 
model does not outperform the OLS and OLS-CI 
models. However, the bivariate ICSS-GARCH model 
has better performance than the bivariate GARCH 
model for all the three markets. Our findings suggest 
the necessity to incorporate structural changes in 
GARCH models and show the importance to consider 
structural changes when estimating the hedge ratios. 
Our results are consistent with the Mansur, Cochran 
and Shaffer (2007), who show that the ICSS-
GARCH model outperforms the basic GARCH 
model for exchange rates markets. 
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Appendix 

Table 1. Descriptive statistics 

Panel A shows the natural logarithm of stock index spot and futures prices. Panel B shows returns of spot and futures. Returns are 
defined as the change in logarithmic prices, i.e. rt = ln(pt)  ln(pt-1). J-B is the Jarque-Bera test for normality. (j) denote the jth order 
autocorrelation of index and returns. Q1(j) represent the Ljung and Box (1978) test statistic for no serial correlation in the series up 
to lag j. Q2(j) represent the Ljung and Box (1978) test statistics for no serial correlation in the squares of the series up to lag j. 

 Mean Std dev Skewness Kurtosis J-B (8) (16) Q1(8) Q1(16) Q2(8) Q2(16)

Panel A: The natural logarithm of stock index spot and futures prices

S&P 500 
Spot 6.6083*** 0.5178 -0.3168*** -1.4646*** 99.63*** 0.9943 0.9881 7514.88*** 15007.54*** 7512.25*** 14999.03***

Futures 6.6126*** 0.5176 -0.3104*** -1.4687*** 99.48*** 0.9942 0.9880 7514.07*** 15005.01*** 7511.42*** 14996.33***

FTSE 100 
Spot 8.2799*** 0.3589 -0.2912*** -1.2075*** 70.32*** 0.9869 0.9751 7451.75*** 14781.16*** 7451.43*** 14780.47***

Futures 8.2857*** 0.3555 -0.2686*** -1.2216*** 69.68*** 0.9860 0.9743 7442.64*** 14759.55*** 7442.89*** 14760.17***

Nikkei 225 
Spot 9.7316*** 0.3493 0.1066 -0.2466 4.16 0.9705 0.9415 7317.06*** 14260.59*** 7317.73*** 14261.83***

Futures 9.7342*** 0.3530 0.1228 -0.2576 4.96* 0.9707 0.9421 7319.20*** 14268.09*** 7319.77*** 14268.80***

Panel B: Spot and futures stock index returns 

S&P 500 
Spot 0.0017** 0.0207 -0.1704** 2.1242*** 180.90*** -0.0413 -0.0511 22.39*** 34.53*** 153.25*** 278.81***

Futures 0.0017** 0.0211 -0.2086*** 1.9678*** 158.15*** -0.0491 -0.0411 24.18*** 35.92*** 159.89*** 290.11***

FTSE 100 
Spot 0.0013* 0.0219 0.1461* 3.7584*** 555.40*** -0.0294 0.0326 22.87*** 27.84** 185.69*** 211.57***

Futures 0.0013* 0.0234 0.1823** 3.3954*** 455.77*** -0.0415 0.0297 23.82*** 29.40** 179.28*** 200.21***

Nikkei 225 
Spot -0.0006 0.0293 -0.1102 1.3212*** 70.12*** 0.0283 -0.0411 5.47 11.19 89.29*** 107.54***

Futures -0.0006 0.0295 -0.1057 1.1914*** 57.22*** 0.0251 -0.0338 1.66 8.46 90.83*** 111.50***

Notes: ***, **, and * indicate significance at the 1%, 5%, and 10% level, respectively. 
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Table 2. ADF unit root test 

Panel A shows stock index spot and futures prices in the natural logarithmic form. Panel B shows returns of spot and futures. 
Returns are defined as the change in the logarithmic prices, i.e. rt = ln(pt)  ln(pt-1). ADF models are as follows: 

Model 1: 
1 1

2

p

t t i t i t

i

Y Y Y . 

Model 2: 
0 1 1

2

p

t t i t i t

i

Y Y Y . 

Model 3: 
0 1 2 1

2

p

t t i t i t

i

Y Y t Y . 

where Y denotes the series of interest. The appropriate number of lagged differences, p, is determined by the BIC criterion. 
Specifically, we choose a number as p from zero to 20 to minimize the BIC. 

 Model 1 Model 2 Model 3

p  p  p  

Panel A: Spot and futures stock index 

S&P 500 
Spot 1 2.6842 1 -1.4138 1 -1.3116

Futures 1 2.6470 1 -1.3900 1 -1.3205

FTSE 100 
Spot 1 1.9457 1 -1.7252 1 -1.7558

Futures 1 1.8458 1 -1.7221 1 -1.8080

Nikkei 225 
Spot 0 -0.6917 0 -1.8330 0 -1.5173

Futures 0 -0.7049 0 -1.8426 0 -1.5112

Panel B: Spot and futures stock index returns 

S&P 500 
Spot 0 -33.3957* 0 -33.6351* 0 -33.6464*

Futures 0 -33.5844* 0 -33.8166* 0 -33.8258*

FTSE 100 
Spot 0 -33.7228* 0 -33.8389* 0 -33.8467*

Futures 0 -34.5868* 0 -34.6897* 0 -34.6944*

Nikkei 225 
Spot 0 -30.6591* 0 -30.6569* 0 -30.6903*

Futures 0 -30.2271* 0 -30.2252* 0 -30.2586*

Note: * indicate significance at the 1% level. 

Table 3. Engle and Granger’s two-step co-integration test 

The first step is regressing spot prices on futures prices. The equation is as follow. 
ttt eFS , where St  and Ft are spot and 

futures prices in the logarithmic form. The second step is testing residuals, et, for unit roots. The ADF models are the same as those 
shown in Table 2. 

Model 1 Model 2 Model 3

p  p  p  

S&P 500 
-0.0066*** 

(-3.56) 
1.0003*** 

(3599.47) 
11 -31.41*** 11 -31.41*** 11 -31.47*** 

FTSE 100 
-0.0835*** 
(-17.05) 

1.0094*** 
(1709.07) 

13 -10.47*** 13 -10.47*** 13 -10.48*** 

Nikkei 225 
0.0998*** 
(18.82) 

0.9895*** 
(1816.31) 

11 -17.75*** 11 -17.74*** 11 -17.73*** 

Notes: ***, **, and * indicate significance at the 1%, 5%, and 10% level, respectively. 

Table 4. Structural changes in volatility 

Panel A: S&P 500 

 No. of structural changes Time period Std Observations per period

Spot 8 

Jan. 11, 1989-Aug. 1, 1990 0.0164 82

Aug. 8, 1990-Feb. 13, 1991 0.0317 28

Feb. 20, 1991-Apr. 22, 1992 0.0195 62

Apr. 29, 1992-Dec. 13, 1995 0.0121 190

Dec. 20, 1995-Jul. 22, 1998 0.0189 136

Jul. 29, 1998-Jun. 19, 2002 0.0271 204

Jun. 26, 2002-Mar. 19, 2003 0.0404 39

Mar. 26, 2003-Mar. 31, 2004 0.0169 54

Apr. 7, 2004-Dec. 27, 2006 0.0125 143
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Table 4 (cont.). Structural changes in volatility 

Panel A: S&P 500 

 No. of structural changes Time period Std Observations per period

Futures 6 

Jan. 11, 1989-Aug. 1, 1990 0.0163 82

Aug. 8, 1990-Feb. 13, 1991 0.0325 28

Feb. 20, 1991-Apr. 22, 1992 0.0195 62

Apr. 29, 1992-Mar. 26, 1997 0.0142 257 

Apr. 2, 1997-Oct. 4, 2000 0.0246 184 

Oct. 11, 2000-Mar. 19, 2003 0.0329 128 

Mar. 26, 2003-Dec. 27, 2006 0.0141 197 

Panel B: FTSE 100 

 No. of structural changes Time period Std Observations per period

Spot 8 

Jan. 11, 1989-Apr. 8, 1992 0.0194 170 

Apr. 15, 1992-Sep. 23, 1992 0.0326 24

Sep. 30, 1992-Dec. 21, 1994 0.0191 117 

Dec. 28, 1994-Apr. 30, 1997 0.0133 123 

May 7, 1997-Jul. 29, 1998 0.0211 65

Aug. 5, 1998-May 5, 1999 0.0356 40

May 12, 1999-Jun. 12, 2002 0.0214 162 

Jun. 19, 2002-Mar. 19, 2003 0.0504 40

Mar. 26, 2003-Dec. 27, 2006 0.0144 197 

Futures 6 

Jan. 11, 1989-Dec. 21, 1994 0.0232 311 

Dec. 28, 1994-Apr. 30, 1997 0.0145 123 

May 7, 1997-Jul. 29, 1998 0.0225 65

Aug. 5, 1998-May 5, 1999 0.0364 40

May 12, 1999-Jun. 12, 2002 0.0223 162 

Jun. 19, 2002-Mar. 19, 2003 0.0530 40

Mar. 26, 2003-Dec. 27, 2006 0.0144 197 

Panel C: Nikkei 225 

 No. of structural changes Time period Std Observations per period

Spot 9 

Jan. 11, 1989-Feb. 14, 1990 0.0128 58

Feb. 21, 1990-Dec. 26, 1990 0.0401 45

Jan. 2, 1991-Mar. 25, 1992 0.0252 65

Apr. 1, 1992-Sep. 30, 1992 0.0568 27

Oct. 7, 1992-Mar. 23, 1994 0.0271 77

Mar. 30, 1994-Jan. 18, 1995 0.0154 43

Jan. 25, 1995-Sep. 13, 1995 0.0394 34

Sep. 20, 1995-Sep. 10, 1997 0.0207 104 

Sep. 17, 1997-Dec. 10, 2003 0.0331 326 

Dec. 17, 2003-Dec. 27, 2006 0.0219 159 

Futures 9 

Jan. 11, 1989-Feb. 14, 1990 0.0120 58

Feb. 21, 1990-Dec. 26, 1990 0.0400 45

Jan. 2, 1991-Mar. 11, 1992 0.0254 63

Mar. 18, 1992-Sep. 9, 1992 0.0570 26

Sep. 16, 1992-Mar. 23, 1994 0.0287 80

Mar. 30, 1994-Jan. 18, 1995 0.0156 43

Jan. 25, 1995-Sep. 20, 1995 0.0392 35

Sep. 27, 1995-Sep. 10, 1997 0.0210 103 

Sep. 17, 1997-Dec. 10, 2003 0.0332 326 

Dec. 17, 2003-Dec. 27, 2006 0.0219 159 
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Table 5. Constant hedge ratios – OLS and OLS-CI models 

The OLS-CI model is as follows: 

0 1 1 1( )
t s s t t st

s S F ,  

0 1 1 1( )
t f f t t ft

f S F ,  

, ,

, ,

ss t sf t

t

sf t ff t

h h
H ,

h h
 

,

,

sf t*

ff t

ĥ
b .

ĥ

 

The OLS model is obtained by imposing the restriction 1s = 1f = 0. L represents the log-likelihood values. LR is the likelihood ratio 
test for model superiority between the OLS and OLS-CI models and is 2 distributed with 2 degrees of freedom. The numbers in the 
parentheses are t-statistics computed using White (1980) heteroscedastic consistent standard errors under the null hypothesis that the 
coefficient is zero. 

 S&P 500 FTSE 100 Nikkei 225 

OLS CI OLS CI OLS CI

0s × (103)
2.2043*** 

(3.34) 
1.9755*** 
(19.10) 

1.4921**
(2.27) 

1.3979***
(11.14) 

-0.6062*** 
(-3.41) 

-0.6308***
(-3.85) 

st-1
-0.2333*** 

(-7.76) 
-0.0955*** 
(-20.16) 

-0.1665***
(-6.35) 

-0.0880***
(-15.17) 

- - 

st-7
-0.0589** 

(-2.29) 
-0.0625*** 
(-13.68) 

- - - - 

1s - 
-0.1458*** 

(-7.72) 
-

0.2205***
(8.38) 

-
-0.2044***
(-11.59) 

0f × (103)
2.2147*** 

(3.33) 
1.9767*** 
(18.75) 

1.4971**
(2.12) 

1.3908***
(10.40) 

-0.6178*** 
(-3.46) 

-0.6470***
(-3.92) 

ft-1
-0.2388*** 

(-8.14) 
-0.0959*** 
(-19.84) 

-0.1810***
(-6.97) 

-0.0920***
(-15.98) 

- - 

ft-7
-0.0576** 

(-2.25) 
-0.0606*** 
(-13.30) 

- - - - 

1f -
0.1185*** 

(6.11) 
-

0.3804***
(13.67) 

-
0.1829***
(10.45) 

hss × (103) 0.4300 0.4210 0.4741 0.4710 0.8600 0.8596

hsf × (103) 0.4330 0.4240 0.4973 0.4937 0.8495 0.8514

hff × (103) 0.4465 0.4373 0.5384 0.5343 0.8688 0.8687

sf 
0.9881*** 
(751.57) 

0.9881*** 
(3759.83) 

0.9843***
(685.19) 

0.9842***
(2927.61) 

0.9827*** 
(2371.35) 

0.9852***
(2634.81) 

b* 0.9698 0.9696 0.9237 0.9240 0.9778 0.9801

L 8012.80 8030.28 7791.27 7796.03 7243.35 7318.63

LR 34.96*** 9.52*** 150.56*** 

Notes: ***, **, and * indicate significance at the 1%, 5%, and 10% level respectively. 
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Table 6. Hedge ratio – bivariate GARCH model 

The bivariate GARCH model is as follows: 

0 1 1 1( ) ,
t s s t t st

s S F  

0 1 1 1( ) ,
t f f t t ft

f S F  

, , , ,

, , , ,

0 01
,

0 01

ss t sf t s t s t

t

sf t ff t f t f t

h h h h
H

h h h h
 

2 2 2
, 0 1 , 1 2 , 1,s t s s s t s s t

h v v v h  

2 2 2
, 0 1 , 1 2 , 1,f t f f f t f f t

h v v v h  

,

,

sf t*

t

ff t

ĥ
b .

ĥ

 

L represents the log-likelihood values. LR1 and LR2 denote the likelihood ratio test for the bivariate GARCH model fitting the data 
better than the OLS model and OLS-CI model respectively, and are 2 distributed with 6 and 4 degrees of freedom respectively. 
Q1(j) and Q2(j) are the Ljung-Box (1978) test statistics for no serial correlation in the standardized and squared standardized 
residuals up to lag j. Q1(j) and Q2(j) are asymptotically 2 distributed. The critical values at the 5% level are 15.51 for j = 8 and 26.30 
for j = 16. The numbers in the parentheses are t-statistics computed using White (1980) heteroscedastic consistent standard errors 
under the null hypothesis that the coefficient is zero.  

 S&P 500 FTSE 100 Nikkei 225

0s × (103)
2.2705***

(4.21)
2.2544***

(3.40)
1.0919
(1.32) 

st-1
-0.1428***

(-6.97) 
-0.0641*
(-1.72) 

-

st-7
-0.0367*
(-1.71) 

- - 

1s
-0.1200
(-0.55) 

0.5861**
(2.27) 

-0.1267
(-0.65) 

0f × (103)
2.2714***

(4.13) 
2.3277***

(3.38) 
1.1152
(1.35) 

ft-1
-0.1419***

(-6.77) 
-0.0705*
(-1.78) 

ft-7
-0.0415*
(-1.90) 

1f 
0.0970
(0.68) 

0.8296***
(2.77) 

0.2432
(1.25) 

v0s × (103)
0.0118**

(2.33) 
0.0086**

(2.18) 
0.0456***

(3.42) 

v1s 
0.0708***

(3.87) 
0.0637***

(4.29) 
0.0695***

(4.19) 

v2s 
0.8972***
(33.84)

0.9159***
(57.53)

0.8738***
(32.78)

v0f × (103)
0.0127**

(2.51)
0.0074**

(2.05)
0.0480***

(3.49) 

v1f 
0.0664***

(4.36)
0.0613***

(4.32)
0.0710***

(4.34) 

v2f 
0.9002***
(39.09)

0.9233***
(65.97)

0.8702***
(32.81)

sf 
0.9868***
(835.44)

0.9831***
(565.36)

0.9852***
(791.72)

Average bt
* 0.9665 0.9226 0.9796

Max bt
* 1.0677 1.0126 1.0673

Min bt
* 0.8998 0.7712 0.8857

L 8125.90 7897.06 7391.35

LR1 226.20*** 211.58*** 296.00***

LR2 191.24*** 202.06*** 145.44***

Q1(8) [spot], [futures] [5.58], [7.08] [5.20], [5.71] [5.97], [4.42]

Q1(16) [spot], [futures] [18.23], [18.37] [7.71], [8.90] [13.93], [11.75]

Q2(8) [spot], [futures] [11.25], [9.50] [7.18], [7.34] [18.65**], [23.55***]

Q2(16) [spot], [futures] [14.94], [13.23] [13.54], [13.13] [25.72*], [28.81**]

Notes: ***, **, and * indicate significance at the 1%, 5%, and 10% level, respectively. 
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Table 7. Hedge ratios – the bivariate ICSS-GARCH model 

The bivariate ICSS-GARCH model is as follows: 

0 1 1 1( ) ,t s s t t sts S F   

0 1 1 1( ) ,t f f t t ftf S F   

, , , ,

, , , ,

0 01
,

0 01

ss t sf t s t s t

t

sf t ff t f t f t

h h h h
H

h h h h
  

2 2 2
, 0 1 , 1 2 , 1 , ,

1

,
n

s t s s s t s s t s i s i

i

h v v v h d D   

2 2 2
, 0 1 , 1 2 , 1 , ,

1

,
m

f t f f f t f f t f i f i

i

h v v v h d D   

,

,

sf t*

t

ff t

ĥ
b .

ĥ

  

L represents the log-likelihood value. LR1 and LR2 denote the likelihood ratio test for model superiority between the bivariate ICSS-
GARCH model and the OLS and OLS-CI models respectively, and are 2 distributed with 6 and 4 degrees of freedom respectively. 
LR3 test statistics test for model superiority between the bivariate ICSS-GARCH model and the bivariate GARCH model, and are 2 
distributed with 6, 4, and 12 degrees of freedom for S&P 500, FTSE 100, and Nikkei 225 respectively. Q1(j) and Q2(j) are the Ljung-
Box (1978) test statistics for no serial correlation in the standardized and squared standardized residuals up to lag j. Q1(j) and Q2(j) 
are asymptotically 2 distributed. The critical values at the 5% level are 15.51 for j = 8 and 26.30 for j = 16. The numbers in the 
parentheses are t-statistics computed using White (1980) heteroscedastic consistent standard errors under the null hypothesis that the 
coefficient is zero. 

 S&P 500 FTSE 100 Nikkei 225 

0s × (103)
2.3066***

(3.72) 
1.9156***

(3.28) 
0.3611 
(0.53) 

st-1
-0.1332***

(-3.41) 
-0.0421
(-1.29) 

-

st-7
-0.0436*
(-1.68) 

- - 

1s 
-0.1116
(-0.46) 

0.2523*
(1.71) 

-0.1684 
(-0.90) 

0f × (103)
2.3071***

(3.60) 
1.9127***

(3.20) 
0.3326 
(0.48) 

ft-1
-0.1317***

(-3.28) 
-0.0420
(-1.21) 

-

ft-7
-0.0452*
(-1.73) 

- - 

1f 
0.1121
(0.45) 

0.4691***
(2.70) 

0.2426 
(1.26) 

v0s × (103)
0.0729***
(10.77) 

0.2848***
(9.29) 

0.5099*** 
(8.87) 

v1s 
0.0519***

(2.89) 
0.0260
(1.06) 

0.0339 
(1.60) 

v2s 
0.8514***
(23.62) 

0.4036***
(11.78) 

0.6593*** 
(13.60) 

v0f × (103)
0.0699***

(8.70) 
0.3828***

(8.97) 
0.4296*** 

(7.65) 

v1f 
0.0505***

(2.77) 
0.0377
(1.30) 

0.0373* 
(1.75) 

v2f 
0.8608***
(27.36) 

0.3429***
(7.30) 

0.7084*** 
(16.42) 

ds,2 × (103)
-0.0460***

(-2.94) 
-0.0150
(-1.12) 

0.0340 
(0.25) 

ds,3 × (103)
0.0039
(0.31) 

-0.0015
(-0.12) 

0.5630* 
(1.81) 

ds,4 × (103)
0.0073*
(1.89) 

0.1007
(1.25) 

-0.9021*** 
(-3.13) 

ds,5 × (103)
0.0099
(1.48) 

0.0661
(0.86) 

-0.1072** 
(-2.23) 
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Table 7 (cont.). Hedge ratios – the bivariate ICSS-GARCH model 

 S&P 500 FTSE 100 Nikkei 225

ds,6 × (103)
0.0050
(0.87) 

-0.2060***
(-4.02) 

0.1930** 
(2.09) 

ds,7 × (103)
-0.0357**

(-2.15) 
0.4780***

(3.22) 
-0.1837** 

(-2.10) 

ds,8 × (103)
-0.0014
(-0.68) 

-0.6188***
(-4.06) 

0.1849*** 
(5.46) 

ds,9 × (103) - - 
-0.1521***

(-4.51) 

df,2 × (103)
-0.0460***

(-2.86) 
0.0663
(0.63) 

0.0360 
(0.27) 

df,3 × (103)
0.0080
(0.62) 

0.0301
(0.34) 

0.4471** 
(2.19) 

df,4 × (103)
0.0103*
(1.86) 

-0.2124***
(-4.05) 

-0.7244***
(-4.49) 

df,5 × (103)
0.0043
(0.83) 

0.5503***
(3.04) 

-0.1072** 
(-1.99) 

df,6 × (103)
-0.0307**

(-2.41) 
-0.7208***

(-3.84) 
0.1631* 
(1.75) 

df,7 × (103) - - 
-0.1532* 
(-1.76) 

df,8 × (103) - - 
0.1508*** 

(4.80) 

df,9 × (103) - - 
-0.1262***

(-4.15) 

sf 
0.9877***
(814.98) 

0.9849***
(765.54) 

0.9882*** 
(1354.89) 

Average bt
* 0.9642 0.9210 0.9820 

Max bt
* 1.0389 1.0083 1.3670 

Min bt
* 0.8978 0.8189 0.8118 

L 8164.02 7962.10 7483.30 

LR1  302.44*** 341.66*** 479.90*** 

LR2  267.48*** 332.14*** 329.34*** 

LR3 76.24*** 130.08*** 183.90*** 

Q1(8) [spot], [futures] [4.27], [6.10] [4.75], [5.22] [4.70], [3.22]

Q1(16) [spot], [futures] [16.75], [16.29] [8.09], [8.37] [17.24], [14.99]

Q2(8) [spot], [futures] [14.38*], [11.05] [23.77***], [27.33***] [21.55***], [24.16***]

Q2(16) [spot], [futures] [22.71], [17.78] [30.27**], [35.33***] [28.37**], [31.25**]

Notes: ***, **, and * indicate significance at the 1%, 5%, and 10% level respectively. 

Table 8. Hedging performance comparison of different models 

Hedging performance is measured by the variance of , where t = st  bt ft. The hedge ratio, bt, is estimated by OLS, OLS-CI, 
bivariate GARCH, and bivariate ICSS-GARCH models. The numbers in the table are multiplied by 104. 

 S&P 500 FTSE 100 Nikkei 225

OLS 0.1141 0.1565 0.2956 

OLS-CI 0.1141 0.1565 0.2957 

GARCH 0.1172 0.1480 0.3020 

ICSS-GARCH 0.1171 0.1460 0.2976 
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