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Technical analysis and market efficiency: an empirical examination 

on energy markets 

Abstract 

The main objective of this study is to investigate the validity and predictability of technical analysis in energy markets. 
We use bootstrap tests of White (2000) and Hansen (2005), to determine whether there is a favorable trade rules are 
found amongst the universe of technical trading rules of the Sullivan et al. (1999). These powerful bootstrap tests are 
conducted under scrutiny of non-synchronous trading and transaction costs. The empirical results strongly indicate that 
the three elements, data snooping, non-synchronous trading and transaction costs have a significant impact on the 
overall performance of technical analysis. In fact, these results support efficient market hypothesis among the thirteen 
energy market indices. 
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JEL Classification: G11, G14.  
 

Introduction  

Technical analysis is a well-established method for 
forecasting future market movements by generating 
buy or sell signals based on specific information 
gained from previous prices. The continuing 
prevalence and application of technical analysis has 
come to be widely recognized, even amongst academic 
scholars, with the techniques for discovering any 
hidden patterns ranging from the very rudimentary 
analysis of moving averages, to the recognition of 
quite complex time series patterns. Brock et al. 
(1992) show that simple trading rules based upon 
the movements of a short-run and a long-run 
moving average return have significant predictive 
power over a century of daily data on the Dow Jones 
industrial average. Fifield, Power, and Sinclair 
(1995) went on to investigate the predictive power 
of the ‘filter’ rule and the ‘moving average 
oscillator’ rule in eleven European stock markets, 
covering the period from January1991 to December 
2000. Their main findings indicate that four emerging 
markets, Greece, Hungary, Portugal and Turkey, were 
informationally inefficient, relative to the other seven 
more advanced markets. Empirical results in the past 
support technical analysis, among them, Blume et al. 
(1994), Lo et al. (2000), and Savin et al. (2007). 
However, such evidence may be criticized for their 
data snooping bias; see, for example, Lo and 
MacKinlay (1990) and Brock et al. (1992). 

Data snooping occurs when a given set of data is 
used more than once for the purposes of inference or 
model selection. To minimize this problem, Sullivan 
et al. (1999) apply the White (2000) “reality check 
(RC)” test and find that technical trading rules lose 
their predictive power for major U.S. stock indices 
after the mid 1980’s. Chen et al. (2009) find that the 
results of technical analysis remain valid in all 
Asian markets, with the exception of South Korea, 
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even after controlling for data snooping bias through 
the bootstrap reality check (RC) of White (2000) 
and superior predictive ability (SPA) test of Hansen 
(2005). Hsu et al. (2010) extend the SPA test of 
Hansen (2005) to a stepwise SPA test that can 
identify predictive models without potential data 
snooping bias. In the present study, we set out to 
empirically test the efficacy of technical analysis 
within thirteen energy market indices, employing 
the two data snooping adjustment methods for non-
synchronous trading and transaction costs proposed 
by White (2000) and Hansen (2005). 

The efficient market hypothesis (EMH) has 
dominated empirical finance, largely as a result of 
the works of Fama (1970). An enormous wealth of 
associated literature during the 1970s provided 
support for the weak form of this hypothesis, in 
which it is suggested that changes in past share 
prices cannot be used to forecast future share 
returns. Along the same vein, energy market 
efficiency implies that energy prices respond 
quickly and accurately to relevant information. If 
energy prices are mean reverting, then it follows 
that the price level will return to its trend path over 
time and that it might be possible to forecast future 
movements in energy prices based on past behavior. 
By contrast, if energy prices follow a random walk 
process, then any shock to prices is permanent. This 
means that future returns cannot be predicted based 
on historical movements in energy prices and that 
volatility in energy markets would increase without 
limitation. 

Historically, technical analysis is equally appealed 
among financial and agricultural commodity 
markets as illustrated by popular practitioner books, 
for examples, Murphy (1986), Arnold (1993), and 
Pring (2002). The most widely followed futures 
composite index is the Commodity Research Bureau 
(CRB) index, which is represented by a basket of 21 
industrial and agriculture commodities. The CRB 
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index is particularly sensitive to price movement in 
the grains and oil complex. However, as surveyed 
by Park and Irwin (2007), most empirical studies of 
the efficacy of technical analysis focus on the stock 
markets and the foreign exchange markets, there is 
only a smaller number of studies being devoted to the 
commodity markets, in particular, energy markets. 

Olga and Apostolos (2008) measure deviations from 
the efficient market state based on an analysis of 
scale-dependent fractal exponent and analyze the 
market efficiency in two electricity markets, Alberta 
and Mid-Columbia (Mid-C), as well as in the AECO 
Alberta natural gas market. They conclude that price 
fluctuations in all of the markets studied are not 
efficient. Charles and Darné (2009) examines the 
random walk hypothesis for the crude oil markets 
over the period of 1982-2008. They find that the 
Brent crude oil market is under weak-form 
efficiency, while the WTI crude oil market seems to 
be inefficient during the 1994-2008 sub-period. Lee 
and Lee (2009) investigates the efficient market 
hypothesis using four disaggregated energy prices – 
coal, oil, gas, and electricity for OECD countries 
over the period of 1978-2006. They find an 
overwhelming amount of evidence that support 
energy prices are not characterized by the efficient 
market hypothesis. Ulrich (2009) constitutes a first 
analysis on the stock returns of energy corporations 
from the Euro-zone and finds that profitable 
opportunities are provided for strategic investors. 
Herráiz and Monroy (2009) study market efficiency 
in the Iberian Power Futures Market and other 
European Power Markets and conclude that energy 
markets tend to show limited levels of market 
efficiency. Wang and Yang (2010) utilize high 
frequency data to examine the intraday efficiency of 
four major energy (crude oil, heating oil, gasoline, 
natural gas) futures markets. They indicate that 
heating oil and natural gas futures markets lack 
market efficiency, in particular, during the bull 
market condition.  

We set out in this study to test empirically the 
profitability of technical analysis in thirteen energy 
market indexes of futures and spots from November 
1982 to December 2009, taking into account the 
relevant data snooping biases, non-synchronous 
trading effects and transaction costs. We reexamine 
the performance of technical rules by implementing 
the White (2000) ‘reality check’ and the Hansen 
(2005) ‘superior predictive ability’ test in order to 
fully investigate the effects that data snooping can 
have on trading rules. Our study extends the set of 
trading rules considered in Bessembinder and 
Chan (1995) to the ‘universe’ of 7846 trading 
spaces suggested in Sullivan, Timmermann, and 
White (1999). 

The remainder of this paper is organized as follows. 
An explanation of the test algorithms and the trading 
rules proposed in this study are provided in section 
1. This is followed in section 2 by our presentation and 
subsequent analysis of the empirical results. Finally, 
the conclusions drawn from this study are provided in 
the last section, along with some suggestions for 
further development of our approach. 

1. Methodology 

In this section, we describe the methodology used in 
our study, including the test for algorithms and the 
trading rules. The former comprises the ‘reality 
check’ of White (2000) and the ‘superior predictive 
ability’ test of Hansen (2005), while the latter 
introduces the 7846 universal rules proposed by 
Sullivan et al. (1999). 

1.1. The reality check and superior predictive 

ability tests. Trading model dependence makes it 
difficult to construct a formal test to differentiate 
between a genuine model with superior predictability 
and other spurious models. White’s ‘reality check’, 
which was initially built on Diebold and Mariano 
(1995) and West (1996), employed the block re-
sampling procedure of Politis and Romano (1994) in 
a predictive power test model to account for the 
effect of data mining. 

We begin by defining the relative performance of 
models k, k = 1, ..., m, against the benchmark at time 
t, t = 1, ..., n, as follows: 

, , 1 0, 1( , ) ( , ), 0,1,…,
k t t k t t t

k m.         (1) 

ttktkt 1,1, ),( , where t  represents the 

random real asset returns; k,t-1 is the trading signal 
of the forecasting model, k, at t-1; and k = 0 
represents the market model.  

Let  = E( k) be the expected return of model k. 
Since our main area of interest is in determining 
whether any of the models have superior 
performance to that of the benchmark, the null 
hypothesis is defined as:  

0 0 ,m
H : R         (2) 

which also means that none of the alternative 
forecasts are superior to the benchmark. The block 
re-sampling procedure of Politis and Romano 
(1994) is employed to generate 500 pseudo time-
series B

tk,  from the observed value k,t. We 
construct the following two statistics from both the 
real series and the pseudo series: 

1
2

1

1, 2
1

max ( ),

max ( ( )).

RC

n k m k

RC B B

n k m k k

T n

T n
    

(3) 



Investment Management and Financial Innovations, Volume 11, Issue 1, 2014 

191 

The comparison between RC

nT  and the ,RC B

nT

quintiles provides the White (2000) p-value for the 
null hypothesis test. The ‘superior predictive ability’ 
test of Hansen (2005), the development of which 
was based upon White’s ‘reality check’, provides an 
alternative method of correcting the findings for 
data snooping effects. Hansen (2005) demonstrated 
that the ‘reality check’ can be seriously manipulated 
by other irrelevant models, resulting in reduced test 
power, and therefore utilized the studentized process 
to remove the irrelevant models in the sample. 
Similar to White (2000), the two statistics are 
provided as: 

1
2

1

1
2

,

1

max[ max , 0],

( )
max[ max , 0],

SPA

n
k m

B c
SPA B k k

n
k m

n k
T

ˆ k

ˆn
T

ˆ k

    (4) 

where ˆ k  is a consistent estimator for return 
variance, calculated by the stationary bootstrap 
method of Politis and Romano (1994), and 

1
2{ 2 loglo }

1
k

c

k k
ˆn / k g n

ˆ  is the threshold used 

for the removal of the irrelevant models. The 
comparison between SPA

nT  and BSPA

nT
, quartiles 

provides the p-value for the Hansen (2005) ‘superior 
predictive ability’ null hypothesis test. 

1.2. Technical analysis. Sullivan et al. (1999) 
extended the sample rules proposed by Brock et al. 
(1992), to a larger universal technical analysis 
space. In this paper, we adopt the two sets of rule 
spaces proposed in these two studies, and undertake 
a comprehensive comparison of their performance. 
The Sullivan et al. (1999) trading set comprises of 
7846 universal trading rules belonging to five 
technical analysis catalogs, as shown in the 
following sub-sections, each of which provides a 
brief overview of these rules; the standard filter rule 
can be explained as in Fama and Blume (1966). We 
define an X per cent filter as follows: if the daily 
closing price of a particular security moves up by at 
least X per cent, then an investor buys and holds the 
security until its price moves down at least X per 
cent from the subsequent high, at which time the 
investor simultaneously sells and takes up a short 
position; a moving average strategy (MA) is 
designed to detect a trend, with a buy (sell) signal 
being generated when the short-term average price 
crosses the long-term average price from below 
(above); a ‘support and resistance’ strategy supplies 
details on the market movements relating to 
historical support and resistance lines. A buy (sell) 
signal is generated when the closing price exceeds 
(falls below) the historical maximum (minimum) 

within a given time frame; a ‘channel breakout’ 
strategy is similar to the support and resistance rule. 
The buy (sell) signal is generated when the closing 
price moves up (down) the upper (lower) channel; 
an ‘on-balance volume averages’ strategy (OBV) is 
a volume-based version of the moving average 
rules. A buy (sell) signal is generated when the 
short-term average volume crosses the on-term 
average volume from below (above). The parameter 
required in the on-balance volume averages strategy 
is similar to those for the moving average rules. This 
category has a total of 2040 rules. 

2. Empirical results and analysis 

We set out in this study to test empirically the 
profitability of technical analysis brought forward 
by Sullivan et al. (1999) in energy market indices 
over the period of 1982-2009, taking into account 
the relevant data snooping biases, non-synchronous 
trading effects and transaction costs. Our empirical 
sample of the testing markets indices cover thirteen 
energy markets which are comprised of two futures 
Light Crude Oil Futures Index and Natural Gas 
Futures Index, and eleven spots which are listed in 
Table 1 (see Appendix). The empirical market data 
of daily prices and daily volumes utilized in this 
study are obtained from Datastream. Moreover, the 
actual research horizon for each index, which 
referred to Table 1, is trimmed according the data 
availability from Datastream. Meanwhile, the entire 
universal set of trading rules are employed in the 
futures markets while only part of them are tested in 
the spot markets due to the lack of volume data in 
the latter. Ultimately, the trading rules for the 
futures and spot markets amounts to 7846 and 5806 
respectively. The summary statistics of the daily 
returns for thirteen energy market indices are 
reported in Table 1.  

2.1. Optimum rules for the thirteen energy 

market indices. This section reports the 
characteristics of the best trading rules and their 
associated profits within the energy market indices. 
With no consideration of the issues of non-
synchronous trading biases or transaction costs, the 
optimal trading rules for the spot markets and 
futures markets are rather distinct. The OBV and 
MA rules are best served in the futures and spot 
markets respectively. Among the best MA rules in 
spot markets, the windows of moving averages are 
diversified, ranging from two- through 125-day, which 
contrast sharply with about two- through five-day 
windows reported in the U.S. markets by Sullivan et 
al. (1999) and in Asian markets by Chen et al. (2009). 
As the standard example, MA (1, 15, 0, 5, 0) is the 
best among the Sullivan et al. (1999) for Brent 
Crude Oil Spot Index. The picture alters a bit in the 
futures markets due to the more long-run oriented best 
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OBV rules. For instance, Natural Gas Futures Index 
has found the best rule as OBV (15, 150, 0, 0, 25). In 
consequence, the resultant trading signals for energy 
market indices tend to be diversified; of these, the 
lowest frequency is found in the S&P GSCI Crude 
Oil Spot Index, where the total number of buy and 
sell signals are 20 and 21; the highest frequency is 
found in the No. 2 Heating Oil NYH Spot Index, 
where the total number of buy and sell signals are 
263 and 255. Moreover, almost all best trading rules 
exhibit significant mean returns at 5% level except 
WTI Cushing Crude Oil Spot Index only reaching 
10% significance. The mean daily returns of the best 
rules range from a high of 0.18% for the Brent 
Crude Oil Spot Index, to a low of 0.11% for S&P 
GSCI Heating Oil Spot Index; all of these easily 
outperform a buy-and-hold strategy across their 
various market indices. 

We further decompose the results on trading signals 
into buy-signals and sell-signals in order to 
examine, in some detail, the characteristic features 
of these buy and sell signals, and find that the 
frequency of buy and sell signals is approximately 
equal for each market. For instance, No. 2 Heating 
Oil USG Spot Index results in a total of 259 (258) buy 
(sell) signals for the best rules. However, the frequency 
of buy and sell signals varies across the different 
markets; for example, the figures for the S&P GSCI 
Crude Oil Spot Index, 20:21, is the lowest of all of the 
energy market indices under examination, whereas 
there is a very high ratio of 263:255 between the buy 
and sell signals in the No. 2 Heating Oil NYH Spot 
Index. As a result, there are also significant variations 
in the ratios of the average holding horizons for buy 
and sell signals across markets. It is found to be 
highest in the S&P GSCI Crude Oil Spot Index, with a 
ratio of 155:125.14, and lowest in the No. 2 Heating 
Oil NYH Spot Index, where the ratio is 11.24:10.24. 

As noted by Bessembinder and Chan (1995), 
significant return differentials between buy and sell 
signals indicate that the technical rules in energy 
market indices are capable of conveying economic 
information. The differentials in the daily returns 
resulting from buy and sell signals for the best rules 
found in this study are sufficiently wide to generate 
significant economic profits across the energy 
market indices; for example, the mean difference 
between buy and sell signals in the Brent Crude Oil 
Spot Index reaches 0.35%, whilst the S&P GSCI 
Heating Oil Spot Index, which has the lowest figure, 
still manages to achieve a 0.10% return differential. 

2.2. The effects of data snooping on trading rules. 

We examine the profitability of technical analysis in 
greater depth in this section by taking into account 
the level of dependence that exists between the 
trading models, adjusting for data snooping bias by 

employing the White (2000) ‘reality check’ and the 
Hansen (2005) ‘superior predictive ability’ test. 

As shown in Table 3 (see Appendix), the mean daily 
return of the best rule in thirteen energy market 
indices all are significantly higher than the buy-and-
hold mean daily returns. The notable examples 
include Brent Crude Oil Spot Index, No. 2 Heating 
Oil USG Spot Index, MLCX Natural Gas Spot 
Index, and No. 2 Heating Oil NYH Spot Index 
respectively amounting to 44.90%, 39.64%, 
38.91%, and 33.93% comparing to 6.08%, 6.65%, 
6.03%, and 7.05% of the indices in annual returns. 
All the four energy spot indices above provide 
abnormal returns significantly in terms of nominal 
reality check. However, only Brent Crude Oil Spot 
Index and No. 2 Heating Oil USG Spot Index are 
significantly better than the market indices in the 
SPA test and RC test. The fact clearly delineates the 
tendency of over-optimism toward the acceptance of 
superior trading rules as well as the neglect of the 
potential data snooping effect among the universe of 
technical analysis. Table 3 shows that, as in the 
majority of prior empirical studies within the finance 
literature, all of the best rules in the energy market 
indices significantly outperform their buy-and-hold 
alternatives; however, our empirical results also 
reveal quite a striking finding in energy markets, 
that when controlling for the dependence in the 
trading models of the Sullivan et al. (1999) 
‘universe’, most of the energy market indices in 
our sample, with the two exceptions of Brent 
Crude Oil Spot Index and No. 2 Heating Oil USG 
Spot Index, confirm the non-existence of a superior 
technical rule.  

2.3. The effects of non-synchronous trading bias 

on technical analysis. Technical analysis trading 
profits arise mainly from positive serial dependence 
on stock index returns. However, as demonstrated by 
Scholes and Williams (1977), non-synchronous 
trading amongst component stocks may give rise to 
spurious positive serial dependence in the index 
returns, leading to the resultant measurement error 
potentially overestimating the trading profits of 
technical analysis. 

We adopt the one-day lag adjustment proposed by 
Bessembinder and Chan (1995) in the present study 
to partially calibrate the non-synchronous bias. 
Specifically, we associate the day t + 2 return with 
the initial trading signal emitted at the close of day t, 
thereby allowing the component goods of the index 
to be fully traded on the intervening days. Our 
empirical results, which are reported in Table 4 (see 
Appendix), reveal that the non-synchronous effect is 
considerable and results in a significant alteration to 
the best rules selected for the samples.  
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After calibrating the non-synchronous bias, we can 
find the best rules still lie in the original rule 
categories except WTI Cushing Oil Spot Index 
changing from the MA rule to the Filter rule. 
However, the parameter structures of best rules 
indeed move slightly around the original ones. For 
example, the best rule in Brent Crude Oil Spot Index 
changes from MA (1, 15, 0, 5, 0) to MA (5, 15, 0, 3, 0). 
Furthermore, controlling for the non-synchronous 
effect is also found to have adverse effects on the 
performance of the best rules reported in Table 3; 
for instance, the highest mean return for the No. 2 
Heating Oil USG Spot Index in Table 3, which is 
achieved by the MA (1, 10, 0, 0, 5) rule, declines 
from 0.160% to -0.020% when taking the non-
synchronous effect into account, whilst the new 
optimal rule, MA (1, 5, 0.001, 0, 0), mean daily 
return is 0.150%, the gap between the two best rules 
is not obvious. In fact, the effect of non-
synchronous has much change for the best trading 
rules, but the mean daily returns are not 
significantly affected. The nominal RC test provides 
a similar result to Table 3 that only three out four 
previous indices, namely Brent Crude Oil Spot 
Index, No. 2 Heating Oil USG Spot Index, and No. 
2 Heating Oil NYH Spot Index, remain significantly 
better than the buy-and-hold strategy.  

We also take the model dependence into 
consideration by carrying out the reality check and 
superior predictive ability test. As shown in Table 4, 
when ignoring the potential model dependence in 
the Sullivan et al. (1999) ‘universe’ of technical 
analysis, only three indices which are the same with 
Table 3 are still superior, in terms of the ‘nominal 
reality check’. However, the picture is rather 
different after controlling for the data snooping 
effect, only two indices which have the best rule, 
through the reality check and the superior predictive 
ability test. The evidence presented in Table 4 
provides support for Sullivan et al. (1999) and 
White (2000) on the need for bootstrap testing when 
assessing the performance of technical analysis. The 
evidence also reinforces the fact that data snooping 
has a potentially serious bias when assessing the 
profitability of technical analysis rules. 

2.4. The effects of transaction costs on technical 

analysis. It has been argued by many researchers 
that transaction costs are a critical element in the 
overall appraisal of the economic significance of 
trading rules, particularly with regard to those rules 
which tend to generate frequent trades. We 
incorporate the transaction costs of the thirteen 
energy market indices into the analysis of the 
profitability of technical analysis in this study. The 
round-trip costs utilized in this study are drawn from 
the member fees of CME Group and range from the 

highest Brent Cruel Oil Spot Index of 1.88% to the 
lowest MLCX Natural Gas Spot Index of 0.15%, the 
details referred to Table 2 (see Appendix).  

When considering transaction costs, the best rules 
differ markedly from those without any consideration 
of transaction costs; in particular, as shown in Table 5 
(see Appendix), the best rules of two futures indices 
regularly switch to the long-run strategies in order to 
avoid the frequently traded rules which attract high 
transaction costs. We also find that transaction costs 
exert great impacts on the profitability of technical 
analysis and results in the highest mean daily return 
(0.15%) to MLCX Natural Gas Spot Index which 
have the lowest transaction cost (0.15%). 

We go on to further explore the effects of data 
snooping bias under a setting in which transaction 
costs are taken into consideration. Even in the 
nominal sense of the reality check, the trading rules in 
only two of the thirteen energy market indices (No. 2 
Heating Oil USG Spot Index and MLCX Natural Gas 
Spot Index) continue to exhibit superior profitability, 
as compared to their corresponding buy-and-hold 
strategy. However, the picture is rather different after 
controlling for the data snooping effect, no indices 
which have the best rule, through the reality check and 
the superior predictive ability test. The finding 
arrogantly maintains the assertion of efficient 
market hypothesis among thirteen more developed 
energy markets under examination. 

Conclusions 

We carry out a detailed investigation on the 
profitability of technical analysis amongst thirteen 
energy market indices over the period of 1982-2009. 
We employ the bootstrap results of the White (2000) 
‘reality check’ and the Hansen (2005) ‘superior 
predictive ability’ test in order to determine whether 
any profitable trading rule exists, drawing from the 
‘universe’ of technical strategies proposed by 
Sullivan et al. (1999). Our empirical findings first 
indicate that, when non-synchronous trading bias 
and transaction costs are ignored, the best strategies 
in our sample are provided by short-window 
‘moving averages’ rules. Second, we find that when 
a one-day lag scheme is implemented to account for 
non-synchronous trading bias, there are changes in 
the optimal trading rules, but they are similar in 
trading profits. Third, when transaction costs are 
taken into account, there is a substantial decline in 
trading profits. As a result, both the reality check 
and the superior predictive ability test reject the 
existence of economically profitable rules in all of 
the energy market indices.  

This study brings together powerful bootstrap tests, 
along with two institutional adjustments (non-
synchronous trading and transaction costs) to 
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ascertain the profitability of technical analysis in 
thirteen energy market indices. The empirical results 
indicate that these adjustments have an enormous 
impact on the performance of the technical analysis 
rules. Indeed, our findings amongst the thirteen 

energy market indices examined in this study 
provide further support for the efficient market 
hypothesis; our results clearly show that economic 
profits are unlikely to be earned from the use of 
technical analysis within these particular markets. 
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Appendix 

Table 1. Summary statistics of the energy market future and spot indices 

 Data period No. of observations 
Variablesb

Mean (%) S.D. Skewness Kurtosis (1) (2) (3) (4) 

Light Crude Oil Futures Index (NYM) 1983/03-2009/12 6964 0.0130 0.0242 -0.8495 19.3827 -0.0197 -0.0569 -0.0229** 0.0304 

Natural Gas Futures Index (NYM) 1990/04-2009/12 5135 0.0171 0.0361 -0.0667 12.5488 -0.0386 -0.0110 -0.0557 0.0325 

Brent Crude Oil Spot Index (NYM) 1987/05-2009/12 5892 0.0243 0.0214 -0.0065 64.3333 -0.0203 -0.0021 -0.0566** 0.0034 

No. 2 Heating Oil  USG Spot Index 1986/06-2009/12 6137 0.0266 0.0217 0.4744 49.3929 -0.0088 -0.0044 -0.0238 0.0019 

No. 2 Heating Oil  NYH Spot Index 1986/06-2009/12 6137 0.0282 0.0210 0.0624 37.4696 -0.0112 -0.0042 -0.0328 0.0022 

MLCX Crude Oil (WTI) Spot Index 1990/06-2009/12 5075 0.0279 0.0209 -1.1270 20.9126 -0.0041 -0.0243 -0.0233 0.0131 

MLCX Heating Oil Spot Index 1990/06-2009/12 5075 0.0267 0.0202 -0.8783 17.6403 -0.0156 0.0001 -0.0097 0.0103 

MLCX Natural Gas Spot Index 1990/06-2009/12 5075 0.0241 0.0265 -0.0477 5.2357 0.0024 0.0308** 0.0101 0.0288** 

S&P GSCI Crude Oil Spot Index 1987/01-2009/12 5979 0.0233 0.0221 -1.0632 22.1504 -0.0107 -0.0357 -0.0303 0.0080 

S&P GSCI Heating Oil Spot Index 1982/12-2009/12 7030 0.0121 0.0210 -0.7164 16.8263 -0.0005 -0.0104 -0.0227 0.0132 

S&P GSCI Natural Gas Spot Index 1994/01-2009/12 4155 0.0216 0.0328 0.0343 5.3643 -0.0090 0.0442*** 0.0060 0.0381** 

WTI Crude Oil Spot Index (NYM) 1986/01-2009/12 6248 0.0160 0.0260 -0.8000 18.1787 -0.0200 -0.0285 -0.0276 0.0110 

WTI Cushing Crude Oil Spot Index (NYM) 1984/12-2009/12 6522 0.0151 0.0266 -0.9964 25.4741 -0.0502 -0.0329 -0.0430 0.0236 

 Notes: b (i) is the estimated autocorrelation at lag i for each series. * Significance of the two-tailed test at the 10% level. ** Significance at the 5% level. *** Significance at the 1% level.
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Table 2. Standard test results for the technical rules amongst the energy market future and spot indices 

 Best rulea Orderb
Mean 

Long dayc/Buy signals 
Buy returnd Short dayc/

Sell signals 

Sell returnd

BAHDe/SAHD
Buy-Selld

Round-trip 
cost 

(%) t-value (%) t-value (%) t-value (%) t-value (%) 

Light Crude Oil Futures Index (NYM) OBV (20, 30, 0, 0, 10) 7551 0.08 2.57 3310 188 0.12 2.78 3403 188 0.03 2.78 17.61 18.10 0.15 2.58 1.72 

Natural Gas Futures Index (NYM) OBV (15, 150, 0, 0, 25) 7706 0.15 2.79 2334 42 0.25 3.04 2550 41 0.05 3.04 55.57 62.20 0.30 2.86 1.36 

Brent Crude Oil Spot Index (NYM) MA (1, 15, 0, 5, 0) 1626 0.18 6.20 3019 135 0.22 5.30 2618 135 0.14 5.30 22.36 19.39 0.35 6.09 1.88 

No. 2 Heating Oil USG Spot Index MA (1, 10, 0, 0, 5) 2060 0.16 5.56 3096 259 0.19 4.58 2790 258 0.12 4.58 11.95 10.81 0.31 5.49 0.61 

No. 2 Heating Oil NYH Spot Index MA (5, 10, 0.01, 0, 0) 740 0.14 5.01 2957 263 0.18 4.08 2612 255 0.11 4.08 11.24 10.24 0.28 5.07 0.63 

MLCX Crude Oil (WTI) Spot Index MA (1, 125, 0, 0, 5) 2069 0.06 2.20 2890 35 0.09 2.75 1934 35 0.02 2.75 82.57 55.26 0.11 1.92 0.27 

MLCX Heating Oil Spot Index MA (1, 125, 0, 0, 0) 509 0.07 2.37 2794 80 0.09 2.74 2030 80 0.03 2.74 34.93 25.38 0.12 2.15 0.28 

MLCX Natural Gas Spot Index MA (1, 40, 0, 2, 0) 1585 0.16 4.03 2593 137 0.21 3.98 2230 137 0.10 3.98 18.93 16.28 0.30 3.91 0.15 

S&P GSCI Crude Oil Spot Index MA (20, 25, 0, 0, 50) 2447 0.06 2.18 3100 20 0.11 2.88 2628 21 0.01 2.88 155.00 125.14 0.12 2.04 0.30 

S&P GSCI Heating Oil Spot Index MA (15, 20, 0, 0, 50) 2442 0.05 2.01 3700 30 0.08 2.49 3079 31 0.02 2.49 123.33 99.32 0.10 1.89 0.51 

S&P GSCI Natural Gas Spot Index MA (1, 30, 0, 2, 0) 1584 0.13 2.43 2028 139 0.21 2.77 1875 139 0.05 2.77 14.59 13.49 0.25 2.37 0.19 

WTI Crude Oil Spot Index (NYM) MA (1, 2, 0, 0, 50) 2103 0.07 2.04 3746 29 0.10 2.35 2251 29 0.01 2.35 129.17 77.62 0.11 1.66 1.70 

WTI Cushing Crude Oil Spot Index (NYM) MA (15, 20, 0, 0, 5) 2127 0.06 1.71 3364 168 0.10 2.37 2907 168 0.01 2.37 20.02 17.30 0.11 1.61 1.71 

Notes: a ‘Best rule MA’ denotes the moving average with five parameters (n, m, b, d, c), where n-days is the short-term horizon line; m-days is the long-term horizon line; b is the filter rate (%);  
d-days is the time delay; and c-days is the holding days. ‘Best rule OBV’ denotes t on-balance volume averages with five parameters (n, m, b, d, c) with the same definition as ‘Best rule MA’.  
b ‘Order’ refers to the location of the best universal rule. c ‘Long (short) day’ refers to the number of buying days for the best rule. d ‘Buy (sell) signals’ referring to the number of buy (sell) signals 
for the best rule, with the t-values referring to the two-tailed t-test. e ‘BAHD (SAHD)’ denotes the average holding days for the buy (sell) signals. f The transaction (round-trip) costs for thirteen 
energy market indices are adopted from member fees of CME Group. 
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Table 3. Bootstrapped test results for the technical rules amongst the energy market future and spot indices 

 Best rulea Orderb
Daily returnc

Annual return (%) Index (%) SPAd RCe Nominal RCf

(%) t-value

Light Crude Oil Futures Index (NYM) OBV (20, 30, 0, 0, 10) 7551 0.08 2.57 19.14 3.25 0.97 0.98 0.18 

Natural Gas Futures Index (NYM) OBV (15, 150, 0, 0, 25) 7706 0.15 2.79 36.84 4.28 0.99 1.00 0.21 

Brent Crude Oil Spot Index (NYM) MA (1, 15, 0, 5, 0) 1626 0.18 6.20 44.90 6.08 0.04 0.04 0.00 

No. 2 Heating Oil  USG Spot Index MA (1, 10, 0, 0, 5) 2060 0.16 5.56 39.64 6.65 0.07 0.07 0.00 

No. 2 Heating Oil  NYH Spot Index MA (5, 10, 0.01, 0, 0) 740 0.14 5.01 33.93 7.05 0.16 0.23 0.00 

MLCX Crude Oil (WTI) Spot Index MA (1, 125, 0, 0, 5) 2069 0.06 2.20 15.58 6.97 0.99 1.00 0.35 

MLCX Heating Oil Spot Index MA (1, 125, 0, 0, 0) 509 0.07 2.37 16.37 6.68 0.96 0.99 0.31 

MLCX Natural Gas Spot Index MA (1, 40, 0, 2, 0) 1585 0.16 4.03 38.91 6.03 0.62 0.65 0.03 

S&P GSCI Crude Oil Spot Index MA (20, 25, 0, 0, 50) 2447 0.06 2.18 15.95 5.82 1.00 1.00 0.32 

S&P GSCI Heating Oil Spot Index MA (15, 20, 0, 0, 50) 2442 0.05 2.01 12.94 3.03 0.98 1.00 0.33 

S&P GSCI Natural Gas Spot Index MA (1, 30, 0, 2, 0) 1584 0.13 2.43 32.44 5.39 0.98 0.99 0.27 

WTI Crude Oil Spot Index (NYM) MA (1, 2, 0, 0, 50) 2103 0.07 2.04 16.39 4.00 1.00 1.00 0.36 

WTI Cushing Crude Oil Spot Index (NYM) MA (15, 20, 0, 0, 5) 2127 0.06 1.71 14.42 3.78 0.99 1.00 0.43 

Notes: a ‘Best rule MA’ denotes the moving average with five parameters (n, m, b, d, c), where n-days is the short-term horizon line; m-days is the long-term horizon line; b is the filter rate (%);  
d-days is the time delay; and c-days is the holding days. ‘Best rule OBV’ denotes t on-balance volume averages with five parameters (n, m, b, d, c) with the same definition as ‘Best rule MA’.  
b ‘Order’ refers to the location of the best universal rule. c The t-value refers to the two-tailed t-test. d ‘RC’ refers to the p-value for the White (2000) ‘reality check’ to the full universe. e ‘SPA’ refers 
to the p-value for the Hansen (2005) ‘superior predictive ability’ test to the full universe. f ‘Nominal RC’ refers to the p-value obtained by applying the ‘reality check’ to the best rule only, without 
relating it to the full set of rules. 
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Table 4. Bootstrapped test results for the technical rules amongst the energy market future and spot indices with non-synchronous adjustment 

 Best rulea Orderc
Daily return Old best rule returnb

SPAd RCe Nominal RCf

(%) t-value (%) t-value

Light Crude Oil Futures Index (NYM) OBV (15, 50, 0, 0, 25) 7668 0.09 3.12 0.08 2.70 0.84 0.94 0.08 

Natural Gas Futures Index (NYM) OBV (15, 150, 0, 0, 25) 7706 0.14 2.68 0.14 2.68 0.99 1.00 0.22 

Brent Crude Oil Spot Index (NYM) MA (5, 15, 0, 3, 0) 1747 0.18 6.27 0.18 6.11 0.03 0.03 0.00 

No. 2 Heating Oil  USG Spot Index MA (1, 5, 0.001, 0, 0) 619 0.15 5.50 -0.02 -0.53 0.10 0.10 0.00 

No. 2 Heating Oil  NYH Spot Index MA (2, 5, 0, 4, 0) 1848 0.13 4.82 0.11 4.23 0.18 0.25 0.01 

MLCX Crude Oil (WTI) Spot Index MA (1, 100, 0, 3, 0) 1603 0.06 2.15 0.05 1.69 0.97 1.00 0.33 

MLCX Heating Oil Spot Index MA (2, 125, 0, 0, 0) 568 0.06 2.22 0.06 2.12 0.97 0.99 0.28 

MLCX Natural Gas Spot Index MA (1, 30, 0.02, 0, 0) 684 0.13 3.70 0.12 3.02 0.81 0.88 0.10 

S&P GSCI Crude Oil Spot Index MA (1, 20, 0, 0, 0) 2077 0.06 2.22 0.06 2.02 0.99 1.00 0.41 

S&P GSCI Heating Oil Spot Index MA (5, 30, 0, 0, 10) 2239 0.05 1.91 0.05 1.80 1.00 1.00 0.34 

S&P GSCI Natural Gas Spot Index MA (1, 5, 0, 0, 0) 499 0.13 2.38 0.10 1.88 0.98 0.99 0.26 

WTI Crude Oil Spot Index (NYM) MA (20, 25, 0, 0, 5) 2132 0.05 1.71 0.05 1.69 1.00 1.00 0.48 

WTI Cushing Crude Oil Spot Index (NYM) Filter (0.005, 0, 20, 0) 193 0.07 2.23 0.06 1.69 0.98 1.00 0.35 

Notes: a ‘Best rule MA’ denotes the moving average with five parameters (n, m, b, d, c), where n-days is the short-term horizon line; m-days is the long-term horizon line; b is the filter rate (%);  
d-days is the time delay; and c-days is the holding days. ‘Best rule OBV’ denotes t on-balance volume averages with five parameters (n, m, b, d, c) with the same definition as ‘Best rule MA’. b ‘Old 
best rule return’ refers to the return of the best rule without institutional adjustments, as indicated in Table 2. c ‘Order’ refers to the location of the best universal rule. d ‘RC’ refers to the p-value for 
the White (2000) ‘reality check’ to the full universe. e ‘SPA’ refers to the p-value for the Hansen (2005) ‘superior predictive ability’ test to the full universe. f ‘Nominal RC’ refers to the p-value 
obtained by applying the ‘reality check’ to the best rule only, without relating it to the full set of rules. 
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Table 5. Bootstrapped test results for the technical rules amongst the energy market future and spot indices with transaction costs adjustment 

 Best rulea Orderc
Daily return Old best rule returnb

SPAd RCe
Nominal

RCf(%) t-value (%) t-value

Light Crude Oil Futures Index (NYM) OBV (20, 100, 0, 0, 50) 7787 0.05 1.68 -0.02 -0.64 1.00 1.00 0.45 

Natural Gas Futures Index (NYM) OBV (125, 150, 0, 0, 50) 7819 0.02 0.45 -0.08 -1.40 1.00 1.00 0.87 

Brent Crude Oil Spot Index (NYM) MA (5, 15, 0, 5, 0) 1957 0.09 3.19 0.09 3.03 0.85 0.95 0.14 

No. 2 Heating Oil USG Spot Index MA (1, 10, 0, 0, 5) 2060 0.11 3.72 0.11 3.72 0.65 0.71 0.06* 

No. 2 Heating Oil  NYH Spot Index MA (5, 10, 0, 0, 0) 515 0.08 2.82 0.05 2.01 0.89 0.97 0.20 

MLCX Crude Oil (WTI) Spot Index MA (1, 125, 0, 0, 5) 2069 0.06 2.06 0.06 2.06 0.99 1.00 0.36 

MLCX Heating Oil Spot Index MA (1, 125, 0, 0, 0) 509 0.06 2.04 0.06 2.04 0.99 0.99 0.35 

MLCX Natural Gas Spot Index MA (1, 40, 0, 2, 0) 1585 0.15 3.81 0.15 3.81 0.73 0.77 0.06* 

S&P GSCI Crude Oil Spot Index MA (20, 25, 0, 0, 50) 2447 0.06 2.11 0.06 2.11 0.99 1.00 0.37 

S&P GSCI Heating Oil Spot Index MA (15, 20, 0, 0, 50) 2442 0.05 1.83 0.05 1.83 0.99 1.00 0.37 

S&P GSCI Natural Gas Spot Index MA (1, 30, 0, 2, 0) 1584 0.12 2.18 0.12 2.18 0.99 1.00 0.32 

WTI Crude Oil Spot Index (NYM) MA (1, 2, 0, 0, 50) 2103 0.05 1.54 0.05 1.54 1.00 1.00 0.58 

WTI Cushing Crude Oil Spot Index (NYM) MA (2, 5, 0, 0, 50) 2433 0.03 0.99 -0.03 -0.98 1.00 1.00 0.63 

Notes: a ‘Best rule MA’ denotes the moving average with five parameters (n, m, b, d, c), where n-days is the short-term horizon line; m-days is the long-termhorizon line; b is the filter rate (%);  
d-days is the time delay; and c-days is the holding days. ‘Best rule OBV’ denotes t on-balance volume averages with five parameters (n, m, b, d, c) with the same definition as ‘Best rule MA’. b ‘Old 
best rule return’ refers to the return of the best rule without institutional adjustments, as indicated in Table 2. c ‘Order’ refers to the location of the best universal rule. d ‘RC’ refers to the p-value for 
the White (2000) ‘reality check’ to the full universe. e ‘SPA’ refers to the p-value for the Hansen (2005) ‘superior predictive ability’ test to the full universe. f ‘Nominal RC’ refers to the p-value 
obtained by applying the ‘reality check’ to the best rule only, without relating it to the full set of rules. 
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