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Risky strategies with payoff mean changed in 2×2 simulation-based 

game: a normal distribution case 

Abstract 

The authors investigate the Nash equilibrium payoff in the 2×2 simulation-based game where the two strategic payoffs 

are Normal distribution and the equilibrium payoffs are realized after the decision-making. The researchers show that 

the risk premiums are a part of the means of equilibrium payoffs due to the compensation of the risky strategies. The 

authors also show that the equilibrium payoffs are not necessary to be the same as normal distribution where it’s 

assumed the dominant strategic payoff, but will become normal distribution only when the distance between the means 

of two strategic payoffs is large enough. This is revealed by the skewed and kurtosis coefficients, which approach to 0 

and 3 respectively, even though they are negatively related with the average of the equilibrium payoffs. The most 

important result is that there is no linear relationship between the means and standard deviations of the equilibrium 

payoffs, but the mean of the equilibrium payoffs is a concave function with respect of the standard deviation of the 

equilibrium payoffs. 
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Introduction

Most models assume probability or distribution on 
strategies and payoffs to represent uncertainty in 
game theory, unfortunately, distribution assumption 
is used as supplement for showing uncertainty 
without considering the relationship between means 
and variances (Varian, 2009), even without the 
higher-order moments. In fact, there is a risk in 
uncertainty when the payoffs of strategies are unsure. 
The risk will work on the payoffs of Nash 
equilibrium (NE) even when players still choose the 
dominant strategy (DS) because the payoffs are 
realized after players make their decision. Therefore, 
this paper builds a 2×2 game with DS and assumes 
that DS payoffs are normal distribution with different 
means and fixed variance. We can investigate how 
the means of the DS payoffs change the NE payoff 
distributions and show the relationship between the 
means of the DS payoffs and each moment 
coefficient, including the variances, skewed and 
kurtosis coefficients (higher-order moments) of the 
NE payoffs. In particular, whether the NE payoff is 
normal distribution it is examined by comparing with 
the moment coefficients of the NE payoffs and 
Normal distribution. 

In the literature, NE that was first introduced by Nash 
(1950) has pure strategies and a mixed strategy which 
is added with probability in the view of having 
uncertain concept and of the same expected payoffs 
among strategies choosing. The effect of stochastic or 
uncertain concept can work on strategies or payoffs. 
For instance, the disturbed payoff in game is built by 
the mixed-strategy concept (Harsanyi, 1973). 
Cassidy, Field and Kirby (1972) use discrete 
probability and mixed strategy method to solve two-
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person and zero-sum game with random payoffs and 
provide a satisfying criterion concept. Huych, 
Battalio and Beil (1990) use experiment designs and 
strategy uncertainty in tacit coordination game and 
find that coordination results converge to best-
efficient outcomes, moreover, coordination failures 
occur in the risk situation where players face strategy 
uncertainty and cannot play payoff-dominant 
outcomes. Carlsson and Damme (1993) confirm the 
risk dominance criterion of Hyrsanyi and Selten 
(1988) by payoff from a random draw in 2×2 global 
game with incomplete information. Yager and 
Alajlan (2014) present that stochastic dominance to 
form probability weighted means (PWM) and 
consider that the stochastically dominance of 
alternative A brings to larger PWM value. One 
method, simulation-based game, depends on the 
decision-making modeling and simulation method to 
solve the game outcomes. The simulation-based game 
considers the establishment of a game model which is 
closer to the reality, and the results of the game model 
are obtained by computer simulation. The correlated 
literatures are that Vorobeychik and Wellman (2008), 
Vorobeychik (2009) uses simulation-based game to 
discuss NE and the bidding strategies in auctions. 
Vorobeychik (2010) assumes normal distribution and 
uses simulation data to obtain asymptotic NE and 
probabilistic bounds on NE. 

It is natural to expect that the uncertainty with risk 
has an impact on the decision-making results, and 
the NE payoffs are also concerned by players, 
although NE in game theory always pays heavily 
attention on the strategies that best respond to the 
rival’s strategy. Moreover, uncertainty is always 
discussed by mixed-strategy and payoffs with 
disturbance, without complete distribution, which 
has the whole information of moments. Hence, we 
argue that a view of probability distribution 
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assumption on strategic payoffs provides not only 
an explanation of the reality but also of the 
interaction between two risky strategies. We also 
investigate to what extent the changed means of the 
DS payoffs can lead to the results where the NE 
payoff distribution is the same as the DS payoff 
distribution. The differences between the literature 
and our paper are that (1) we assume the two 
strategic payoffs are normal distribution without a 
slight error. (2) The interaction is between two 
random variables, not one random variable. (3) The 
uncertainty is shown by the whole moments of 
Normal distribution, not only the mean. Therefore, 
the risk can be discussed in the game model. 

The structure of the paper is as follows. Section 1 
describes the game structure and the technique of 
simulation. Section 2 presents the simulated results 
and shows the patterns of NE coefficients. The final 
section concludes the paper. 

1. Model and simulation procedures 

1.1. The model. There are two players, Player i, i = 
= 1, 2, simultaneously to choose their strategies in 
the payoff matrix in Table 1. They have the 
dominant strategy, which is strategy U for Player 1 
and strategy L for Player 2. The payoffs are 
symmetric in Table 1 with two variables, X1 and X2,
where X2 > X1. To simplify the discussion, we only 
investigate the decision of Player 1. If X1 and X2 are 
certain constants, then Player 1 always chooses the 
dominant strategy whatever Player 2 chooses, so 
does Player 2. Thus, Nash equilibrium is (U, L) 
where Player 1 and 2 earn X2.

Table 1. Payoff matrix of 2×2 game with DS 

Player 2 

L R

Player 1 
U X2,X2 10,X1

D X1,10 5,5

In the stochastic game, each player knows that X1

and X2 become random variables and are satisfied 
with E(X2) > E(X1). They have the complete 
information of the game structure without realized 
values of payoffs, X1 and X2. The values of X1 and 
X2 are realized after players choose their strategies. 
They also know that X1 and X2 are i.i.d. Normal 
distribution, where X2 is normal distribution with 1.1 

 E(X2)  7 and Var(X2) = 1 while X1 is standard 
normal distribution with E(X1) = 1 and Var(X1) = 1. 
The decision rule is MAX(X1, X2), which is too 
difficult to calculate by mathematics, so that we use 
computer to simulate the transformation of 
probability distribution. We denote the NE payoff as 
Y, Y = MAX(X1, X2), then simulate 60 situations 
where E(X2) adds 0.1 per run to form the traces of 
each coefficient of the NE payoff distribution. One 

example is that two firms compete with each other by 
two investing plans, respectively. Each investing plan 
can create uncertain profit for firms, thus, we can 
imply Table 1 on decision of investing plan and on 
knowing the benefit of investing plan in the ex ante.  

1.2. Simulation procedures. We use the desktop on 
the Window 7 system to run C++ program, that is 
the probability distribution simulator. At first, we 
obtain a random number, labeled RND, from 
cumulative density function of a specific probability 
distribution, Fx(x) = P(X x). Because the values of 
the cumulative density function are between 0 and 
1, we obtain Fx(x) = P(X x) ~ U(0, 1). This also 
represents Fx(x) = RND. We use the inverse function 
of cumulative density function to obtain the values 
of random variable, that is x = Fx

-1(RND). The 
random variable must be the continuous-type 
distribution because uniform distribution is a 
continuous distribution. When the random variable 
values are considered as a data set, {X1, X2, …,Xn},
the data size has to be increased greatly such that the 
discrete data set becomes continuous by the law of 
large numbers. Meanwhile, the frequency table can 
be constructed by the data set. The probability 
function, the graph of the distribution and 
corresponding coefficients can be also obtained from 
the frequency table. Thus, the sample frequency table 
is very close to the specific probability distribution, 
so do the coefficients of data set. 

Here normal distribution, X~N( , 2), and then the 

algorithm equation is: 

)2sin(ln2

)2cos(ln2

212

211

UUX

UUX

,                            (1)

where U1 and U2 are i.i.d. Uniform distribution,  

U(0, 1) and X1 and X2 are i.i.d. random variables, 

hence, the equation will become as X =  + X1 or  

X =  + X2. Let U1=RND1 and U2 = RND2, run the 

program of:  

)22cos()1ln(2 RNDRNDX ,     (2) 

and then sort the values of X to array which have 60 

million times to get frequency table. Thus, the 

diagram and moment coefficients of probability 

distribution can be calculated from the frequency 

table1.

To generate the values of strategic payoffs on the 

condition of different parameters and then transfer 

to the values of the NE payoffs, the simulation steps 

are as follows. 

                                                     
1 The distributions can be referenced at http://goo.gl/e6urC0. The 

software of the probability distribution simulator is authorized by 

C.C.C. Ltd. ( http://goo.gl/okMfsY). 
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Step 1. Set 61 random variables follow normal 
distribution where X2 is based on 1.1  E(X2)  7, 
with 0.1 increment, and Var(X2) = 1. X1 is based on 
E(X1) = Var(X1) = 1.  

Step 2. Simulate and get the values from Weibull 
distribution, X1 and X2.

Step 3. Choose X1 and X2 with different E(X2) to do 
MAX(X1, X2) and then calculate the probability 
distribution of the NE payoff, Y = MAX(X1, X2).

We suppose that the difference between E(X2) –  
– E(X1) and each moment coefficients of the NE 
payoff, thus, the simulation results is used to explain 
the moment coefficient change of the NE payoff. 
We denote the symbols as follows: k = E(X2) –  

– E(X1), Y = the NE payoff, sd( ) = the standard 

deviation. 

2. Results 

2.1. Two examples of NE payoff distribution. We 
simulate the model with different E(X2) given E(X1),
Var(X1) and Var(X2) are fixed in the decision rule of 

MAX(X1, X2). There are two examples from whole 

outcomes are Y1 = MAX(X1 ~ N(1, 1), X2 ~ N(1.1, 1)) 

and Y30 = MAX(X1 ~ N(1, 1), X2 ~ N(3, 1)) in Table 2. 

The graphs of Y1 and Y30 are not normal distribution 

because of the skewed and kurtosis coefficients are 

not 0 and 3.  

Table 2 also reports that the NE payoffs become 

larger than the DS payoffs, that are E(Y1) = E(X2) + 

+ 0.61585 and E(Y30)= E(X2) + 0.00847. We find 

that although the NE payoffs have larger means but 

as E(X2) increases the difference between the means 

of the NE payoffs and the DS payoffs falls down 

from 0.61585 to 0.00847. We also find that the 

relationship of Var(Y30) > Var(Y1) > Var(X2) = 1. 

Most importantly, two random payoffs in strategic 

decision allow that Player 1 obtains a lower risk and 

higher NE payoff than in the situation where only 

DS with payoff uncertainty. Thus, Table 2 has an 

evidence to reveal even Players choose a DS, the 

NE payoffs are not normal distribution of the DS 

payoff but have higher averages, lower risks, less 

centralized and less positive skewed. 

Table 2. The shapes and coefficients of Y1 and Y30

Y1 Y30

Mathematical mean 1.61585 Mathematical mean 4.00847

Variance 0.68266 Variance 0.97399

S.D. 0.82624 S.D. 0.98691

Skewed coef. 0.13782 Skewed coef. 0.05033

Kurtosis coef. 3.06339 Kurtosis coef. 2.93861

We investigate the relationship between k and 
coefficients of the NE payoffs as shown in Table 3. 
The second column shows that the higher the k is, 
the higher E(Y) and Var(Y) are, at the same time, the 
lower the skewed and kurtosis coefficients are. In 
particular, E(Y) maybe almost positive and linear 
line with the constant linearly line. We also show 

that there is a 98.456% linear relationship between 
E(Y) and Var(Y). However, Table 3 may destroy the 
capital asset pricing model (CAPM), that shows the 
linear relationship between the mean and standard 
deviation of the portfolios because of the standard 
deviation is the square-root of variance, that is,  
s(Y) = Var(Y).



Problems and Perspectives in Management, Volume 12, Issue 4, 2014  

508

Table 3. The correlation between the coefficients of the NE payoff distributions 

k Mean Variance Skewed coef. Kurtosis coef.

k 1

Mean 0.99981 1

Variance 0.98145 0.98456 1

Skewed coef. -0.54296 -0.55095 -0.59471 1

Kurtosis coef. -0.82777 -0.82682 -0.76651 0.72119 1

To verify the distribution of the NE payoff, we have 
to check not only the mean and variance but also the 
skewed and kurtosis coefficients, which are 0 and 3, 
respectively. Literatures of stochastic game theory 
also pay less attention on skewed and kurtosis 
coefficients which correctly guarantee the shapes of 
the NE payoffs. Table 3 shows that the skewed 
coefficients are negative related with k, the mean 
and variance of the NE payoffs, but are positively 
related with the kurtosis coefficients. Furthermore, 
the increasing DS payoff leads to a relative decrease 
of the values of the skewed and kurtosis 
coefficients. Thus, the possible values of the NE 
payoffs are spread out and more left-skewed in the 
situation of high risk and high return when the DS 
payoffs rise up. 

We also show that the row 5 shows that the NE 
payoff distributions become more centralized when 
the skewed coefficient increases. Thus, we obtain 
the result 1 as follows. 

Result 1: 

1. E(Y) / k > 0 and 2E(Y) / k2  0. 
2. Var(Y) / k > 0 and 2Var(Y) / k2  0. 
3. E(Y) / k > 0 and 2E(Y) / k2  0. 

2.2. The patterns of each coefficient. We examine 
how each coefficient of the NE payoff is patterned a 
curve when krises up. According to the top graph in 
Figure 1, the higher the k is, the higher E(Y) is. The 
estimated equation is E(Y) = 1.2616 + 0.9389k, and 
shows that E(Y) almost coincides with linear k,
except in the interval of k < 1. The bottom graph of 
Figure 1 shows that the value of k plays very important 

role in the value of Var(Y). At 0.1 k  2.3, the 
variances of the NE payoff rise rapidly. The largest 
Var(Y) is at k = 2.3 and then becomes increasing 
slowly. At 2.3 < k, Var(Y) is gradually towards 1. 

By comparing with the DS payoff, Figure 1 shows 

that E(Y) coincides with E(X2) when k > 2, and with 

Var(X2) when k > 4. This reveals that the DS payoff 

dominates that of the NE payoff when k becomes 

larger than a specific value. The DS payoff 

distribution is the same as the NE payoff 

distribution when k > 4 because of E(Y) = E(X2) and 

Var(Y) = Var(X2). Therefore, Players face signi-

ficantly and relatively riskless NE payoff, in other 

words, the reduced risk is transferred to the risk 

premium by k, which is less than 2. When k

increases, the decision-making process leads to a 

slight increment of E(Y) from the transformation of 

a large decrease from Var(X2). We show the risk 

premium induced from the decision-making process 

where the NE payoff is realized after Players make 

their decisions in game model. We also show the 

mean effect on Var(Y). The lower the k is, the larger 

the amount by which of Var(Y) falls. A larger 

decreasing amount of Var(Y) becomes a signi-

ficantly slight difference between E(Y) and E(X2).

Thus, we obtain result 2 as follows. 

Result 2: 

1. E(Y) = E(X2) + risk premium 
2. (E(Y) – E(X2)) / k < 0 
3. Var(Y) / k > 0 and 2Var(Y) / k2 < 0 
4. E(Y)  E(X2) and Var(Y) Var(X2) when  

k  6. 

Fig. 1A. The patterns of means and variances of decision-making when k is from 0.1 to 6 
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Fig. 1B. The patterns of means and variances of decision-making when k is from 0.1 to 6 

Figure 1 seems to verify that large k leads to E(Y) = 

= E(X2) and Var(Y) = E(X2). However, to investigate 

whether the NE payoff distribution is the DS payoff 

distribution or not, we should investigate that if the 

skewed coefficient is 0 and the kurtosis coefficient 

is 3, which are correctly tested if the NE payoff is 

normal distribution.  

Figure 2 illustrates that the patterns of skewed and 

kurtosis coefficients of the NE payoff when k is 

changed. The top graph in Figure 2 shows that the 

NE payoff is right-skewed for all values of k. When 

0.1 k 1.2, the higher the k is, the higher the 

skewed coefficients are. The highest skewedness 

occurs at k = 1.2 and then the skewed coefficients fall 

down towards 0. This implies that too small k

enlarges the effect of two strategic payoff uncertainty 

in the decision-making process so that E(Y) is more 

positive-skewed than any k away from 1.2 and is also 

different from standard normal distribution.

The shape of skewedness also shows that small k 

1.2 leads to more seriously right-skewed NE payoff 

so that non-DS payoff has relatively large effect on 

E(Y). On the other hand, k > 1.2 implies that the 

distribution of Y is more symmetric. If k  5.1, the 

skewed coefficients of the NE payoffs are obviously 

towards 0.

Fig.2. The decision making payoff patterns of skewed and kurtosis coefficients when k is from 0.1.to 6 
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The lower graph in Figure 2 illustrates the 
centralization of the NE payoff distributions when the 
k is changed from 0.1 to 6. The kurtosis coefficient is 
maximized at k = 0.5 and the minimum is at k = 2.5. 
Meanwhile, the kurtosis coefficients are larger than 3 
in 0.1 k  1.5 and smaller than 3 in 1.6 k  6. In 
particular, a specific value in 1.5 < k < 1.6 guarantees 
that the kurtosis coefficient is 3. This specific value is 
unstable point of k. Only larger k causes the kurtosis 
coefficients approaching to 3. By comparison with the 
condition of normal distribution, the specific value in 
1.5 k  1.6 guarantees that NE payoff distribution is 
not normal distribution since the skewed coefficient is 
not 0, at the same time, is not the payoff distribution of 
the dominant strategy by Var(Y) < 1.     

The NE payoff distributions are the same as normal 

distribution if the intersection of k from Figure 1 and 

2 is larger than 4.8. This result implies that 

distributed payoffs cannot be viewed as any values, 

but the interval of k should be larger than 4.8, 

accurate to 0.001, and induces in the same payoff of 

the dominant strategy for Player 1. Thus, we obtain 

result 3 as follows. 

Result 3:

1. The skewed coefficient is maximum at k = 1.2. 

2. The kurtosis coefficient is maximum at k =0.5 

and minimum at k = 2.5.  

3. Y ~Normal if k > 4.8. 

Fig. 3. The relationship between E(Y) and sd(Y)

We also examine the relationship between standard 

deviation and mean of the NE payoff as shown in 

Figure 3. Because the standard deviation is denoted 

as a risk, and the mean is the expected return, E(Y)

is not linear related with sd(Y). The slope of E(Y)

increases faster and then becomes unlimited when k

approaches to 1. Figure 3 is in contrast with Varian 

(2009), who shows that the risky assets have linear 

relationship between the expected return and the 

risk. That is, the two random strategic payoff 

interact and generate nonlinear relationship between 

E(Y) and sd(Y) such that the higher k leads to 

vertical line at sd(Y) = sd(X2) = 1 and E(Y) = E(X2).

The major reason is the assumption of normal 

distributed strategic payoffs. There are two 

parameters of normal distribution, one is the mean 

effect, and the other is the risk effect. The 

interaction of two random variables shows that 

when the distance between E(X1) and E(X2)

dominates the risk effect, the NE payoff distribution 

can be the same as the DS payoff distribution, which 

is our assumption. Thus, Players not only choose the 

DS, but also have the mean of the DS payoff even if 

the risk environment still exists. 

Conclusion 

We have developed a game model to study the effect 

of strategic payoff uncertainty on the NE payoff 

distribution when players make decisions before the 

payoffs are realized. A suitable example that can be 

stated in the paper is the investment portfolio which 

is chosen and held for at least one day. Thus, our 

most novel finding gives a new thinking to address 

(1) comparing distributions between the NE payoffs 

and the DS payoffs, (2) a general concept of 

interaction between two risky strategies, and (3) the 

relationship between the averages and the risks of the 

NE payoffs. The above issues have never 

beendiscussed in literature yet. We have been tested 

the 2×2 game model and explored its implications in 

a novel way. In particular, we have examined the 

effect of means changed on the NE payoff 

distribution in terms of the four moment coefficients. 

Undoubtedly, the equilibrium of the game includes 

not only the optimal strategies, but also the optimal 

payoffs, which include the risk premium.  

In addition, we are able to shed light on the merits of 

these probability assumptions, such as the players’ 
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type and mixed-strategic probability, by investigating 

the game model with payoff uncertainty and 

dominant strategies. Instead of using probability, 

probability distribution of strategic payoffs may have 

become more stringent in the treatment of the game 

models, but it may simply and reasonably have 

represented the uncertain payoff information by its 

higher moments. Our result shows that the means of 

the strategic payoffs are too close to maintain that the 

NE payoff distribution is the same as the DS payoff 

distribution. Thus, there is no reason to deny the 

existence of the risk on the NE payoffs when our 

framework can serve as building block that could 

usefully be added to a simulation game model with 

payoff uncertainty. 

As with many research efforts, the present research 

has opened numerous paths for subsequent analysis, 

which we are only beginning to explore. Applying 

our model to the CAPM concept shows that the 

interaction of two risky strategies leads to a 

nonlinear curve of CAPM. The reason is that the 

larger the distance of E(X2) – E(X1) is, the closer the 

NE payoff distribution becomes the DS payoff 

distribution. Therefore, the NE payoffs are close to 

Normal distribution with sd(Y) = sd(X2) = 1. This 

result delivers that the example of the game matrix 

cannot set abstract values of the strategic payoffs in 

the situation of payoff uncertainty. The game model 

then can encompass learning about the decision-

making process with uncertain strategies and 

payoffs simultaneously. Developing an integrated 

promotion game model along these lines of 

designing game structure is an interesting direction 

for future research. 
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