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Longevity risk evaluation in last survivor immediate annuities 

Abstract

Insurance companies usually price annuities based on a life table with deterministic mortality improvement 
rates. Great uncertainty in future mortality improvement leads to a controversy over whether the current 
market has sufficiently allowed for longevity risk in the prices of annuity products. As to last-survivor annu-
ity products, dependence between joint lives makes the situation even more complicated. This research in-
corporates stochastic Gompertz law to the semi-Markov joint-life mortality model, making a preliminary 
attempt at the dependent modeling of joint-life longevity risk for the pricing and risk management of annui-
ties for joint lives. The proposed model is then applied to examine the market prices of longevity risk in last-
survivor immediate annuities. 

Keywords: annuity, longevity, joint lives, dependence, risk premium.

Introduction 1

During the past half-century, developed countries 
have witnessed remarkable mortality improvement 
leading to the growth of older population and 
increasing life expectancy. A large element of 
mortality improvement is driven by medical 
advances. Ongoing support for medical research 
will continue to lead to further mortality decline 
(Gallop, 2006). The US National Institute of Health 
Workshop Report on Aging has estimated that the 
65- to 74-year-old age group in the US will be 36 
million in 2030 compared with 21.5 million in 2010; 
the 75- to 84-year-old age group will be 25 million 
compared with 17 million in 2010; and the 85- to 
99-year-old age group will be 5 million, compared 
with 2.1 million in 2010. Mortality improvement is 
anticipated in the foreseen future, while such a 
process is of great uncertainty in terms of the extent 
and pace of improvement. Uncertainty in mortality 
improvement puts enormous pressure on retirement 
funds and annuity insurance funds. 

We refer to this higher-than-expected mortality 
improvement as longevity risk. Given life 
expectancy for the population as a whole, the 
idiosyncratic risk that a particular annuitant lives 
longer than expected could, in principle, be 
minimized by holding a sufficiently large portfolio 
of individual policies. Longevity risk is uncertainty 
about the life expectancy of the population as a 
whole. It is a systematic risk of the annuity business, 
having potentially significant impact on the annuity 
market. Insurance companies and private pension 
plan providers should incorporate longevity risk in 
their actuarial calculations. In the language of 
financial economics there should be a market price 
for the systematic longevity risk. 

Currently, annuity prices in the private annuity 
market are usually based on the annuity life table 
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projected to the current year and beyond. 
Deterministic, age specific mortality reduction 
factors are usually used for mortality projection. US 
insurance companies generally use the Annuity 
2000 Basic Table and Scale G for pricing individual 
annuities (Doll et al., 2011). UK companies 
similarly use period mortality tables with some 
improvement projection methods. The UK 
Continuous Mortality Investigation Bureau (CMI, 
for short) used smoothed P-spline estimation of the 
annual mortality improvement rates in its mortality 
projection model. While deterministic modeling can 
provide best-estimate mortality scenarios, it is 
inadequate for some applications in practice. 
Stochastic models are better for risk evaluation and 
management where longevity and mortality risk 
constitute a significant risks, having the ability to 
deliver full probability distributions of the quantities 
of interest and allow us to quantify uncertainties and 
risks adequately for better risk management. 

On the other hand, dependence between joint-life 
mortality has not been taken into account in the 
practice of pricing annuity products either. Joint-life 
longevity risk may be even more complicated than 
that in single life products, because of the 
dependence between the future lifetime of a 
husband and wife. The prices for joint-and-last 
survivor annuities in the current market are quite 
inconsistent. For example, prices for last survivor 
annuities are determined only by the younger age of 
a husband and wife. This paper is to examine to 
what extent the annuity market accounts for future 
improvements in mortality rates when pricing last 
survivor annuities. For this end, we propose a joint-
life longevity risk model, incorporating stochastic 
mortality dynamics and the dependence between 
two lives in a couple. 

Several stochastic mortality models have been 
proposed during the past two decades. The Lee-
Carter model (Lee and Carter, 1992) and the Cairns-
Blake-Dowd (CBD) model (Cairns et al., 2006) are 
two popular ones among them. The Lee-Carter 
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method models central mortality rates by two age-
specific factors and a time-dependent factor. The 
model is valued for its parsimonious structure and 
easy interpretation. Various extensions and 
methodological improvements have been explored. 
Readers are referred to Wilmoth (1993), Brouhns et 
al. (2002), Renshaw and Haberman (2003 and 
2006), Li et al. (2009), Delwarde et al. (2007), etc. 

The CBD model forecasts the post-60 mortality 
using two factors that are measurable with time. The 
first factor affects mortality-rate dynamics at all 
ages, and its downward trend indicates general 
improvements in mortality over time. The second 
factor affects mortality-rate dynamics as a 
coefficient of age. Its increasing trend means 
mortality improvements have been relatively greater 
at younger old ages. This research makes a 
preliminary attempt to propose a stochastic joint-life 
longevity model, by applying dynamic Gompertz 
law to the semi-Markov joint-life model proposed 
by Ji et al. (2011). Stochastic Gompertz model 
mimics the CBD model but gives more flexibility of 
being applied to the semi-Markov mortality model. 

1. It is well recognized that the Gompertz’ law 
well describes adult mortality rates in a simple 
form.  

2. The proposed stochastic Gompertz model has 
parsimonious and readily interpretable 
parameters. 

3. It is convenient to be incorporated into the semi-
Markov joint-life mortality model where 
bereavement effect is modeled by an 
exponential decay function applied to the 
Gompertz mortality law for transition 
intensities.

Applying Gompertz’ law in stochastic modeling of 
mortality rates is not new. McNown and Rogers 
(1989) applied a univariate time series approach to 
the Heligman-Pollard model for forecasting the US 
mortality. Lockwood (2009) fitted univariate time 
series models to the parameters of a series of 
Gompertz-Makeham models of order (r, s), or GM 
(r, s) models, using CMI male assured lives data and 
the England and Wales population data from age 30 
to 90. These motivate this research to propose a 
stochastic Gompertz model with time dependent 
parameters for the transition intensities in the semi-
Markov joint-life mortality model. 

The remainder of this paper is organized as follows: 

Section 1 specifies the semi-Markov joint-life 

longevity model, where transition intensities are 

stochastically modeled by Gompertz law with time-

dependent parameters; the base mortality 

probabilities for two lives with semi-Markov 

dependence structure; and the method used for 

morality forecasting. Section 2 demonstrates the 

impact on the prices of last survivor annuities of 

joint-life longevity risk with dependence assumption 

for two lives. Section 3 compares the implied 

market prices of longevity risk in last survivor 

annuities written in the US and UK annuity market, 

based on the proposed joint-life longevity risk 

model. Section 4 concludes the paper.  

1. A semi-Markov joint-life longevity model 

1.1. Model specification. The semi-Markov 
mortality model for the dependent modeling of 
joint-life mortality was proposed by Ji et al. (2011), 
in which the force of mortality after bereavement is 
modeled as the product of a multiplicative function 
and the corresponding force of mortality when 
his/her spouse is still alive. Specifically, the force of 
mortality for widows, age x, s years after 
bereavement,  

*( , ) = ( )( ),f f

xx s F s                                     (1)

and for widowers, age y, s years after bereavement,  

*( , ) = ( )( ),m m

yy s F s                                    (2)

where f

x
 and m

y
 represent the force of mortality 

for married women and men, respectively, from all 

causes other than common shock,  is the “common 
shock” parameter. The multiplicative functions are 
exponentially decreasing, in forms of 

( ) =1
f

f f k sF s a e  and ( ) =1
mm m k sF t a e , where 

am, af, km, kf > 0. 

In this paper, the deterministic force of mortality is 
extended to be time t and age x dependent. For 

simplicity,  is assumed to be zero, that is, 
transitions from “common shock” events are not 
taken into account. The main reason for this 
assumption is that there is no historic mortality data 
for “common shocks”. We can hardly calibrate a 
process for the instantaneous transition. If data 
permits, time-t dependent or independent common 
shock transition can easily be incorporated, and will 
not affect the current setting. Figure 1 specifies the 
proposed joint-life longevity model.  
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Fig. 1. Specification of the semi-Markov joint-life longevity model 

The transition intensities are stochastically modeled 
and thereafter time-t dependent. Let f(x, t) and  

m(y, t) denote the force of mortality for a x-age wife 
and a y-age husband at time t respectively, in the 
married status; f*(x, t, s) denotes the force of 
mortality for a x -age widow, at time t, s years after 

bereavement, while m*(y, t, s) is the force of 
mortality for a y-age widower and widower, at time 
t and s years after bereavement. That is to say, the 
post-bereavement mortality rates are driven by three 
factors: age, chronological time, and time since 
bereavement. Specifically, the proposed semi-
Markov joint-life longevity model will have:  

*( , , ) = (1 ) ( , ),
f

f f k s fx t s a e x t                       (3)

and,  

*( , , ) = (1 ) ( , ).
mm m k s my t s a e y t                       (4)

1.2. Stochastic transition intensities. The force of 
mortality for a husband and a wife is modeled by the 
Gompertz formula with two Gompertz parameters 
being time- t  dependent. In a re-parametrization 

form, Gompertz law models the hazard function of a 
random lifetime variable for an individual as: 

= exp{ ( )},x x                                            (5) 

where  is the mode parameter and  denotes the 
force of mortality at the modal age, that is, r = . The 
force of mortality at the modal age coincides with the 
Gompertz ageing parameter. Carriere (1992) showed 
that, the aging parameter also coincides with the 
measure of spread about the mode. The inverse of the 
aging parameter represents the spread of the 
Gompertz distribution. Allowing the Gompertz 
parameters to be time-t dependent, we express the 
forces of mortality f(x, t) and m(x, t) for a x-age wife 
and a y-age husband, at time t, in the married state, 
mathematically as:  

( , ) = exp{ ( )},f f f f

t t tx t x
                         

(6) 

and

( , ) = exp{ ( )},m m m m

t t ty t y
                        

(7) 

where f

t
 and f

t
 are the Gompertz mode parameter 

and aging parameter at time t for females, and m

t
 and 

m

t
 are for males. Their values determine the time-t

mortality profile of females and males in the married 

status. 

The Human Mortality Database provides historical 

data of mortality rates, death counts and population 

size at detailed levels. We fit Gompertz’ law to the 

US historic population period mortality data for age 

60 to 109 during years from 1950 to 2007. 

Maximum likelihood estimation methodology is 

used to estimate the parameters of the Gompertz 

distribution. It is assumed that the number of deaths, 

which is a counting random variable, follows the 

Poisson distribution (see, e.g., Wilmoth, 1993; and 

Brouhns et al., 2002). Figure 2 depicts the estimated 

values of t and t from year 1950 to 2007. The 

mortality improvement has occurred with increasing 

mode parameter t  and increasing aging parameter 

t. An increasing t causes the left shift of the 

lifetime distribution. An increasing t indicates of 

the concentration about the modal age of the 

lifetime distribution. 

We also fit Gompertz law to the England and Wales 

population data from year 1950 to 2009, a similar 

period as the US example. Figure 3 depicts the 

estimated values of t and t. Generally increasing 

mode parameter t and increasing aging parameter t

indicate a trend of declining mortality; while, the 

estimated volatilities of the stochastic process for 

the UK mortality might be greater than the 

volatilities for the US mortality. 

A vector stochastic process is thereafter proposed to 

model the Gompertz parameters t and t, modeling 

their trends, in a correlated form, for the stochastic 

forecasting of f(x, t) and m(x, t). Denote zf(t) and zm(t)

State 0 

Both alive 

State 1 

Husband dead 
Wife alive 

State 3 

Both dead 

State 2 

Wife dead 

Husband alive 

m*(y, t, s)

f*(x, t, s)
f(x, t)

m(y, t)
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 to be the vector stochastic process for the Gompertz 
parameters for females and males respectively, that is, 

( ) = [ , ]f f f

t tz t  and ( ) = [ , ]m m m

t tz t . Define the 

drift vector vf and vm for females and males 

respectively by  

1 1

2 2

=     and    = ,
f m

f m

f m

Fig. 2. Estimated values of t and t for the US historic mortality data from 1950 to 2007 

Fig. 3. Estimated values of t  and t  for the England and Wales population mortality data  

from 1950 to 2009 

the 2 2  – dimensional covariance matrix Vf and Vm for females and males respectively by 

11 12 11 12

21 22 21 22

= =     and    = = ,
f f m m

f f f ' f m m'

f f m m

V V V V
V V

V V V V

and the 2-dimensional standard normal random 

variable by Z (t). Symbol “ ' ” means the transpose 

of a matrix. 

In discrete time, the vector processes zf(t) and zm(t)

are modeled as a two-dimensional random walk 

with drift.  

Specifically: 

( 1) = ( )  ( 1),f f f fz t z t Z t                       (8)

and

( 1) = ( )  ( 1).m m m mz t z t Z t                      (9)

The choice of diffusion matrix f and m is not 
unique but will not make any difference to our 
analysis, as stated in Cairns et al. (2006). 
Following Cairns et al. (2006), f(m) is chosen to 
be the Cholesky decomposition of Vf(m).

Fitting the vector processes zf(t) and zm(t) to the 
estimated historic Gompertz parameters from the US 
population data for 60 to 109 ages during year 1950 to 
2007 (58 observations), we have: 
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4

0.1292
=

2.083 10

f
,

5

5 7

0.0324 7.2589 10
= =

7.2589 10 5.3877 10

f f f 'V ,

for females, and  

4

0.1533
=

2.632 10

m
,

5

5 7

0.0475 1.6330 10
= =

1.6330 10 4.7453 10

m m m'V ,

for males. 

Similarly, fitting the vector processes zf(t) and zm(t) to the estimated historic Gompertz parameters from the 
England and Wales historic population mortality data for 60 to 109 ages from year 1950 to 2009 (60 
observations), we get: 

4

0.1407
=

1.7225 10

f
,

4

4 6

0.0945 2.3514 10
= =

2.3514 10 1.587 10

f f f 'V ,

for females, and  

4

0.1659
=

2.1766 10

m
,

6

6 6

0.1137 8.6000 10
= =

8.6000 10 2.0164 10

m m m'V ,

for males. 

The estimated results indicate some information 
about the trend of mortality during the past half-
century. Firstly, there are upward trends in the 
Gompertz modal parameter and aging parameter, 
which means that human lifetime distribution is 
increasingly concentrated around the increasing 
modal age. 

Secondly, the pace of mortality improvement is 
faster but more volatile for males than for females. 
However, this feature comes from a short period of 
data. The conclusion may be reversed in a long run 
of human mortality evolvement. 

Finally, using the historic mortality data as of 1950, 
the correlation between the two Gompertz 
parameters is negative for female mortality but 
positive for male mortality. When we fit the 
stochastic processes to different period of data, the 
sign of correlation changes for males. This might be 
due to the high volatility in male mortality 
evolvement, or it might be the stochastic Gompertz 
model is not robust to the data. We acknowledge 
that the validity and robustness of the model needs 
to be tested; however, we would like to leave it to 
future work, for not been distracted from the main 
purpose of this study. 

Other mortality forecasting models, like the Lee-
Carter model or other more complicated stochastic 
parameter models, may also play the role. When 
more data become available in the future, further 
research work is expected in the area of joint-life 
mortality forecasting, choosing suitable models and 

testing the robustness of each method in the joint 
lives context. 

1.3. Base rates of mortality. This research is to 
examine joint-life longevity risk. Base rates of 
mortality should in principle be related to the 
mortality experience of annuitants. Therefore, the 
currently used annuity life tables in the US and UK 
annuity market are used as base tables. A life table 
gives mortality probabilities at each age for an 
individual. It is the aggregate mortality for an 
individual in the status of being married, single, 
divorced, or widowed with any period of time after 
bereavement. 

Using the semi-Markov joint-life model, without 
mortality projection at this stage, we can derive 
marginal mortality probabilities for the married and 
the widowed. Let hx be the percentage of population 
in the married status, and gx be the proportion in the 
widowed status; 1 – hx – gx is for the others, whose 
mortality rates are assumed to be the same as the 
aggregate rates. Then, the aggregate mortality rate is 
approximately represented by the equation:  

= .aggregate married widowedx x
x x x

x x x x

h g

h g h g

Borrowing information from relevant census study 
on age-specific marital status, we can approximately 
estimate the parameters for the semi-Markov 
mortality model, by equating the approximately 
mixed single-life mortality probabilities to those in 
the referred life table for both males and females. 
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Meanwhile, we can also estimate the values of the 
Gompertz parameters for the aggregate mortality 
probabilities in the referred life table for both males 
and females. 

US insurance companies generally use the Annuity 
2000 Basic Mortality Table (A2000, for short) as 
the base mortality for annuity pricing. Using the 
marital status of the population in 2000 studied by 
Kreider and Simmons (2003), and the individual 
mortality rates in A2000, we estimate the 
parameters for the base rates of mortality in the 
semi-Markov joint-life longevity model, by fitting 
the mixed marginal mortality distribution from the 
semi-Markov joint-life mortality model to the 
mortality probabilities at ages beyond 59 in the 
A2000 life table. The fitting approach is based on a 
least squares minimization. Table 1 summarizes the 
estimated parameters for the semi-Markov joint-life 
mortality model and individual single-life Gompertz 
mortality model. 

Table 1. Parameter values for base mortality in the 
semi-Markov joint-life longevity model and 

individual single-life mortality model, for the US 

The semi-Markov model   Single-life model 

Parameters Values Parameters  Values 

f 91.9541 f, Inde  90.4699

f 0.1096 f, Inde 0.1138 

m 89.1318 m, Inde 87.1418

m 0.0870 m, Inde 0.0972

af 3.7804   

kf 0.3901   

am 10.4253   

km 0.7754   

The parameters displayed in Table 1 indicate several 
important results. Firstly, the force of mortality in the 
married status is generally lower than the marginal, 
or independent, force of mortality of the same age, 
which represents the combined rate of mortality of 
the married and the widowed. Secondly, the effect of 
bereavement will increase the force of mortality after 
bereavement by a higher level for males than for 
females, however males recover from bereavement 
faster than females. This estimated result is consistent 
to the result in Ji et al. (2011). 

Similarly, using the population marital status 
information provided by the UK Government 
Actuary’s Department and the UK CMI Series 00 

Immediate Annuity Life tables, we can estimate the 
parameters for the base mortality rates in the semi-
Markov joint-life longevity mortality model and 
single-life Gompertz model applied to the UK 
annuitants. Table 2 summarizes the estimated 
parameters, which are based on the mortality rates at 
ages beyond 59 in the CMI Series 00 Immediate 
Annuity Life tables.  

Table 2. Parameter values for base mortality  
in the semi-Markov joint-life longevity model  

and individual single-life mortality model, for the UK 

The semi-Markov model  Single-life model 

Parameters Values Parameters  Values 

f 92.8059 f, Inde  90.0127

f 0.1296 f, Inde 0.1383 

m 88.7920 m, Inde 86.6564

m 0.1044 m, Inde 0.1202

af 8.4790

kf 0.3921

am 8.6868

km 0.3603

The estimated parameter values for the UK are 

slightly different from the values fitted for the US. 

The difference lies in the parameters for the semi-

Markov property, that is, the selection effect of 

bereavement. From the values for the UK, males 

and females are subject to a nearly same broken 

heart effect shortly after bereavement, and they 

recover from bereavement at a similar speed. Here, 

we just state the results from the data. The reasons 

underlying this difference between the US and UK 

are beyond the scope of our study. 

1.4. Joint-life mortality projection. Based on the 

proposed model, we can stochastically project the 

mortality rates in the married state and the marginal, 

independent, or aggregate mortality rates at the 

same time, for females and males respectively. In 

this way, we stochastically model time- t  dependent 

forces of mortality f(x,t) and m(y,t), and the 

corresponding time-t dependent aggregate forces of 

mortality. The select effect of bereavement, which 

may evolve with time, is implied by a set of 

forecasted time-t mortality rates. 

The probability that the last survivor of a currently 

x-age wife and y-age husband at time t0 = 2011 will 

survive t years from now can be computed as: 

00

0 0 0 : 0( ) = ( ) ( ) ( ),f m

t t x t y t x yxy
p t p t p t p t (10) 

where 

1 1
,

0 0
0

=0

( ) = exp ( , ) ,
t

f f Inde

t x

j

p t x j s t j ds
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1 1
,

0 0
0

=0

( ) = exp ( , ) ,
t

m m Inde

t y

j

p t y j s t j ds

1 1
00

: 0 0 0
0

=0

( ) = exp ( , ) ( , ) .
t

f m

t x y

j

p t x j s t j y j s t j ds

This approach calls for less computer resources in 
joint-life mortality projection. Alternatively, we can 
only stochastically model time-t forces of mortality 

f(x, t) and m(y, t) in the married state, and assume 
the two exponentially decreasing multiplicative 
functions for the select effect of bereavement keep 
unchanged with time, that is, the dependence 
structure is time-invariant. 

When projecting mortality in the married status and 
the aggregate mortality, we assume that their 
Gompertz parameters, for a husband and a wife 
respectively, follow the same vector random walk 
process. It may be argued that mortality in the 
married status and the marginal (or aggregate) 
mortality may evolve differently. At the current 
stage, we have no historic mortality data for married 
couples to support or test this argument. If better 
data become available in the future, we can explore 
this topic further. 

Meanwhile, forces of mortality are projected by the 
vector random walk process that has been fitted 
using the population mortality database. It is 
acknowledged that this database is not perfect for 
calibrating the vector stochastic processes for 
annuitants’ mortality improvement. However, 
without more suitable data, we use the population 
data to calibrate the process, at least approximately. 
Furthermore, correlation between the improvements 
of mortality for males and females has not been 
examined. We leave it to future work. 

2. Implication for last survivor annuity values 

Joint and last survivor annuities are typical products 
associated with joint-life longevity risk in the 
current annuity market. They provide benefits to the 
annuitant and his/her spouse until both of them have 
passed away. These products are not only offered by 
insurance companies but are also an important 
benefit to pension plan retirees. If annuitants live 
longer than expected because of unexpected 
mortality improvement, the financial soundness of 
annuity portfolios could be at risk. 

In this section, we examine how stochastic joint-life 
mortality improvement will affect the cost of a last 
survivor annuity using the proposed methodology. 
The impact of joint-life longevity risk can be 
measured by the increase in the cost of a last 
survivor annuity due to the allowance of mortality 
improvement compared with the corresponding cost 
when mortality improvement is not allowed. 

The quantity of interest, the cost of a last survivor 
annuity, is a non-linear function of the fitted 
Gompertz parameters in the current year and the 
parameters of the vector stochastic Gompertz 
processes. It is not possible to analytically derive the 
distribution of the last survivor annuity net 
premiums and relevant confidence intervals. Monte-
Carlo simulation is used here. 

2.1. Simulation method. We simulate the 

realization of future Gompertz parameters for 5,000 

times. From each realization of future Gompertz 

parameters, we have a surface of mortality for 

individuals and married couples. The present value 

of annuity payments can be estimated for each 

realization of future mortality surface. Specifically, 

the cost of a last survivor annuity is simulated in the 

following steps: 

1. Simulate N trajectories of the Gompertz 
parameters for individual mortality and joint 
survival mortality from the year, in which the 
base mortality is applied to, to the current year 
and beyond. Each trajectory is simulated based 
on the Gompertz parameters for the base 
mortality and the calibrated vector stochastic 
processes from the historic population mortality 
data.

2. From each trajectory, compute individual 
survival probabilities and joint survival 
probabilities, and estimate the expected present 
value of annuity payments.  

3. From step (2), get an empirical distribution of 
the cost of a last survivor annuity.  

In calibrating the stochastic processes for the 

Gompertz parameters, there are generally two 

sources of parameter uncertainty: sampling errors in 

the historic Gompertz parameters estimated from the 

Poisson models, and parameter uncertainty in 

calibrating the stochastic mortality models to the 

historic Gompertz parameters. A parametric 

bootstrap simulation technique can be used to allow 

for parameter uncertainties. 

We conduct two simulation methods, with and 
without allowance for parameter uncertainty. 
Allowance for parameter uncertainty in the model is 
more time-consuming but does not make much 
difference in the simulated annuity values. So, we 
do not use a parametric bootstrap in the simulation 
and ignore the trivial impact of parameter 
uncertainty.
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2.2. The results. Allowance for mortality 

improvement will increase the expected present 

value of annuity payments. We use a last survivor 

annuity issued to a 65 year old husband and a 65 

year old wife, with annual payments of $1 (or £1) 

paid monthly in advance, as an example to illustrate 

the extent of increase in the annuity value due to 

mortality improvement. Annuities with more 

frequent payments in a year are approximately 

calculated using the Woolhouse’s formula, which is 

discussed in Chapter 5 of Dickson et al. (2009). The 

interest rate is assumed to be 4.25%, which is an 

approximate average interest rate on the 20-year US 
treasure bills and 20-year UK government bonds 
during April 2011. 

Based on the proposed semi-Markov joint-life 
longevity model, we can simulate a surface of 
survival probabilities for last survival status. For 
each scenario, we compute the cost of the annuity 
with and without allowance for mortality 
improvement. With no allowance for future 
mortality improvement, the Gompertz parameters in 
the future will be the same as the parameters in the 
current year (t0 = 2011). 

Fig. 4. Distribution of the cost of last survivor annuity in year 2011 with and without allowance for future mortality improvement, 

for the US market (Top) and the UK market (bottom), female age x = 65 and male age y = 65, interest rate 4.25%  

We depict in Figure 4 the simulated cost of the 
last survivor annuity in the current year 2011 with 
and without allowance for future mortality 
improvement, for US market (Top) and the UK 
market (Bottom) respectively. The simulated 
empirical distribution is smoothed using a kernel 

density estimation method. The quoted market 
price and simulated cost is for an annuity per unit 
annual benefit paid monthly in advance. No 
allowance for future mortality improvement 
means the base rates of mortality have been 
projected to the current year only. 
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The information from Figure 4 can be summarized 
as follows. Firstly, allowance for mortality 
improvement dramatically increases the cost of last 
survivor annuities. Systematic longevity risk has 
significant impact on the annuity cost. For pricing 
annuities, a mortality projection model is critical. In 
fact, this is a fundamental problem in the annuity 
market. 

Secondly, the modeled joint-life longevity risk from 
the proposed semi-Markov model is more 
significant in the US market than in the UK market. 
From the US model, there is a very short overlap 
between the distribution of simulated annuity value 
with and without allowance for mortality 
improvement. 

Thirdly, based on the same interest rate, the annuity 
value in the UK market may generally be lower than 
the value in the US market, while the simulated 
annuity value is more volatile in the UK market. 
The underlying reason for the annuity volatility is 
the more volatile mortality improvement calibrated 
from the historic England and Wales population 
mortality data. 

Finally, the quoted annuity rate in the US market is 
lower than the simulated annuity rates, which are 
based on a risk-free interest rate. We would expect 
that the market annuity rate should be higher than 
the average of the simulated annuity rate with full 
mortality projection, if the market sufficiently 
allows for mortality improvement in their pricing. It 
appears that, the US annuities are underestimated. 
The underpricing problem is less in the UK market. 
In the next section, the proposed method is applied 
to identify how joint-life longevity risk has been 
taken into account in the practice of pricing last 
survivor annuities. 

3. The market prices of longevity risk 

3.1. Pricing method. In the recent literature, several 
pricing methods have been developed for pricing the 
longevity/mortality risk. Cairns et al. (2006), Dahl 
and Møller (2006), and Dahl et al. (2008) use a risk-
neutral pricing theory; Wang (1996, 2000, 2001, 
2002) has developed a method that uses a one-factor 
risk distortion operator to drive a risk-distorted 
measure for universally pricing financial and 
insurance. Lin and Cox (2005) and Denuit et al. 
(2007) have applied the Wang transform to pricing 
mortality risk. Other methods include the utility 
maximization principle, the principle of equivalent 
utility, and the Sharpe ratio approach. Chen et al. 
(2010) investigated connections and differences 
among the risk-neutral method, the Wang transform 
and the Sharpe ratio rule. They stated that the Wang 
Transform is stable for large probabilities whereas it 
is highly unstable for small probabilities, and 

robustness of the Wang transform becomes worse as 
the maturity becomes longer. In addition, the Wang 
transform is unable to deliver a risk-adjusted 
dynamics. Readers are referred to Chen et al. (2010) 
and references therein for a review of these 
methods. 

Risk neutral pricing theory is well established. 
Financial economic theory states that, if the market 
is arbitrage-free, there exists a risk-neutral measure 
such that the price of an asset equals the expected 
discounted payments under the risk-neutral measure. 
If the market is complete, there exists a unique risk-
neutral measure, while, in an incomplete market 
many risk-neutral risk measures might exist. As 
pointed out in Cairns et al. (2006), we are far from 
having a complete market in which all contingent 
claims can be replicated by self-financed portfolio. 
There is no liquid market for systematic longevity 
risk. A further assumption is needed, that is, market 
players act in an equilibrium setting and this 
equilibrium selects a market consistent risk-neutral 
measure. 

In this research, we follow the method proposed in 

Cairns et al. (2006) to define such a market-

consistent Q-measure. In their method, the risk-

adjusted pricing measure Q( ) is modeled using an 

adjustment to the dynamics of the stochastic process 

of mortality rates. Specifically, under the risk-

neutral measure Q( ),

( ) ( ) ( ) ( ) ( )( 1) = ( ) ( ( 1) )f m f m f m f m f mz t z t Z t

( ) ( ) ( )= ( ) ( 1),f m f m f mz t Z t

where ( ) ( ) ( ) ( )=f m f m f m f m . ( 1)Z t  is a 

standard two dimensional normal random variable 

under Q-measure.

The vector f(m) is the market prices of longevity risk 

associated with the stochastic processes for 

Gompertz parameters ( )f m

t
 and ( )f m

t
. ( )

1

f m  is the 

market price of longevity risk associated the 

stochastic process of the Gompertz modal 

parameter, t, representing left shift in mortality 

distribution; while ( )

2

f m  is the market price of 

longevity risk associated with the stochastic process 

of the Gompertz aging parameter, t, representing 

dispersion in mortality distribution. The implied risk 

premium for systematic longevity risk can be 

derived if the market prices of annuities reflect the 

uncertainty of longevity risk. 

Let us denote P(s, ) to be the price of a zero-
coupon bond issued at time s, which pays one dollar 
at maturity time  ( s). Define  (t) to be the risk-
free interest rate at time t. In the risk neutral 
measure Q,
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( , ) = [exp( ( ) ) | ],Q s
s

P s E t dt

where { , = 0,1, }s s  is the natural filtration for 

the process. 

Assuming that the longevity and interest rate risks 
are independent, the cost of an annuity is the present 
value of contingent payments, discounted by the 

risk-free interest rate, using the Q -measure. Using 

risk-neutral survival probabilities, we then derive 
the price of last survivor immediate annuity issued 
to a y-year old husband and x-year old wife by the 
following equation:  

0
( , )

1

(2011) = 1 (0, ) [ | ],market

f mxy xyQ
a P E p (11) 

where (2011)market

xy
a  is the market price of a last 

survivor immediate annuity with $1 per year paid in 
advance in year 2011. For annuities with more 

frequent payments in a year, we approximate ( )ma ,

where payment is made 1/m-thly, using the 
Woolhouse’s formula. 

3.2. The US market. We use the prices of last 
survivor immediate annuities to derive the market 
price of joint-life longevity risk, since the market of 
immediate annuities is larger and more transparent 
than the market of deferred annuities. The risk-free 
interest rate is assumed to be constant and equal to 
4.25%, which is the average interest rate on the US 
20-year Treasure bill in April 2011. The prices of 
immediate annuities in the US market at the same 
time are quoted from the ImmediateAnnuity.com1.

The quoted prices are for annuities per $1 annual 

benefit paid in advance, in monthly instalment. The 
ImmediateAnnuity.com claims that the quoted price 
from its web site is close to the lowest price in the 
current market. We assume the quoted prices are net 
of expense. 

Theoretically, if the market is consistent, there will 
be unique market prices of longevity risk. However, 
the market for annuities is not consistently priced. 
We actually derive a series of the market prices of 
joint-life longevity risk using the quoted annuity 
prices for different age combinations. 

For the convenience of comparison, we assume 

1 2=f f
 and 1 2=m m

. That is interpreted as 

assuming that the market prices of the two elements 
of risk are same. Our aim is more to demonstrate to 
what extent the market prices of joint-life longevity 
risk are reflected in the current market prices of last 
survivor annuities, than to calculate the exact values 

                                                     
1 Available at: http://www.immediateannuities.com/

of market prices of risk 1 and 2, which would 
require more data and more assumptions. 

We quote a series of market prices of last survivor 
annuities for $1 paid monthly in advance, without 
guarantee. From the quoted prices, we know that, in 
the US market, the price of a last survivor annuity 
depends on the age of younger annuitant only. The 
age of elder annuitant will not change the quoted 
prices. This phenomenon is not actuarially sound. 
Annuity payments to a 65-year-old husband and 65-
year-old wife are expected to be greater than the 
payments to a 75-year-old husband and 65-year-old 
wife. However, the quoted immediate annuity prices 
for these two couples are same according to the 
current pricing practice. 

Table 3. Market prices of joint-life longevity risk  
in the US market, f and m, calibrated from the 
quoted market prices of immediate last survivor 

annuities with equal inception ages from 65 to 75 

Female
age 

Male age 
Market
annuity 
price

f m f = m

65 65 15.56 -0.1714 -0.8509 -0.4154

66 66 15.23 -0.1238 -0.9116 -0.4096

67 67 14.90 0.0038 -0.9323 -0.3996

68 68 14.81 -10.1144 1.0747 -0.2296

69 69 14.38 0.2181 -1.3702 -0.2682

70 70 14.06 -2.4832 0.7675 -0.2377

71 71 13.65 -0.2085 -0.3234 -0.2520

72 72 13.26 0.3759 -1.5999 -0.2530

73 73 13.16 0.5207 -1.6741 -0.0668

74 74 12.77 0.5484 -1.7395 -0.0532

75 75 12.41 -0.0241

Table 3 displays the quoted prices of last survivor 

annuities where the age of the female, who is 

younger, ranges from 65 to 75. According to the 

current market pricing practice, the quoted annuity 

price for each age combination applies to all the 

cases that the female is at the specified age and her 

spouse is the same age or older. For calibrating the 

market prices of longevity risk, we assume that the 

husband and wife are the same age. Each pair of 

values of f and m for an age combination is 

estimated using the quoted annuity values for that 
age combination and the next one. 

The average value of the market price of longevity 

risk is -1.1434 for females and is -0.7560 for males. 

The market price of risk for each element of 

longevity risk, t and t, is negative for both female 

and male mortality. It means that the market’s view 

about the left shift in future lifetime distribution is 

smaller than modeled by the proposed joint-life 

longevity model; the marked is also less worried 

about the concentration of future lifetime 

distribution about the modal age than modeled. This 
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result may indicate an underpricing problem with 

last survivor annuities in the US market. 

The estimated values of f and m fluctuate 

dramatically. In addition, it seems that the value of 

one parameter is reflecting the value of the other. It 

may be due to that the stochastic processes for 

female and male mortality are uncorrelated. An 

increase in the market price of risk for the elements 

of longevity risk in female mortality rates leading to 

a decrease in the price for the elements of longevity 

risk in male mortality rates, and vice versa. A model 

that allows for correlation between the future 

mortality improvements in female and male 

mortality rates may give more reasonable results 

than the current setting. 

From the modeling results, we believe that the US 

annuity market underprices last survivor annuities. 

We acknowledge that the constraints 
1 2= =f f f

and
1 2= =m m m  will not exactly reflect the 

market’s view about longevity risk. Dramatic 

fluctuation in f and m makes it hard to tell a general 

level of the market’s view about longevity risk. 

We further assume f = m to determine a general 

extent of the underpricing. Negative market prices 

of longevity risk at all ages indicate that the market 

underestimates longevity risk in last survivor 

annuities. The extent of underpricing is more severe 

for younger old annuitants. This may be due to cross 

subsidy or natural hedge between younger 

annuitants and older annuitants in pricing. 

From the estimated prices in the last column in 
Table 3, the average level of the market price of 
longevity risk is -0.2372. It appears that last 
survivor annuities are underpriced according to our 
joint-life longevity model. The market does not 
allow adequately for longevity risk is supported here 
in the case of last survivor annuities. 

The market is aggressive in pricing last survivor 

immediate annuities, perhaps due to very 

competitive pricing strategy, with low rate of 

voluntary annuitization. However, unexpected 

mortality improvements in joint-life mortality could 

jeopardize the financial solvency of an annuity fund 

that has not adequately anticipated the possible 

impact of longevity risk. 

3.3. The UK market. The UK annuity market is 

bigger and more developed than the US market, 

because of the legal obligation to annuitize 

substantial proportion of retirement funds. 

Meanwhile, the UK market was aware of longevity 

risk earlier than the US market. In addition, it is 

more liquid because of the availability of longevity 

risk securitization instruments. 

More information can be gleaned by comparing these 
two markets. The prices of immediate annuities in the 
UK annuity market are quoted from the Annuity On-
line1, which gives an indication of an averaged annuity 
price from a number of annuity providers during 
February 2011. We quote for last survivor annuities 
for annuitants in good health and non-smoking. We 
assume again these quoted prices are net of expense. 

Table 4 displays the quoted market prices of unit 
annuities, and the calibrated market prices of longevity 
risk. The quoted prices are for annuities per £1 annual 
benefit paid in advance, in monthly instalment, 
without guarantee, same as the US example above. We 
use the same age combinations as the US example, and 
calibrate the market prices of longevity risk assuming 
that the husband and wife are the same age. 

Assuming 
1 2=f f  and 

1 2=m m , the average value of 
f is 0.0647 and of m is -0.3437. The market price of 

risk is positive for the elements of longevity risk in 
female mortality rates, and negative for the elements in 
male mortality rates. Underpricing last survivor 
annuities also appears to the UK annuity market, 
though to a lesser extent than in the US market. This 
point is confirmed, as a positive market price of 
longevity risk is derived if f = m is assumed. It could 
be interpreted that the joint-life longevity risk appears 
to be more adequately allowed in the UK annuity 
market than in the US annuity market; in addition, the 
US market considered the longevity risk of joint lives 
less consistently than the UK market, because of the 
wider range of market prices of longevity risk in the 
US market. 

Table 4. Market prices of joint-life longevity risk  
in the UK market, f and m, calibrated from the quoted 

market prices of immediate last survivor annuities  
with equal inception ages from 65 to 75 

Female
age 

Male age 
Market
annuity 
price

f m f = m

65 65 16.17 -0.9635 0.5396 0.0397

66 66 15.77 0.1398 -0.1652 0.0306

67 67 15.40 0.1605 -0.2002 0.0356

68 68 15.01 0.1743 -0.2198 0.0396

69 69 14.62 0.2029 -0.2759 0.0459

70 70 14.20 0.4180 -1.2110 0.0494

71 71 13.78 0.4168 -1.1955 0.0513

72 72 13.34 0.0244 0.0887 0.0494

73 73 12.88 0.4341 -1.2509 0.0484

74 74 12.47 -0.3605 0.4534 0.0695

75 75 11.98   0.0611

As in the US market, the UK market has a similar 
pricing practice for last survivor annuities. The 
male’s age will not be a pricing factor unless he is at 
least two years younger than his wife. The quoted 

                                                     
1 Available at: http://www.annuities-online.com/
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last survivor annuity price for a 65-year old wife 
and 65-year old husband is applied to all the cases 
that the wife is aged 65 and the husband is aged 63 
or older. That is to say, the last survivor annuity 
price only depends on the female’s age (x) once her 
spouse’s age (y) satisfies y x – 2. In that case, the 
age of the male is ignored in determining the 
expected annuity payments. 

The prices of last survivor annuities in both the US 
and the UK market do not reflect the difference 
between single-life mortality and joint-life 
mortality. They are not based on a joint-life 
mortality model. Dependence between joint lives, 
including the “broken heart” effect, has not been 
considered. The irrational last survivor annuity 
pricing structure in the US and UK market 
implicitly affect the calibrated market price of 
longevity risk of joint lives, to some extent. 

3.4. Joint-life vs. single-life. For further 
understanding of the results in the previous section, 
we also examined the market prices of single-life 
longevity risk in the US and UK annuity market. 
Recall that, in projecting joint-life mortality rates, 
the single-life mortality is projected as the marginal 
mortality distribution. It enables a meaningful 
comparison between the market prices of longevity 
risk in joint-life products and in single-life products. 

The market prices of single-life longevity risk are 
calibrated based on the projected marginal single-
life mortality, using quotes of single-life immediate 
annuities in the US and UK market. Table 5 lists the 
quoted market prices of single-life immediate 

annuities per unit annual benefit in monthly 
instalments, paid in advance, without guarantee, in 
the US and UK market. The quoted market prices of 
single-life annuities in the UK are generally higher 
than the quoted prices in the US, while the 
difference narrows with the inception age of 
annuity. 

Table 5. Quoted market prices per unit annual 
benefit paid monthly in advance for single-life 
immediate annuities in the US and UK market  

for different inception ages 

The US market The UK market 

Inception 
age 

Males Females Males Females 

65 13.17 14.16 14.97 16.09

66 12.86 13.87 14.62 15.68

67 12.53 13.56 14.21 15.31

68 12.21 13.37 13.78 14.92

69 11.92 13.09 13.40 14.52

70 11.63 12.80 13.00 14.10

71 11.28 12.42 12.59 13.68

72 10.93 12.07 12.11 13.23

73 10.71 11.72 11.67 12.77

74 10.39 11.37 11.23 12.35

75 10.11 11.05 10.76 11.86

Figure 5 compares the calibrated market prices of 
longevity risk in last survivor annuities (top) and 
single-life annuities (bottom) in the US and the UK 
market. The risk-free interest rate is 4.25%. The 
market prices of longevity risk of joint lives are 
taken for the last column in Table 3 and 4, which are 
calibrated assuming f = m.

Fig. 5A. The estimated market prices of longevity risk in last survivor annuities (top) and single-life annuities (bottom)  

in the US market (left) and the UK market (right) 
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Fig. 5B. The estimated market prices of longevity risk in last survivor annuities (top) and single-life annuities (bottom)  

in the US market (left) and the UK market (right) 

In the US, the line of market prices of joint-life 

longevity risk is roughly between the two lines of 

market prices of single-life longevity risk. However, 

the market prices of longevity risk, either joint-life 

or single-life, are generally negative. 

In the UK, all the calibrated market prices of 

longevity risk are positive, although the market 

prices of longevity risk in last survivor annuities is 

much lower than the corresponding market price of 

single-life longevity risk. The market prices of 

longevity risk are positive in the UK annuity 

market, but negative in the US market. It indicates 

that the UK annuity market appears to more 

adequately allow for longevity risk when pricing 

immediate annuities than the US annuity market. 

Furthermore, the market prices of longevity risk in 

the US are far below zero. The US market does not 

correctly estimate the future improvements in 

mortality rates. Underpricing appears to be 

prevalent in the US annuity market. Mortality 

assumptions for pricing annuities needs to be 

reviewed. Further study in fair pricing annuities is 

required.

Concluding remarks 

In this paper, we have mainly focussed on the 

sustainability and reasonability of the prices of last 

survivor annuities in the private market. For this 

end, we propose a semi-Markov joint-life longevity 

risk model, and investigate the market prices of 

joint-life longevity risk in the US and UK, using the 

risk-neutral pricing theory. 

The effect of mortality improvement has substantial 

impact on last survivor annuities. However, market 

prices of longevity risk in last survivor annuities for 

two components of mortality processes are quite 

volatile. Negative market prices of longevity risk 

calibrated from the prices of last survivor annuities 

in both the US and the UK market indicate that last 

survivor annuities may not be well priced currently. 

We compare the market prices of joint-life longevity 
risk against the market prices of single-life 
longevity risk. The results indicate that the US 
market systematically underprices joint-life 
annuities and single-life annuities. The UK annuity 
market has more conservative allowance for 
longevity risk when pricing single-life annuities. 
Unfortunately we do not see consistent pricing of 
joint-life annuities. 

Joint-life pricing structures are irrational in both the 
US and the UK annuity market. The impact could be 
destructive for the development of annuity market. 
Last survivor annuities are likely to become more 
critical following the European Union ban on 
gender-specific annuity rates, which will take effect 
in 2012. Careful attention is called for to avoid 
underpricing these products. Further study in fare 
pricing this type of annuities is required. 

The aforementioned remarks are based on the 
proposed semi-Markov joint-life longevity model, 
which is built up upon a Gompertz distribution with 
stochastic parameters for the stochastic modeling of 
force of mortality. The stochastic Gompertz 
mortality model is a natural extension of the 
Gompertz law. It is most easily incorporated into the 
semi-Markov joint-life model. However, we 
acknowledge that mortality forecasting using 
models with stochastic parameter relies on the 
accuracy of the underlying parametric model. 

Generally speaking, the proposed model is a 

preliminary step in the modeling and risk 

management of joint-life longevity risk. Currently, a 

little research has been done in this area. What we 

have done here is only a lead-in to future analysis. 
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The correlation in the improvement of mortality for 

males and females has not been reflected. If there 

exists some correlation, it may have non-negligible 

impact on joint-life longevity risk. This should be 

investigated further, especially if suitable data 

become available. 
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