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RRetius Chifurira (South Africa), Delson Chikobvu (South Africa), Dorah Dubihlela (South Africa) 

Rainfall prediction for sustainable economic growth  

Abstract 

Agriculture is the backbone of Zimbabwe’s economy with the majority of Zimbabweans being rural people who derive 
their livelihood from agriculture and other agro-based economic activities. Zimbabwe’s agriculture depends on the 
erratic rainfall which threatens food, water and energy access, as well as vital livelihood systems which could severely 

undermine efforts to drive sustainable economic growth. For Zimbabwe, delivering a sustainable economic growth is 

intrinsically linked to improved climate modelling. Climate research plays a pivotal role in building Zimbabwe’s 
resilience to climate change and keeping the country on track, as it charts its path towards sustainable economic 

growth. This paper presents a simple tool to predict summer rainfall using standardized Darwin sea level pressure 

(SDSLP) anomalies and southern oscillation index (SOI) that are used as part of an early drought warning system. 

Results show that SDSLP anomalies and SOI for the month of April of the same year, i.e., seven months before onset 

of summer rainfall (December to February total rainfall) are a simple indicator of amount of summer rainfall in 

Zimbabwe. The low root mean square error (RMSE) and root mean absolute error (RMAE) values of the proposed 

model, make SDSLP anomalies for April and SOI for the same month an additional input candidates for regional 

rainfall prediction schemes. The results of the proposed model will benefit in the prediction of oncoming summer 

rainfall and will influence policy making in agriculture, environment planning, food redistribution and drought 

prediction for sustainable economic development.  

Keywords: sustainable economic growth, standardized Darwin sea level pressure anomalies, southern oscillation 

index, summer rainfall prediction, Zimbabwe. 

JEL Classification: Q16, Q25, Q54, Q55, Q58. 
 

Introduction  

The poor economic performance of Southern Africa 

continues to receive considerable amount of 

attention in the economic literature (Chilonda and 

Minde, 2007). For Zimbabwe, agriculture is the 

backbone of the economy. It provides employment and 

income for 60 to 70 percent of the population, supplies 

60 percent of the raw materials required by the 

industrial sector and contributes 40 percent of the total 

export earnings. Despite agriculture offering high level 

employment opportunities, it only contributes at least 

20 percent to the annual Gross Domestic Product 

(GDP) of the country depending on the rainfall 

patterns (Government of Zimbabwe, 2001; Jury, 

1996). The contribution of the sector to the economy 

has not been fully realized. Concerns of economic 

growth, environmental issues and sustainable 

development is a relatively recent event which has 

captured the attention of researchers, aid agencies and 

development and environmental planners. This is 

because sustainable development may equate to 

sustainable economic growth (Lele, 1991). Economic 

sustainability seeks to avoid extreme future imbalances 

in production (Harris et al., 2003). With long run 

economic sustainability, welfare is maximized over 

time. The interest rests in the need for development 
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programs rests on the need for eradication of 

poverty and food insecurity in most economies 

(Perman et al., 2003). 

Ample theories have been put forward to explain the 
relatively poor economic growth of the Zimbabwe and 
other sub-Saharan countries (Jury, 1996; Manatsa et 
al., 2008; Collier and Gunning, 1999). In essence, the 
theories can be categorized into those arising from 
political and those due to exogenous factors. Political 
explanations usually refer to poor and inconsistent 
policies that are argued to have impacted negatively to 

economic growth in Zimbabwe and other sub-Saharan 
African countries (FAO, 2001; Mangoyana; Meda, 
2001; UNECA, 2000). These include poor fiscal and 
trade policies, lack of good governance, corruption and 

illfunctional financial and labor markets. Exogenous 
explanations include external aid allocation (Burnside 
and Dollar, 1997) and lack of diversification of 
exports tropical climates including lack of early 
drought warning tools (Sachs and Warner, 1997). 
Given the importance of agriculture to a developing 
country such as Zimbabwe and the dependence of 

the sector to rainfall, as suggested by Manatsa et al., 
2008 and Mangonyana and Meda, 2001, its decline 
and lack of prediction tools may have severe 
consequences for sustainable growth. Additionally, 
this decline and lack of prediction tools poses 
detrimental impact on energy supply in Zimbabwe 
due to its heavy reliant on hydro-power for 
electricity generation (Kaunda et al., 2012). 

Rainfall patterns is affected by various natural 

phenomena. Firstly, large scale climatic variation that 

occur from one year to year (Panu and Sharma, 2002). 
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This is the Southern Oscillation climatic condition, 

which manifests itself in the differential oceanic 

temperature phenomenon across the tropical Pacific 

Ocean. The Southern Oscillation Index (SOI), as 

defined, is the difference between seasonally 

normalized sea level pressures of Darwin (in 

Australia) and Tahiti (in the Mid Pacific). Secondly, 

Darwin Sea Level Pressures (Darwin SLP) have 

been found to influence seasonal rainfall patterns in 

Zimbabwe (Manatsa et al., 2008).  

Evidence of relationships among meteorological 

variables is well documented (Webster, 1981; 

Rocha, 1992; Ropelewski and Halpert, 1987). Most 

researches on rainfall patterns for Zimbabwe have 

focused on correlations between phases of SOI and 

rainfall (Matarira and Unganai, 1994; Torrance, 

1990; Waylen and Henworth, 1995; Richard et al., 

2000). Makarau and Jury (1997) used a host of 

meteorological variables to predict summer rainfall 

in Zimbabwe. Ismail (1986) proposed an empirical 

rule from which the mean seasonal rainfall over 

Zimbabwe can be predicted three months before the 

start of the rainy season and ten months before its 

end using SOI. The author concluded that SOI has 

an influence on the seasonal rainfall over 

Zimbabwe. Manatsa et al. (2008) used correlation 

analysis to identify the lag periods for which SOI 

and Darwin pressure anomalies are significantly 

correlated with the Zimbabwean Summer 

Precipitation Index. The authors conclude that 

progressive lagged four months averaged Darwin 

sea level pressure anomalies are correlated with the 

Zimbabwean precipitation index. Our work 

advances the work done by Manatsa et al. (2008) by 

trying to find the SDSLP anomalies for a particular 

month at a particular lag which correlates with 

summer rainfall for Zimbabwe.  

In this paper, we aim to develop a simple early 

warning rainfall predictive model using climatic 

determinants such as SOI value and SDSLP 

anomalies for Zimbabwe, at a longer lead time 

before the onset of the rainfall season. In this paper, 

we focus on summer rainfall totals, i.e., monthly 

rainfall totals for the months December to February. 

The summer rainfall patterns is crucial for 

agriculture, water management, hydro-power 

electricity generation and infrastructure design, 

since the country usually receives the highest 

amount of rainfall during these months. Any 

meaningful planning requires information based on 

the rainfall patterns of the crucial months of the 

rainfall season. We are not aware of any literature 

relating to modelling summer rainfall using SDSLP 

anomalies and SOI for Zimbabwe. 

The remainder of the paper is organized as follows. 
In section 1, we discuss the importance of rainfall 

for Zimbabwe’s economic performance. Section 2 
describes the data and data sources. In section 3, the 

description of the methodology used to analyze the 
data set is discussed. Section 4 and final section 

discuss the main empirical results and conclusions, 
respectively. 

11. Rainfall and economic growth in Zimbabwe 

Rainfall could potentially have a wide range of 
economic implications in the developing world 

(Barrios et al., 2010).  There is an inherent 

interdependence between the amount of rainfall and 

the economic performance. The 5
th
 Assessment Report 

(2007) of the United Nations’ Intergovernmental Panel 
on Climate Change (IPCC) acknowledges the threat of 

climate change to Africa’s recent economic gains. 
Increasing temperatures, rising sea levels and erratic 

rainfall put strain on climate-sensitive sectors such as 
agriculture, water management and other vital 

livelihoods systems. The increasing understanding of 
climate system, its system variability, and the 

variability in terms of specific regional rainfall patterns 
provides fundamental opportunity for a successful 

paradigm for economic growth. Erratic rainfall 
patterns in Zimbabwe seem to have catastrophic 

consequences on peoples’ livelihoods and the smooth 
functioning of the economy. We briefly discuss the 

main channel through which rainfall is likely to have 
affected Zimbabwe’s economic growth.  Agriculture 
has traditionally had a higher share in Gross Domestic 

Product (GDP) in Zimbabwe than in any other 
Southern African country. The table below shows 

contribution to GDP by three major sectors in 
Zimbabwe for the period 2004 to 2015. 

Table 1. Percentage contribution to GDP by sector 

in Zimbabwe in 2014 

Year Agricultural sector % Industrial sector % Service sector % 

2004 19.58 26.42 54 

2005 18.58 28.68 52.74 

2006 20.28 32.33 47.39 

2007 21.6 33.07 45.33 

2008 19.4 31.09 49.51 

2009 15.07 29.64 55.28 

2010 14.51 30.82 54.64 

2011 13.21 32.69 54.11 

2012 13.15 31.6 55.24 

2013 12 31.1 56.9 

2014 14.01 29.41 55.59 

2015 12.53 28.47 58.99 

Source: Statistica (2015). 

According to the table above, the agricultural 

sector’s contribution to GDP was lowest in 2013 
where the contribution was only 12% and highest in 
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2007 with 21.6% contribution. This contribution is, 

however, dependant on the climatic factors like the 

amount of precipitation received, whether or not that 

precipitation was received in time by farmers and 

availability of precautionary measures in cases of 

erratic rainy seasons. Considering the importance of 

agriculture, Zimbabwe has been devastated by 

severe droughts in recent years (United Nations, 

2016). This has impacted negatively of the 

performance of the country to meet its potential 

growth since agricultural sector is susceptible to 

shortages in rainfall.  

22. The data 

To analyze summer rainfall for Zimbabwe, we use 

monthly mean annual rainfall for the period 1901 to 

2014. The rainfall data set was obtained from 

Department of Meteorological Services of 

Zimbabwe. Rainfall which is critical for crop 

farming, are the rains for the months December to 

February. Any rainfall amount below the normal 

rainfall for the region will adversely affect crop 

farming especially maize. The summer rainfall is the 

mean rainfall for the months December to February 

of the following year for 16 weather stations in the 

study area. This is the period when region receives 

high rainfall crucial for agriculture hydro-power 

electricity generation and water management. The 

dataset is divided into in-sample data set (1901 to 

2009) and out-of-sample data set (2010 to 2014). 

The out-of-sample dataset is used to check the 

forecasting power of the proposed model. Table 2 

shows the descriptive statistics of in-sample summer 

rainfall for the study area. 

Table 2. Descriptive statistics and normality test  

(p-value in brackets) of the summer rainfall data for 

the period 1901 to 2009 (in-sample) 

N Min Max Mean S. dev. Skewness Kurtosis 
Jarque-

Bera 
statistics 

108 233.22 810.70 497.66 123.49 0.29 -0.29 
1.80 

(0.41) 

The coefficient of skewness is 0.29 which small and 

the kurtosis is less than 3. This indicates that the 

summer rainfall data are approximately normally 

distributed.  This confirmed by the Jarque-Bera test. 

The p-value of the Jarque-Bera statistic is  

0.41 < 0.05, thus, we fail to reject the null 

hypothesis of normality of the summer rainfall at 

5% level of significance. The highest rainfall was 

obtained in 1923, while the lowest rainfall was in 

1992 (the worst drought in the given history of the 

country). Figure 1 shows the time series plot of the 

summer rainfall for the period 1901 to 2009. 

 

Fig. 1. Time series plot of summer rainfall for the period 

1901 to 2009 (in-sample) 

From Figure 1, it seems reasonable to assume that 

the pattern variation has stayed stationary over the 

observation period. However, we test for stationarity 

of the rainfall data using the Augment Dickey-Fuller 

(ADF) test, Phillips-Perron (PP) test and the 

Kwiatkoski-Phillips-Schmidit-Shin (KPSS) test. The 

null hypothesis for the ADF and PP tests is summer 

rainfall data is non-stationary, while the null 

hypothesis for the KPSS test is data is stationary. 

Table 2 shows the results of testing for stationarity 

of summer rainfall data. We observe that the data 

are stationary, as confirmed by the tests of 

stationarity presented in Table 3.  

Table 3. Stationarity tests statistics for summer 

rainfall data (p-value in brackets) 

ADF statistic PP statistic KPSS statistic 

-5.358 (<0.01) -10.915 (<0.01) 0.067 (0.10) 

Monthly SDSLP anomalies and SOI values are used 

in this study. Sea Level Pressure is the atmospheric 

pressure at mean sea level either directly measured 

by stations at sea level or empirically determined 

when the station is not at sea level (Mason, 1997). 

The monthly SDSLP anomalies and SOI values are 

obtained from NOAA, National Weather Service 

Climate Prediction Centre website. The SOI is 

calculated from the monthly or seasonal fluctuations 

in the air pressure difference of the area between 

Tahiti (in the mid-Pacific) and Darwin (in 

Australia). 

3. Research methodology 

In this paper, dependent rainfall variable is 

expressed in terms of independent explanatory 

variables, SDSLP anomalies and SOI. Multiple 

linear regressions can be used to model a 

relationship between the dependent variable and the 

explanatory variables. It allows investigating the 

effect of changes in the various factors on the 

dependent variable. If the observations are 

measured over time, the model becomes a time 

series regression model.  The resulting  statistical 
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relationship can be used to predict values of 

rainfall. To ascertain the predictive power of the 

model, all assumptions of multiple linear 

regressions must be met. 

3.1. Multiple regression model. Probabilistic 

models that include more than one independent 

variables are called multiple regression. The model 

can be written as: 

,    (1) 

where  is the  observation of the dependent 

variable,  is the corresponding 

observation of the explanatory variable whose 

predictive influence is of interest. Parameters  are 

unknown and the probabilistic component of the 

model  is the unknown error term. The value of 

the coefficient  determines the contribution of the 

independent variable  given that the other 

independent variables are held constant. Using 

classical estimation techniques estimates for the 

unknown parameters are obtained. If the estimated 

values for  are given by 

, then, the dependent variable is 

estimated as: 

         (2) 

and the estimate  for the error term  is 

determined as the difference between the observed 

and the predicted dependent variable; . 

In the theoretical model, several assumptions are made 

about the explanatory variables and the error term.  

Firstly, there must be insignificant correlation 

between the explanatory variables. When the 

explanatory variables are correlated, 

multicollinearity problem arises. The estimated 

parameters will be unstable and unreliable if highly 

correlated variables are used in the model as 

explanatory variables. In the study at hand, the 

predictive power of SOI and SDSLP anomalies at a 

maximum lag is important. SOI values are 

calculated using SDSLP values and, thus, high 

correlation is anticipated. Principal component 

analysis is used to produce orthogonal explanatory 

variables. 

3.2. Principal component analysis. Principal 

Component Analysis (PCA) also known as 

empirical orthogonal function has been used in 

many different disciplines including finance, 

agriculture, biology, chemistry, climatology, 

demography, ecology, psychology and meteorology.  

PCA is a technique used to combine highly 

correlated factors into principal components that are 

much less highly correlated with each other. This 

improves the efficiency of the model. 

In this study, the predictive power of SDSLP 

anomalies ( ) and SOI values ( ) is explored. Two 

new, uncorrelated factors,  and , can be 

constructed as follows: 

Let . 

Then, we carry out a linear regression analysis to 

determine the parameters and  in the equation: 

 (3) 

 and  are the intercept and slope parameters of 

the regression model, respectively, and  is the 

‘error’ term, which by definition is independent of 
.  

We, then, set:  

 (4) 

By construction,  is uncorrelated with SDSLP 

anomalies ( ), since  , the residual term in 

the equation. Changes in  are interpreted as the 

change in the observed values of SOI ( ) that 

cannot be explained by the observed change in 

SDSLP ( ).  in the rainfall model (1) explains the 

component of rainfall that cannot be explained by 

the SDSLP anomalies. 

The other assumptions of the rainfall model (1) are 
that there is no serial correlation and 
heteroscedasticity of error terms. These assumptions 
are likely to be violated in regression models with 
time series data. Autocorrelation (the error terms 
being correlated among themselves through time) 
leads to regression coefficients which are unbiased, 
inefficient and the standard errors are probably 
wrong making  tests and  tests unreliable. In a 
regression with auto-correlated errors, the errors 
will probably contain information that is not 
captured by the explanatory variables. The Durbin-
Watson test is used to assess whether the residuals 
are significantly correlated. A  Durbin-Watson 
statistic of 2 indicates absence of autocorrelation. 
The autocorrelation function and partial 
autocorrelation function can also be used to detect 
autocorrelation among the residuals. 

3.3. Weighted regression model. The multiple least 
squares criterion weighs each observation equally in 
determining the estimates of the parameters. The 
procedure treats all of the data equally, giving less 
precise measured points more influence than they 
should have and gives highly precise points too little 
influence. The weighted least squares weighs some 
observations more heavily than others, giving each 
data point its proper amount of influence over the 
parameter estimates, and this maximizes the 
efficiency of parameter estimation. Weighted least 
square reflects the behavior of the random errors in 
the model.   
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The model  

Let ′  

′, 

 and ] ′, 

then, the same model equation 1 can be written as  

,                                                          (5) 

parameter estimates using ordinary least squares can 

be found as 

′.                      (6) 

To find the weighted least squares parameters of the 

weighted model, we minimize the weighted sum of 

squared errors (WSSE). 

,                                                   (7) 

where  is the weight assigned to the 

observation. The weight can be the reciprocal 

of the variance of that observation’s error term, , 

i.e. 

.                                                                 (8) 

Observations with larger error variances will receive 
less weight (and, hence, have less influence on the 
analysis) than observations with smaller error 
variances. The estimates are: 

,                                      (9) 

where is the weight vector. 

The biggest disadvantage of weighted least squares 

is the fact that the theory behind this method is 

based on the assumption that the weights are known 

exactly. This is almost never the case in real 

applications where, instead, estimated weights are 

used (Carrol and Ruppert, 1988). 

3.4. Assessing model performance. To evaluate the 

performance of the considered models, we apply the 

measures of average error, namely, mean absolute 

error (MAE) and root mean square error (RMSE). 

These measures are based on statistical summaries 

of   ( . The average model-

estimation error can be written generically as: 

,                     (10) 

where  and  is a scaling assigned to each 

 according to its hypothesized influence on the 

total error (Willmott and Matsuura, 2005). For the 

calculation of RMSE, and . RMSE is 

measured in the same unit as the forecast and is 

given by: 

 (11) 

The MAE is also measured in the same unit as the 

forecast, but gives less weight to large forecast 

errors than the RMSE. To obtain the MAE, we set 

 and  and is given by:  

(12) 

According to Willmott and Matsuura (2005) and 
Trück and Liang (2012), MAE is the most natural 
measure of average error magnitude, and that it is an 
unambiguous measure of average error magnitude. 
The MAE and RSME values can range from 0 to 
infinity, and smaller values indicates a better model.  

3.5. Model selection criteria. The scope of model 
selection is to identify the model that is better suited to 
predict summer rainfall using SDSLP anomalies and a 
component of SOI not explained by SDSLP 
anomalies. In this paper, we consider the Akaike 
information criterion (AIC). The Akaike information 
criterion uses the Kullback-Leibler’s information as 
the discrepancy measure between the true model  

and the approximating model . The 

Kullback-Leibler information between the two models 
is defined as 

,                (13) 

where  denotes the information lost when 

 is used to approximate  (Laio et al., 2009). 

Thus,  is regarded as the distance from  

to . A good approximating model is the one that 
minimises the information lost, i.e., minimizing 

 over . The AIC for the  model is 

given by 

,                                 (14) 

where Π  is the likelihood function 

corresponding to the maximum likelihood estimator of 
the parameter  and  is the number of estimated 

parameters of the  model. The model with the 
minimum AIC value is, then, selected to be the best 
predictive model. 

44. Results 

In this section, correlations between summer rainfall 
for Mashonaland region and SDSLP anomalies are 
discussed. The results from simple and weighted 
regression models are also presented. 

4.1. Comparing lead times of SDSLP anomalies. 
Correlation analysis between the SDSLP anomalies 
and the summer rainfall is used to identify the month 
of the previous year whose SDSLP anomalies is 
significantly correlated to the summer rainfall 
(December to February total rainfall). Table 4 reports 
the correlation analysis between the climatic variables. 
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Table 4. Correlations analysis between summer 

rainfall and climatic variables 

Month SDSLP anomalies SOI 

Jan -0.001 0.058 

Feb -0.036 0.101 

Mar -0.159 0.067 

Apr -0.276 0.193 

May -0.093 0.215 

June -0.137 0.116 

July -0.159 0.207 

Aug -0.263 0.344 

Sept -0.176 0.329 

Oct -0.168 0.274 

Nov -0.288 0.263 

Dec 0.208 0.221 

The focus of this study is to determine a particular 

month’s SDSLP anomaly which has a high 
correlation with summer rainfall at a lead time of 

more than six months. The highest correlation is  

0.246 (SDSLP anomaly for April of the previous 

year). At a lead time of more than a year, the 

correlations between the SDSLP anomalies and 

summer rainfall are insignificant. In this paper, 

we propose the summer rainfall model using 

SDSLP anomalies for April of the previous year 

as the explanatory variable. 

At a longer lead time, SOI value for April is 

positively correlated to summer rainfall. We also 

observed that SOI value for April is highly 

correlated with SDSLP anomalies for April  

( 0.804), thus, it is used as an explanatory 

variable in a regression model to construct 

orthogonal explanatory variables  and . 

SDSLP anomalies for April ( ) is used as the 

dependent variable. is the residual series 

obtained from the equation (3) which is 

uncorrelated to SDSLP for April ( ). 

4.2. Summer rainfall predictive model. Table 4 

shows the results of the multiple regression 

approach to predict Zimbabwe’s summer rainfall 
using the SDSLP anomalies and the principal 

component of SOI of April which is not explained 

by SDSLP anomalies. The multiple regression 

model is: 

                         (15) 

where  is the predicted summer rainfall,  

is SDSLP anomalies for April of the previous year 

and  is  the component of SOI value for 

April of which is not explained by the 

corresponding SDSLP anomalies. 

Table 5. Parameter estimates for regression model 

(standard errors in brackets) 

Predictor variable Parameter estimate 

SDSLPApr 

*
2І  

0β̂
= 487.608 (12.229) 

1β̂ = - 13.164 (13.107) 

2β̂ = - 1.008 (1.612) 

Note: all parameters are significant at 5% level. Adjusted R2 = 0.06. 

Durbin-Watson statistic = 2.226. 

From Table 5, the model estimates are all significant 

at 5% level of significance. The model explains only 

6% of variations in the summer rainfall. The 

Durbin-Watson statistic of 2.226 indicates that the 

model does not violate the assumption of serial 

correlation of the residuals. However, the model can 

be improved by using different weights in the 

regression model.  

We now use different weighting scales to improve 

the forecasting power of the model. Table 5 shows 

the weighted linear regression models results for 

rainfall : 

,                          (16) 

where  is SDSLP anomalies for April of the 

previous year and  is  the component of SOI 

which is not explained by SDSLP anomalies for the 

same month. Various weights are considered in 

arriving at estimates using weighted regression. 

Table 6. Parameter estimates for weighted 

regression model (standard errors in brackets) 

Weights 
Parameter estimate 

0β̂ 1β̂ 2β̂  
 Adjusted 

 
AIC MAE RMSE 

*
2

1

I
 

575.442 (34.038)-
92.272 (16.014) 
-11.486 (3.000) 

0.425 11.991 127.504 154.7 

*
2І  

549.730 (30.032) 
-76.364 (16.460) 

-8.446 (3.250) 
0.295 12.067 146.778 183.0 

3*
2 )(

1

I
 

432.849 (8.918) 
-186.638 (14.959) 

-5.502 (0.533) 
0.590 15.371 147.411 183.0 

We use the MAE and RMSE measures to assess the 

forecasting performance of the models and the AIC 

to select the best fitting model. The weights are 

assumed to be proportional to inverse standard 

deviation. The weight  , of  used as the 

weighting model is selected, since it has the least 

AIC, MAE and RMSE values . The model performs 

better than the other models in forecasting summer 

rainfall, since it has the least MAE and RMSE values.  

The model is significant at 5% significance level. 
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The multiple adjusted R
2
 = 0.425, which indicates 

that the model explains 42.5% of the variations in 

summer rainfall from just two variables. ENSO 

explains only approximately 30% of the rainfall 

variability, which means that other factors should 

also be taken into account when predicting rainfall. 

The ACF and PACF correlogram (Appendix) shows 

that the residuals are approximately independent. 

This is confirmed by the  Durbin-Watson statistic 

value equal to 1.8, indicating that the residuals are 

approximately independent. The model does not 

violate the assumption of homoscedasticity. This is 

confirmed by the White test, which produce an F-

statistic of 12.759 (p-value = 0.00 < 0.05). It is 

important to check the in-sample forecasting power 

of the model.  Figure 2 shows the observed summer 

rainfall against the predicted rainfall from the 

selected model. 

 

Fig. 2. Summer rainfall versus predicted rainfall 

From Figure 2, the model seems to be able to 

predict in-sample summer rainfall. The model seems 

to shows some little variability between forecasts 

and actual rainfall. The model can be used to predict 

one year ahead summer rainfall for Zimbabwe. The 

out of sample forecasts for the years 2010 to 2014 

are shown in Table 7. The out of sample forecasts 

seem to be reasonable with insignificant differences 

between the actual summer rainfall and the 

predicted values and are significant at 5% level. The 

MAE value of 111.22 and RMSE value of 141.65 

are not so big considering that only two climatic 

explanatory variables have been used in the model. 

The model seems to under-forecast the summer 

rainfall for the years 2011 and 2014 while over-

forecast for the year 2012. However, during the 

entire out-of-sample period, the model is forecasting 

the actually summer rainfall by 3.11%.  This 

suggests that the proposed model is reasonable and 

can be used for predicting summer rainfall for 

Zimbabwe and other southern African countries. 

Table 7. Out-of-sample forecasts 

Year 
Summer rainfall 

(mm) 
Predicted summer 

rainfall (mm) 
Performance of 

model (%) 

2010 532.99 573.68 -7.63 

2011 548.31 683.24 -24.61 

2012 604.42 342.74 43.29 

2013 524.94 515.17 1.86 

2014 426.09 535.12 -25.35 

Average   -3.11 

Note: - indicates that the observed summer rainfall is less than 

the rainfall predicted by the proposed model. 

CConclusions  

We developed a simple summer rainfall predicting 

tool for Zimbabwe using SDSLP anomalies and 

SOI. The simple model can be used as part of a 

drought early warning system. This paper’s main 
finding is that summer rainfall for Zimbabwe 

correlates with SDSLP anomalies for the month of 

April. We employed principal component analysis 

to construct orthogonal factors (non-collinear 

variables), since SDSLP anomalies and SOI are 

correlated. The combination of regression and time 

series analysis offers a powerful tool for predicting 

summer rainfall using SDSLP anomalies and SOI 

values of a particular month with a lag of at least six 

months. Using SDSLP anomalies and the 

component of SOI for April which is not explained 

by SDSLP anomalies, the summer rainfall for the 

year ahead can be predicted. Developing a simple 

model for summer rainfall prediction helps in 

reducing the adverse effects on the productivity of 

different crops, as highlighted by IPCC (2007). 

Since agriculture is linked to the other sectors of the 

economy, variations in rainfall will affect farming 

activities and the rest of the economy through inter 

sectorial relations.  

Implications of the study 

A predictive model of summer rainfall seven 

months before the onset of summer rainfall will help 

in choosing of planting drought resistant crops in 

time. This will have important effects on agriculture 

supply and demand for input factors such as 

fertilizers. This, in turn, provides important forecast 

for drought in time so that precautionary measures 

can be taken in advance. These measures may 

involve an adjustment in the national budget 

expenditure in order to carter for the forthcoming 

drought, deciding on the type of seeds to plant and 

other possible measures of saving water as a scarce 

resource. The following measures may be taken 

based on the research results: 
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 Adaptive measures, thus, create standby 

measures to deal with climate related disasters. 

 Shifting agricultural activities to be in line with 

the amount of anticipated rain.  

Regarding the data, it is clear that the explanatory 
variables incorporated in the model are limited.  
It  would  be interesting to  include  other  climatic 

determinants such as Sea Surface Temperatures at 

Darwin and wind speed. However, the use of 

weighted regression gives an acceptable fit in the 

absence of these other factors. Extending the model 

with more factors may give a better understanding 

of the rainfall patterns in Zimbabwe. This is an area 

for further research. 
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AAppendix 

Table 1. ACF and PACF correlogram of square residuals for the weighted regression model 

Included observations: 103     

       
       

Autocorrelation Partial correlation  ACF PACF Q-Stat Prob 

       
       

.|**    | .|**    | 1 0.230 0.230 5.6017 0.018 

.|.     | *|.     | 2 -0.031 -0.088 5.7036 0.058 

.|*     | .|*     | 3 0.089 0.124 6.5582 0.087 

.|.     | *|.     | 4 -0.054 -0.118 6.8717 0.143 

*|.     | .|.     | 5 -0.082 -0.025 7.6094 0.179 
.|.     | .|.     | 6 -0.004 0.000 7.6114 0.268 

.|.     | .|.     | 7 0.004 0.013 7.6132 0.368 

.|.     | .|.     | 8 -0.002 0.002 7.6137 0.472 

.|*     | .|*     | 9 0.089 0.089 8.5296 0.482 

.|*     | .|*     | 10 0.119 0.075 10.176 0.425 

.|.     | *|.     | 11 -0.033 -0.074 10.305 0.503 
*|.     | *|.     | 12 -0.104 -0.088 11.581 0.480 

*|.     | .|.     | 13 -0.085 -0.064 12.459 0.490 

*|.     | .|.     | 14 -0.078 -0.024 13.202 0.511 
.|.     | .|.     | 15 -0.023 0.020 13.269 0.582 

.|.     | .|.     | 16 -0.046 -0.061 13.529 0.634 

.|.     | .|.     | 17 -0.027 -0.009 13.624 0.694 

.|.     | .|.     | 18 -0.029 -0.054 13.734 0.746 

*|.     | *|.     | 19 -0.069 -0.070 14.352 0.763 

*|.     | *|.     | 20 -0.098 -0.088 15.612 0.740 
*|.     | .|.     | 21 -0.074 -0.021 16.341 0.750 

.|.     | .|.     | 22 -0.054 -0.012 16.731 0.778 

.|.     | .|.     | 23 -0.021 0.009 16.793 0.819 

.|.     | .|.     | 24 0.018 0.003 16.838 0.855 

.|.     | .|.     | 25 0.008 -0.022 16.847 0.887 

.|.     | .|.     | 26 0.027 0.024 16.952 0.911 

.|.     | .|.     | 27 -0.018 -0.050 17.001 0.931 

.|.     | .|.     | 28 -0.036 -0.014 17.187 0.945 

.|.     | .|.     | 29 -0.040 -0.028 17.420 0.955 

.|.     | .|.     | 30 -0.038 -0.012 17.636 0.964 

.|.     | .|.     | 31 0.010 0.013 17.650 0.974 

.|.     | .|.     | 32 0.070 0.039 18.402 0.974 

.|.     | *|.     | 33 -0.033 -0.104 18.573 0.980 

.|.     | .|.     | 34 -0.026 -0.025 18.679 0.985 

.|.     | .|.     | 35 0.006 -0.032 18.683 0.989 

.|.     | .|.     | 36 -0.033 -0.029 18.861 0.992 
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