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Modeling jumps in organization of petroleum exporting countries 

basket price using generalized autoregressive heteroscedasticity 

and conditional jump 

Abstract 

This paper uses autoregressive jump intensity (ARJI) model to show that the oil price has both GARCH and 

conditional jump component. In fact, the distribution of oil prices is not normal, and oil price returns have 

conditional heteroskedasticity. Here the authors compare constant jump intensity with the dynamic jump 

intensity and evidences demonstrate that oil price returns have dynamic jump intensity. Therefore, there is 

strong evidence of time varying jump intensity Generalized Autoregressive Heteroscedasticity (GARCH) 

behavior in the oil price returns. The findings have several implications: first, it shows that oil price is highly 

sensitive to news, and it does settle around a trend in long-run. Second, the model separates variances of high 

volatilities from smooth volatilities. Third, the model rejects an optimal path for extracting oil and technolo-

gy transmission. In fact, the lack of a long-term pattern can cause excessive oil extracting which can result in 

heavy climatic effects. 

Keywords: generalized autoregressive heteroscedasticity (GARCH), jumps, basket, oil price, Organization of Petro-

leum Exporting Countries (OPEC), Autoregre-ssive jump intensity (ARJI). 

JEL Classification: C32, C52, F31. 
 

Introduction  

The subject of oil price includes an extensive litera-
ture consisting of both theoretical and practical re-
searches. There are three primary methods for de-
scribing oil price behavior in the literature: first, 
Hotelling (1931) theory which indicates that oil is an 
infinite source and its price follows a long-term in-
creasing pattern. There are different extensions of 
this primary model. Second, researches that likes of 
Krichen (2002) and Dees et al. (2007) who tried to 
describe oil price in the context of demand and 
supply in macroeconomics. The third method in-
cludes Dees et al. (2007), Kaufmann and Ulman 
(2009), which followed the subject in a more unor-
thodox way and focused on OPEC power and the 
role of speculation. The other important branch of 
the literature addresses the question that whether 
there is a permanent and systematic pattern for the 
price of exhaustible resources in the present time. 
Results obtained in this relation are not clear, but 
Slade (1998) does find practical evidence that the 
pattern is random; Slade (1982) and Lee et al. (2006) 
conclude that there is a second order, a permanent 
pattern with structural break, as it was expected. 
Finally, Pindyck (1999) concluded that the real price 
of oil fluctuates around a long-term pattern and the 
pattern itself is random. Previous models show that 
daily data on oil price and complex practical tech-
niques are heavily used. Notwithstanding the fact 
that techniques such as GARCH models, artificial 
neural networks and jump-diffusion processes have 
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been used, oil price behavior shows peculiar signals. 
In fact, change in true oil price historically tends to 
be permanent, difficult to predict, and led by very 
different regimes in different times. 

In this paper, autoregressive jump intensity (ARJI) 
model is used for modeling volatility of oil price 
return. This paper shows that many oil price beha-
viors are the same as the stock market behavior, 
since one can use models, which are used for model-
ing volatility of stock return, to model volatility of 
oil price return. In the second section, we introduce 
the ARJI model. In addition, descriptive statistics 
and data analysis are presented in third section. Sec-
tion four discusses empirical results, and finally in 
the last section, the implication is mentioned. 

1. Literature review 

Oil price has attracted significant attention from 
financial econometrics scholars. Many scientific 
studies address issues like volatility of oil price (Fos-
ter, 1995; Pindyck, 2004; Jebabli et al., 2014), and 
hedging (Lien et al., 2002). Ji and Guo (2015) ana-
lyzed the impacts effects of four types of oil-related 
events on world oil prices, using AR-GARCH mod-
el. Their results indicate that effect of the global 
financial crisis on oil price returns is negatively sig-
nificant, while the effect of the Libyan war and hur-
ricanes is positively significant. Diaz et al. (2016) 
investigated the relationship between oil price vola-
tility and stock returns in the G7 economies in the 
period 1970 to 2014 for monthly data. Results show 
that there is a negative response of G7 economies’ 
stock markets to an increase in oil price volatility. 
Outcomes also show that volatility of world oil price 
is usually more significant for G7 economies’ stock 
markets than the national oil price volatility. Loren-
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zo et al. (2016) used the Clayton and Gumbel copu-
las using the TGARCH model to investigate the tail 
dependence between oil prices and the Mexican 
stock market index on a weekly basis, from 2010 to 
2014. Agri et al. (2016) investigated the effect of oil 
price volatility on macroeconomic variables and 
sustainable development in Nigeria using secondary 
time series data in a vector auto regression analysis. 
Results show that variations in oil prices considera-
bly affect the real GDP, exchange rates, unemploy-
ment, balance of payments and interest rates in Nige-
ria. 

Many studies have focused on oil price predictions 
(Morana, 2006; Moshiri and Forootan, 2006; Bau-
meister&Kilian, 2014). Klein and Walther (2015) 
compared Mixture Memory GARCH (MMGARCH) 
modelto other discrete volatility models (GARCH, 
FIGARCH, and HYGARCH) for volatility and Val-
ue-at-Risk forecasting of oil price returns. They in-
dicated that MMGARCH outperforms the other dis-
crete volatility modelsbecause of its dynamic nature 
in varying the volatility level and memory of the 
process. Mostafa and El-Masry (2016) used gene 
expression programming and artificial neural net-
work (ANN) models to predict oil prices over the 
period of 1986 to 2012. The results show that the 
GEP outperforms ANN and ARIMA models in pre-
dicting oil prices. Baumeister and Kilian (2015) ap-
pliedsix real-time econometric oil price forecasting 
modelscombinations. They proposed that appro-
priately forecast models combinations should replace 
traditional judgmental forecasts of the price of oil 
such as the U.S. Energy Information Administration 
(EIA). Some related works are Askari and Krichene 
(2008) and Agnolucci (2009). 

Methodology 

2.1. Autoregressive jump intensity model for oil 
volatility. The aim of this study is modeling the oil 
price volatility. One of the features of crude oil mar-
kets is very intense volatility and, in some cases, 
such as during the Gulf war, jump in the time series 
data associated to crude oil. In this study, ARJI 
model proposed by Chan and Maheu (2002) is used 
for measuring the volatility of crude oil.Assume that 

the information set of data at time 1 is Ω,… . , and two shocks , and , have hap-

pened. A jump model is presented as follows: 

, , 																												 1  

In this equation,  is growth rate of oil price which 

is calculated byln	   and  is oil price at time;  

furthermore, ,  is a normal stochastic process and it 

is assumed that: , 0,1 (2) 

Let smooth conditional variance be a 1,1 process. We can write: 

, , 																													 3  

On the other hand, , is the shock associated with 

jump which its conditional expectation is zero and , |Ω 							 , 																											 4  

Where  is a variable that affects stock return in 1, interval and equals∑ , . It’sassumed 

that the jump size ,  comes from a normal distribu-

tion with average , and variance . is a variable 
that represents a separate counting process that 

records the number of jumps in 1, and follows 

a Poisson distribution with parameter 0. The 
probability density function is: |Ω 	 !                                         (5) 

Both the average and variance of the random varia-

ble is which is called jump intensity and is as-
sumed to be an autoregressive process with the fol-
lowing moving average: 6  

Where is the shock for and is aimed to 

measure the unexpected jumps at and updating 
the existing information set: ≡ |Ω

|Ω 																									 7  |Ω  is calledfilter and according to the 

given informational setΩ and |Ω  that 

identifies expected number of jumps in 	2,1  interval, extracts . Note that according to 

definition  is a martingale difference sequence with 

respect to the information inΩ ; therefore 0 and 	, 	0, 0 and we can write 
jump intensity as: 	 |Ω 											 8  

where and 0, ,  

The conditional variance of return is consisted of 
two parts; one part represents smooth conditional 
variance and is affected by past news. The other 
parts is conditional variance of arrival heterogeneous 
information which creates a jump. the conditional 
variance of returns is: 
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 (0.00) (0.15) 

Log-likelihood -4665.8019 -4652.7922 ∑ , , (14) 

, , 0,1 ,,			 , (15) 

Conclusion  

In this paper, we used the model of Chan and Maheu 
(2002) which was previously used to model stock 
return and exchange rate, to model OPEC oil price 
change. Two reasons supported this approach. First, 
there was evidence on similarities between oil data 
and stock market data and there was a possibility of 
using the models associated to stock market data in 
oil data analysis. Second, the above model could be 
effective in modeling unexpected events and news 
such as sudden increase in prices. In addition, low 
price elasticity of oil demand and supply and simul-
taneous large change in prices for clearing even 
small excess supply or demand was another motive 
for using such a model; but the thing that makes the 
Chan and Maheu (2002) model more interesting than 
other jump models, was the dynamic nature of jump 
variable and change of its magnitude and frequency 
over time. In fact, in other models, the jump variable 
was constant and this was a limiting assumption. 
Second, in contrast with most of the financial eco-
nometrics models that focus on techniques rather 
than results, findings of this model were associated 

to some theoretical findings of particular importance. 

Hotelling (1931) stated a famous law on oil price; 

price of a finite resource in the optimal settings rises 

with interest rate. Later, the Hotelling theory was 

developed by considering global warming and 

greenhouse gas emissions. The result of this devel-

opment was that ignoring greenhouse gas emissions 

can result in excessive oil extracting. Furthermore, 

the information extracted from oil price is crucial for 

technology change decisions and oil price is a better 

indicator of the lack of resources than the amount of 

oil production. Using the Chan and Maheu (2002) 

model showed strong evidence on GARCH model 

behaviors and also conditional jump intensity in 

daily data of oil price; that is, conditional heterosce-

dasticity variance exists and practical distribution 

has fat tail. Furthermore, this model has high sensi-

tivity to events and news and, therefore, it does not 

fluctuate around a long-term pattern; and despite that 

previous theories hold that prices fluctuate around an 

increasing pattern and oil price contains information, 

this model rejects the existence of such information. 

The most important result of this model is the rejec-

tion of an optimal path for extracting oil and tech-

nology transmission. In fact, the lack of a long-term 

pattern can cause excessive oil extracting which can 

result in heavy climatic effects. 
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