The impact of big data analytics on digital marketing decision-making: A comprehensive analysis
-
DOIhttp://dx.doi.org/10.21511/im.21(3).2025.13
-
Article InfoVolume 21 2025, Issue #3, pp. 171-182
- 53 Views
-
5 Downloads
This work is licensed under a
Creative Commons Attribution 4.0 International License
Type of the article: Research Article
Abstract
The fast development of data availability has altered digital marketing, establishing big data analytics as a vital tool for optimizing decision-making and enhancing campaign performance. This study explores how big data analytics contributes to effective decision-making, targeting precision, and customer engagement among digital marketing professionals. Conducted from June to August 2024 in Kosova, the research polled 250 professionals across varied industries (e.g., retail, banking, technology) and firm sizes (SMEs and major organizations), selected by purposive sampling. An online questionnaire, delivered through SurveyMonkey, achieved a 92% response rate (n = 230), capturing data on tool usage, benefits, and problems. Data pre-processing includes duplicate removal and mean imputation, followed by K-means clustering and logistic regression analysis using Python (scikit-learn, pandas). Results identified four adopter segments: High Adopters (35%) reported a 30% increase in targeting accuracy and 25% efficiency gain; Moderate Adopters (40%) achieved a 15% efficiency boost; Emerging Adopters (15%) noted 70% improved adaptability; and Low Adopters (10%) faced skill shortages (55%) and privacy concerns (65%). Overall, 85% leveraged big data for segmentation, 70% for real-time flexibility, and 60% observed a 20% engagement gain via sentiment analysis. Privacy (65%) and technical intricacy (50%) were important hurdles. These findings show big data’s revolutionary potential, underlining the need for scalable solutions, talent development, and ethical data practices to optimize its impact on digital marketing efficacy and inclusivity.
- Keywords
-
JEL Classification (Paper profile tab)M31, O33, C38
-
References62
-
Tables4
-
Figures2
-
- Figure 1. Elbow method for optimal number of clusters
- Figure 2. Customer segmentation with k-means clustering
-
- Table 1. Characteristics of identified clusters
- Table 2. Overall usage and benefits
- Table 3. Reported challenges
- Table 4. Silhouette scores for clustering algorithms
-
- Adeniran, I. A., Efunniyi, C. P., Osundare, O. S., & Abhulimen, A. O. (2024). Transforming marketing strategies with data analytics: A study on customer behaviour and personalisation. International Journal of Scholarly Research in Engineering and Technology, 4(1), 041-051.
- Akintuyi, O. B. (2024). Adaptive AI in precision agriculture: A review: Investigating the use of self-learning algorithms in optimizing farm operations based on real-time data. Open Access Research Journal of Multidisciplinary Studies, 7(2), 016-030.
- Aljumah, A. I., Nuseir, M. T., & Alam, Md. M. (2024). Organizational performance and capabilities to analyze big data: do the ambidexterity and business value of big data analytics matter? Business Process Management Journal, 30(7), 2709-2709.
- Alsmadi, A. A., Shuhaiber, A., Al-Okaily, M., Al-Gasaymeh, A., & Alrawashdeh, N. (2023). Big data analytics and innovation in e-commerce: current insights and future directions. Journal of Financial Services Marketing, 29(4), 1635-1652.
- Araz, O. M., Choi, T., Olson, D. L., & Salman, F. S. (2020). Role of Analytics for Operational Risk Management in the Era of Big Data. Decision Sciences, 51(6), 1320-1346. Portico.
- Ayokanmbi, F. M., & Sabri, M. S. (2021). The impact of big data analytics on decision-making. International Journal of Management, IT & Engineering, 11(4), 2-3.
- Bag, S., Gupta, S., Kumar, A., & Sivarajah, U. (2021). An integrated artificial intelligence framework for knowledge creation and B2B marketing rational decision making for improving firm performance. Industrial Marketing Management, 92, 178-189.
- Barlette, Y., & Baillette, P. (2020). Big data analytics in turbulent contexts: towards organizational change for enhanced agility. Production Planning & Control, 33(2-3), 105-122.
- Betty Jane, J., & Ganesh, E. N. (2020). Big Data and Internet of Things for Smart Data Analytics Using Machine Learning Techniques. Proceedings of the International Conference on Computer Networks, Big Data and IoT (ICCBI – 2019), 213-223.
- Bharadiya, J. P. (2023). A Comparative Study of Business Intelligence and Artificial Intelligence with Big Data Analytics. American Journal of Artificial Intelligence, 7(1), 24.
- Birjali, M., Kasri, M., & Beni-Hssane, A. (2021). A comprehensive survey on sentiment analysis: Approaches, challenges and trends. Knowledge-Based Systems, 226, 107134.
- Boppiniti, S. T. (2020). Big Data Meets Machine Learning: Strategies for Efficient Data Processing and Analysis in Large Datasets. International Journal of Creative Research in Computer Technology and Design, 2(2).
- Buhalis, D., & Volchek, K. (2021). Bridging marketing theory and big data analytics: The taxonomy of marketing attribution. International Journal of Information Management, 56, 102253.
- Cao, G., Tian, N., & Blankson, C. (2021). Big Data, Marketing Analytics, and Firm Marketing Capabilities. Journal of Computer Information Systems, 62(3), 442-451.
- Chhajer, P., Shah, M., & Kshirsagar, A. (2022). The applications of artificial neural networks, support vector machines, and long–short term memory for stock market prediction. Decision Analytics Journal, 2, 100015.
- Dahlbom, P., Siikanen, N., Sajasalo, P., & Jarvenpää, M. (2019). Big data and HR analytics in the digital era. Baltic Journal of Management, 15(1), 120-138.
- Darmody, A., & Zwick, D. (2020). Manipulate to empower: Hyper-relevance and the contradictions of marketing in the age of surveillance capitalism. Big Data & Society, 7(1), 205395172090411.
- Dong, J. Q., & Yang, C.-H. (2020). Business value of big data analytics: A systems-theoretic approach and empirical test. Information & Management, 57(1), 103124.
- Faheem, M., Aslam, M., & Kakolu, S. (2024). Enhancing Financial Forecasting Accuracy Through AI-Driven Predictive Analytics Models. Retrieved December 11.
- Faridoon, L., Liu, W., & Spence, C. (2025). The impact of big data analytics on decision-making within the government sector. Big Data, 13(2), 73-89.
- Georgiadou, E., Angelopoulos, S., & Drake, H. (2020). Big data analytics and international negotiations: Sentiment analysis of Brexit negotiating outcomes. International Journal of Information Management, 51, 102048.
- Grandhi, B., Patwa, N., & Saleem, K. (2021). Data-driven marketing for growth and profitability. EuroMed Journal of Business, 16(4), 381-398.
- Gupta, S., Justy, T., Kamboj, S., Kumar, A., & Kristoffersen, E. (2021). Big data and firm marketing performance: Findings from knowledge-based view. Technological Forecasting and Social Change, 171, 120986.
- Hair, J. F., & Sarstedt, M. (2021). Data, measurement, and causal inferences in machine learning: opportunities and challenges for marketing. Journal of Marketing Theory and Practice, 29(1), 65-77.
- Hajli, N., Tajvidi, M., Gbadamosi, A., & Nadeem, W. (2020). Understanding market agility for new product success with big data analytics. Industrial Marketing Management, 86, 135-143.
- Hammou, B. A., Lahcen, A. A., & Mouline, S. (2020). Towards a real-time processing framework based on improved distributed recurrent neural network variants with fastText for social big data analytics. Information Processing & Management, 57(1), 102122.
- Hatamlah, H., Allahham, M., Abu-AlSondos, I. A., Al-junaidi, A., Al-Anati, G. M., & Al-Shaikh, M. (2023). The Role of Business Intelligence adoption as a Mediator of Big Data Analytics in the Management of Outsourced Reverse Supply Chain Operations. (2023). Applied Mathematics & Information Sciences, 17(5), 897-903.
- Haverila, M., Haverila, K., Gani, M. O., & Mohiuddin, M. (2025). The relationship between the quality of big data marketing analytics and marketing agility of firms: the impact of the decision-making role. Journal of Marketing Analytics, 13(1), 162-179.
- Islam, Md. Aminul (2024). Impact of Big Data Analytics on Digital Marketing: Academic Review. Journal of Electrical Systems, 20(5s), 786-820.
- Jabbar, A., Akhtar, P., & Dani, S. (2020). Real-time big data processing for instantaneous marketing decisions: A problematization approach. Industrial Marketing Management, 90, 558-569.
- Jae, Y. I., & Hwa, P. I. (2025). Personalized Digital Marketing Strategies: A Data-Driven Approach Using Marketing Analytics. Journal of Management and Informatics, 4(1), 668-686.
- Jha, A. K., Agi, M. A. N., & Ngai, E. W. T. (2020). A note on big data analytics capability development in supply chain. Decision Support Systems, 138, 113382.
- Judijanto, L. (2025). The role of data-driven decision making in digital marketing strategy: a literature review. Review of International Economy and Finance, 1(3), 144-152.
- Kauffmann, E., Peral, J., Gil, D., Ferrández, A., Sellers, R., & Mora, H. (2020). A framework for big data analytics in commercial social networks: A case study on sentiment analysis and fake review detection for marketing decision-making. Industrial Marketing Management, 90, 523-537.
- Kitsios, F., Kamariotou, M., Karanikolas, P., & Grigoroudis, E. (2021). Digital Marketing Platforms and Customer Satisfaction: Identifying eWOM Using Big Data and Text Mining. Applied Sciences, 11(17), 8032.
- Krishna, S. R., Rathor, K., Ranga, J., Soni, A., & Kumar, A. (2023). Artificial Intelligence Integrated with Big Data Analytics for Enhanced Marketing. 2023 International Conference on Inventive Computation Technologies (ICICT), 1073–1077.
- Li, L., Lin, J., Ouyang, Y., & Luo, X. (Robert). (2022). Evaluating the impact of big data analytics usage on the decision-making quality of organizations. Technological Forecasting and Social Change, 175, 121355.
- Liu, X. (2020). Analysing the impact of user-generated content on B2B Firms’ stock performance: Big data analysis with machine learning methods. Industrial Marketing Management, 86, 30-39.
- Loureiro, M. L., & Alló, M. (2020). Sensing climate change and energy issues: Sentiment and emotion analysis with social media in the U.K. and Spain. Energy Policy, 143, 111490.
- Manivannan, P., Venkatachalam, D., & Parida, P. R. (2021). Building and Maintaining Robust Data Architectures for Effective Data-Driven Marketing Campaigns and Personalization. Australian Journal of Machine Learning Research & Applications, 1(2), 168-208.
- Mariani, M. M., & Fosso Wamba, S. (2020). Exploring how consumer goods companies innovate in the digital age: The role of big data analytics companies. Journal of Business Research, 121, 338-352.
- Medhat, M., & Bayomy, W. (2023). Big data analytics impact on marketing digital transformation. Information Sciences Letters, 12(4), 1901-1911.
- Mikalef, P., Pappas, I. O., Krogstie, J., & Pavlou, P. A. (2020). Big data and business analytics: A research agenda for realizing business value. Information & Management, 57(1), 103237.
- Miklosik, A., & Evans, N. (2020). Impact of Big Data and Machine Learning on Digital Transformation in Marketing: A Literature Review. IEEE Access, 8, 101284–101292.
- Mohamed, A., Najafabadi, M. K., Wah, Y. B., Zaman, E. A. K., & Maskat, R. (2019). The state of the art and taxonomy of big data analytics: view from new big data framework. Artificial Intelligence Review, 53(2), 989-1037.
- Moser, C. A., & Kalton, G. (2017). Survey Methods in Social Investigation. Routledge.
- Naqvi, A., Najafabadi, M. K., Wah, Y. B., Zaman, E. A. K., & Maskat, R. (2019). The state of the art and taxonomy of big data analytics: view from new big data framework. Artificial Intelligence Review, 53(2), 989-1037.
- Niu, Y., Ying, L., Yang, J., Bao, M., & Sivaparthipan, C. B. (2021). Organizational business intelligence and decision making using big data analytics. Information Processing & Management, 58(6), 102725.
- Nnaji, U. O., Benjamin, L. B., Eyo-Udo, N. L., & Etukudoh, E. A. (2024). A review of strategic decision-making in marketing through big data and analytics. Magna Scientia Advanced Research and Reviews, 11(1), 084-091.
- Novak, A., Bennett, D., & Kliestik, T. (2021). Product decision-making information systems, real-time sensor networks, and artificial intelligence-driven big data analytics in sustainable Industry 4.0. Economics, Management and Financial Markets, 16(2), 62-72.
- Okorie, G. N., Egieya, Z. E., Ikwue, U., Udeh, C. A., Adaga, E. M., DaraOjimba, O. D., & Oriekhoe, O. I. (2024). Leveraging Big Data for Personalized Marketing Campaigns: A Review. International Journal of Management & amp; Entrepreneurship Research, 6(1), 216-242.
- Rajan, P. (2024). Integrating IoT Analytics into Marketing Decision Making: A Smart Data-Driven Approach. International Journal of Data Informatics and Intelligent Computing, 3(1), 12-22.
- Rouf, N., Malik, M. B., Arif, T., Sharma, S., Singh, S., Aich, S., & Kim, H.-C. (2021). Stock Market Prediction Using Machine Learning Techniques: A Decade Survey on Methodologies, Recent Developments, and Future Directions. Electronics, 10(21), 2717.
- Sahoo, S. (2021). Big data analytics in manufacturing: a bibliometric analysis of research in the field of business management. International Journal of Production Research, 60(22), 6793-6821.
- Sestino, A., Prete, M. I., Piper, L., & Guido, G. (2020). Internet of Things and Big Data as enablers for business digitalization strategies. Technovation, 98, 102173.
- Sokolova, Y. U. L. I. I. A., Katunina, O. L. H. A., Pysarenko, N. A. D. I. I. A., & Kovalchuk, O. A. (2025). Using big data to develop digital marketing strategies: a case study. Journal of Theoretical and Applied Information Technology, 103(8), 3084-3095.
- Theodorakopoulos, L., & Theodoropoulou, A. (2024). Leveraging Big Data Analytics for Understanding Consumer Behavior in Digital Marketing: A Systematic Review. Human Behavior and Emerging Technologies, 2024(1). Portico.
- Verma, S., Sharma, R., Deb, S., & Maitra, D. (2021). Artificial intelligence in marketing: Systematic review and future research direction. International Journal of Information Management Data Insights, 1(1), 100002.
- Yang, J., Xiu, P., Sun, L., Ying, L., & Muthu, B. (2022). Social media data analytics for business decision making system to competitive analysis. Information Processing & Management, 59(1), 102751.
- Yi, S., & Liu, X. (2020). Machine learning based customer sentiment analysis for recommending shoppers, shops based on customers’ review. Complex & Intelligent Systems, 6(3), 621-634.
- Yoseph, F., Ahamed Hassain Malim, N. H., Heikkilä, M., Brezulianu, A., Geman, O., & Paskhal Rostam, N. A. (2020). The impact of big data market segmentation using data mining and clustering techniques. Journal of Intelligent & Fuzzy Systems, 38(5), 6159-6173.
- Zhou, J., Zhai, L., & Pantelous, A. A. (2020). Market segmentation using high-dimensional sparse consumers data. Expert Systems with Applications, 145, 113136.