The impact of geopolitical risk and policy uncertainty on CO₂ emissions: A CS-ARDL analysis of G7 economies

  • 61 Views
  • 6 Downloads

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License

Type of the article: Research Article

Abstract
This study aims to empirically examine the dynamic effects of geopolitical risk, economic policy uncertainty, and climate policy uncertainty on CO₂ emissions in G7 economies, utilizing annual data from 1990 to 2022. To account for cross-sectional dependence and parameter heterogeneity, the analysis employs a cross-sectional autoregressive distributed lag (CS-ARDL) model. Diagnostic tests confirm significant cross-sectional dependence and slope heterogeneity among the variables. All variables are integrated of order one, I (1), confirmed by unit root tests. In contrast, the cointegration test provides a strong indication of a stable long-run relationship among geopolitical risk, policy uncertainty measures, and CO₂ emissions. The outcomes show that a 1% rise in the geopolitical risk index leads to a statistically significant long-run rise of 0.042% in per capita CO₂ emissions. In addition, a 1% increase in economic policy uncertainty and climate policy uncertainty is associated with long-run increases of 0.028% and 0.015%, respectively. These results remain robust across alternative estimators. Overall, the evidence suggests that heightened geopolitical risk and policy-related uncertainties significantly exacerbate environmental degradation in G7 economies, highlighting the necessity for strategies that improve stability, reduce uncertainty, and encourage renewable energy adoption as part of a long-term environmental strategy.

view full abstract hide full abstract
    • Table 1. Definition and source of variables
    • Table 2. Cross-sectional dependence and slope homogeneity test results
    • Table 3. CIPS panel unit root test results
    • Table 4. Westerlund (2007) panel cointegration test results
    • Table 5. CS-ARDL long-run and short-run estimation results
    • Table 6. Robustness check results (AMG and CCEMG estimators)
    • Conceptualization
      Nuriddin Shanyazov, Sanaatbek K. Salayev, Samariddin Makhmudov, Ikhtiyor Sharipov, Sanabar Matkuliyeva, Javohir Babajanov, Dilshodbek Saidov
    • Formal Analysis
      Nuriddin Shanyazov
    • Funding acquisition
      Nuriddin Shanyazov, Sanaatbek K. Salayev, Samariddin Makhmudov, Ikhtiyor Sharipov, Sanabar Matkuliyeva, Javohir Babajanov, Dilshodbek Saidov
    • Investigation
      Nuriddin Shanyazov, Sanaatbek K. Salayev, Samariddin Makhmudov, Ikhtiyor Sharipov, Sanabar Matkuliyeva, Javohir Babajanov, Dilshodbek Saidov
    • Methodology
      Nuriddin Shanyazov, Sanaatbek K. Salayev, Samariddin Makhmudov
    • Project administration
      Nuriddin Shanyazov
    • Software
      Nuriddin Shanyazov, Sanaatbek K. Salayev, Ikhtiyor Sharipov, Javohir Babajanov, Dilshodbek Saidov
    • Supervision
      Nuriddin Shanyazov, Sanabar Matkuliyeva
    • Validation
      Nuriddin Shanyazov, Sanaatbek K. Salayev, Samariddin Makhmudov, Ikhtiyor Sharipov, Sanabar Matkuliyeva, Javohir Babajanov, Dilshodbek Saidov
    • Writing – original draft
      Nuriddin Shanyazov, Samariddin Makhmudov
    • Writing – review & editing
      Nuriddin Shanyazov, Sanaatbek K. Salayev
    • Visualization
      Sanaatbek K. Salayev, Ikhtiyor Sharipov, Sanabar Matkuliyeva, Javohir Babajanov, Dilshodbek Saidov
    • Data curation
      Samariddin Makhmudov, Ikhtiyor Sharipov, Sanabar Matkuliyeva, Dilshodbek Saidov
    • Resources
      Ikhtiyor Sharipov, Sanabar Matkuliyeva, Javohir Babajanov, Dilshodbek Saidov